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First-order ODEs

(i) Separable, nonlinear equations: Separable means that the ODE can be written in the
form,

dy

dx
= f(x)g(y).

Solution:
∫

dy

g(y)
= C +

∫

f(x)dx,

where C is a constant of integration that is determined by an initial condition of the form,
y(x0) = y0.

Example: y′ = (y + 1) sinx. Solution:
∫

dy

y + 1
= C +

∫

sinxdx.

Integrating:

ln |y + 1| = C − cos x, or y = ± exp(C − cos x) − 1 ≡ ae− cos x − 1,

where a is a new constant of integration (and takes into account the ± which came from the
absolution value within the logarithm).

Note that the absolute value is necessary inside the logarithm in order for the solution to make
sense when y < −1.

(ii) Linear equations: Linear means that the ODE can be written in the form,

dy

dx
+ p(x)y = q(x).

The integrating factor,†

I(x) = exp

[∫ x

p(x̃)dx̃

]

,

satisfies dI/dx = pI, and so multiplication by I turns the ODE into:

I
dy

dx
+ pIy = I

dy

dx
+

dI

dx
y =

d

dx
(Iy) = qI.

Thus the solution is

y(x) =
C

I(x)
+

1

I(x)

∫ x

I(x̃)q(x̃)dx̃,

where C is again determined by the initial condition.

Example: y′ − y sinx = sinx. (p(x) = − sinx and q(x) = sinx.) Solution:

I = exp

[

−
∫

sinx dx

]

= ecos x.

Hence,

y = Ce− cos x + e− cos x

∫ x

ecos x̃ sin x̃ dx̃ = Ce− cos x − 1.

† Note the introduction of x̃ to distinguish the integration variable, and the notation
∫ x dx̃ to

indicate the integral “upto x”.
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Graphical Methods

The direction field for the equation dy/dx = F (x, y):
• Place a grid on the (x, y)−plane.
• At each gridpoint, (xn, yn), estimate the slope of the solution, [dy/dx]x=xx,y=yn

= F (xn, yn).
Draw small line segments through each gridpoint with this slope.
• Thread curves through the grid so that the slope of the curve matches the slope of the line

segments whenever it passes close to a gridpoint.
• If an initial condition is given, draw the curve passing through that particular point.
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Direction field and solutions for dy/dx=(y+2x)/(x−2y)

Figure 1. The direction field and sample solution curves for the first-order ODE,
dy/dx = (y + 2x)/(x − 2y). The graph is plotted using MATLAB; the line segments show-
ing the direction field is constructed using the method described in ENG27L Assignment 2.

An alternative to the use of a grid is the so-called method of isoclines. Here one draws curves
of constant slope (that is, let s = dy/dx and solve s = F (x, y) for y(x, s); draw these curves on
the plane), and then adds line segments with that slope passing through various points on these
curves. Finally, one threads the solutions curves through the picture, again matching the slope
with the line segments.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 1.
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Second-order, linear ODEs with constant coefficients

General form:
ay′′ + by′ + cy = 0 Homogeneous

ay′′ + by′ + cy = f(x) Inhomogeneous.

Initial-value problem: y(x) and y′(x) are specified at a particular point, x0. e.g. y(x0) = 1
and y′(x0) = 1.
Boundary-value problem: Conditions are applied on y(x) and y ′(x) at two separate points,
x1 and x2. e.g. y(x1) = 1 and y(x2) = 1.

Solution of the homogeneous problem: Pose y = Aemx, then we obtain the auxiliary
equation,

am2 + bm + c = 0, or m =
−b ±

√
b2 − 4ac

2a
.

(a) Real, unequal roots, m1 and m2: General Solution,

y(x) = Aem1x + Bem2x.

(b) Real, equal roots, m = m1 = m2: General Solution,

y(x) = (Ax + b)emx.

(c) Complex roots, m = α ± iβ: General Solution,

y(x) =







Ae(α+iβ)x − Be(α−iβ)x

eαx(C cosβx + D sinβx)
Reαx cos(βx + γ)

.

Examples:

• y′′−2y′−3y = 0. Auxiliary equation: m2 −2m−3 = (m+1)(m−3) = 0, implying m = −1
or 3. Solution:

y(x) = Ae3x + Be−x

(with A and B arbitrary constants).

• y′′−2y′+y = 0. Auxiliary equation: m2−2m+1 = (m−1)2 = 0, implying m = 1. Solution:

y(x) = (ax + b)ex.

(with a and b arbitrary constants).

• y′′ − 2y′ + 5y = 0. Auxiliary equation: m2 − 2m + 5 = 0, or (m − 1)2 = −4, implying
m = 1 ± 2i. Solution:

y(x) =







Ae(1+2i)x + Be(1−2i)x

ex(C cos 2x + D sin 2x)
Rex cos(2x + γ)

(with A, B, C, D, R and γ arbitrary constants).
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Solution of the inhomogeneous problem: The general solution has the form of the homo-
geneous solutions plus a particular solution. General strategy:

(a) Find the homogeneous solutions (satisfying ay ′′ + by′ + cy = 0)
(b) find a particular solution (by posing a trial solution based on f(x) and containing constants

to be determined)
(c) apply any initial/boundary conditions.

Inhomogeneous term, f(x): Trial particular solution
(with constants C, D, ... to be determined):

eηx Ceηx

Polynomial of degree n Polynomial of degree n (Cxn + Dxn−1 + ...)
cos ωx or sinωx C cosωx + D sinωx

eηx cos ωx or eηx sinωx (C cosωx + D sinωx)eηx

(Polynomial of degree n)eηx (Cxn + Dxn−1 + ...)eηx

Homogeneous solution Cxf(x)

One must beware of inhomogeneous terms that are also of the same form as a homogeneous
solution. In this case, the trial solution will not work (the trial completely disappears from the
left-hand side of the equation), and one must modify the guess by adding a further factor of x.

Examples:

• y′′ − 4y′ + 3y = f(x), for f(x) = e2x, cos x, x2 and ex.

Homogeneous solutions: Auxilliary equation, m2 − 4m − 3 = (m − 3)(m − 1) = 0, implying
m = 1 or 3. Hence the homogeneous solutions are Aex + Be3x, where A and B are arbitrary
constants.

Particular solutions:

For f(x) = e2x, try y = ae2x. Plugging and chugging implies that this is a solution if 4a − 8a +
3a = 1; that is, if a = −1.

For f(x) = cos x, try y = a cos x+ b sinx. Plug and chug; the solution works if −a− 4b+3a = 1
and −b + 4a + 3b = 0, which gives a = 1/10 and b = −1/5.

For f(x) = x2, try y = ax2 + bx + c. Plug and chug to find that 3a = 1, 3b − 8a = 0 and
3c − 4b + 2a = 0, or a = 1/3, b = 8/9 and c = 26/27.

For f(x) = ex, the trial solution y = aex will not work because the inhomogeneous term has the
form of a homogeneous solution. Now we must try the solution axex. Plugging and chugging
implies that −2a = 1, or a = −1/2.

Finally, if there are initial or boundary conditions, apply them to find A and B.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 2.
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Matrices and determinants

An m × n matrix is an ordered array of numbers arranged in m rows and n columns. The
entries or elements are denoted ajk, where the subscripts, j and k, denote the row and the
column in which the element is located:

A =









a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
am1 am2 ... amn









e.g.

(

2 −5 1/3
π 0 0.7

)

is 2 × 3





1 + i√
3

−i



 is 3 × 1

Special matrices

• A matrix with a single column (row) is also called a column (row) vector.
• A matrix with as many rows as columns (m = n) is called a “square matrix”. The diagonal

from top-left to bottom-right is called the “leading diagonal”, and consists of the elements, a11,
a22, a33, ..., ann.

• A symmetric matrix is a square matrix whose element in the j th row and kth column is
equal to the element in the kth row and jth column. i.e. ajk = akj for all possible j and k. The
matrix is symmetric on “reflection” about the leading diagonal.

e.g.









1 0 −2 3
0 3 4 −7
−2 4 −1 6
3 −7 6 2









.

• If ajk = −akj for all possible j and k, the square matrix A is “anti-symmetric”, or “skew-
symmetric”. Since ajj = −ajj, the elements on the leading diagonal must all vanish.

e.g.









0 −1 −2 3
1 0 4 −7
2 −4 0 6
−3 7 −6 0









.

• A square matrix is “upper (lower) triangular” if all elements below (above) the leading
diagonal are zero.

e.g. Upper triangular :





−1 −2 3
0 4 −7
0 0 1



 , Lower triangular :





−1 0 0
1 4 0
2 8 1



 .

• A “diagonal matrix” is a square matrix with zeros everywhere but on leading diagonal.

e.g.





−1 0 0
0 4 0
0 0 1



 .

• The “identity” or “unit” matrix of order n × n is the diagonal matrix of order n × n in
which all the diagonal elements are equal to unity. It is denoted In×n or In, or simply I.

e.g. I3 =





1 0 0
0 1 0
0 0 1



 .

• The zero matrix of order m × n is denoted Om×n and has zero for each element.



6

Basic rules of matrix algebra

• Equality: The matrices A and B are equal if and only if all corresponding elements are
equal and the orders are the same: ajk = bjk for all possible j and k.

• Addition and subtraction: The matrices A and B can be added and subtracted only if they
have the same order. Their sum A + B and difference A − B have the elements, ajk + bjk and
ajk − bjk, respectively.

• Multiplication by a scalar: The matrix λA, where λ is a scalar (number), has elements λajk.
• Matrix multiplication: The product AB = C of two matrices A and B exists if the number

of columns of A equals the number of rows of B (i.e. A is order m × n and B is order n × p).
The matrix C has elements given by cjk =

∑n
l=1 ajlblk. i.e. the elements at the intersection of

the jth row and the kth column is the sum of products of elements from the j th row of A and
the kth column of B, taken in order:





















.

.

.
. . cjk .

.

.

.





















=





















aj1 aj2 . . . ajn





































b1k

b2k

.

.

.
bnk

















The product, AB, has as many rows as A, and as many columns as B (i.e. AB has order m× p
if A is m × n and B is n × p). Even when AB exists, it is not necessarily the case that BA
exists, and if it does exist, it is not necessarily equal to AB.

• Provided all the sums and products exist, A + B = B + A, and (A + B)C = AC + BC =
BC + AC = (B + A)C.

• Provided the products exist, (AB)C = A(BC) = ABC.
• For a square matrix, A2 = AA, A3 = AAA, and Ap = AAA...A (p factors of A).
• Multiplication by the identity or unit matrix: If A is m × n, ImA = AIn = A.
• Transpose: The transpose of the m × n matrix A, denoted AT (or sometimes A′), is the

n × m matrix obtained by interchanging the rows and columns of A. Thus, the elements of AT

are akj.
• Transpose of a product: If AB exists, (AB)T = BT AT .

The matrix inverse

(a) Matrix inverse: A square matrix A may possess an inverse, denoted A−1, with the proper-
ties, AA−1 = A−1A = I. Consequently, the linear system, Ax = b, may be solved as x = A−1b.

(b) Inverse of a product: (AB)−1 = B−1A−1.
(c) Inverse of a power: (Ap)−1 = (A−1)p = A−p, for p a positive integer.
(d) (AT )−1 = (A−1)T .
(e) The inverse of a diagonal matrix with elements, a11, a22, ..., ann, is the diagonal matrix

with elements, a−1
11 , a−1

22 , ..., a−1
nn .

(f) The inverse of a lower (upper) triangular matrix is an lower (upper) triangular matrix.
(g) The inverse of a symmetric matrix is also symmetric.
(h) The inverse A−1 exists if and only if the determinant of A is not equal zero. If det A = 0,

the inverse does not exist and the matrix is called “singular”.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 6.
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Determinants

An nth-order determinant is written as:
∣

∣

∣

∣

∣

∣

∣

∣

a11 a12 ... a1n

a21 a22 ... a2n

... ... ... ...
an1 an2 ... ann

∣

∣

∣

∣

∣

∣

∣

∣

.

Its value is a scalar (number), and is fomulated in terms a set of products of the elements, ajk.

The inverse of a 2 × 2 matrix:

A =

(

a11 a12

a21 a22

)

, A−1 =
1

det A

(

a22 −a12

−a21 a11

)

, det A = a11a22 − a12a21.

Minors and Cofactors: If the jth row and kth column of the determinant are deleted, a de-
terminant of order n − 1 is obtained, and is called the “minor” of ajk, and denoted Mjk. The
“cofactor”, Ajk, of the element, ajk, is Ajk = (−1)j+kMjk.

Expansion of a determinant: The formula,

det A = a11A11 + a12A12 + ... + a1nA1n,

expresses a determinant in terms of determinants of lower order, using the top row. The reduction
can be performed using any row or column:

det A =
n

∑

k=1

ajkAjk (j fixed; expanding using the jth row),

det A =
n

∑

j=1

ajkAjk (k fixed; expanding using the kth column).

Properties of determinants:

(a) The determinant of a diagonal or triangular matrix is the product of the elements on the
leading diagonal. e.g.

∣

∣

∣

∣

∣

∣

1 0 0
0 6 0
0 0 2

∣

∣

∣

∣

∣

∣

= 12 =

∣

∣

∣

∣

∣

∣

1 6 9
0 6 4
0 0 2

∣

∣

∣

∣

∣

∣

.

(b) Interchange of two rows (columns) reverses the sign of the determinant. e.g.
∣

∣

∣

∣

1 2
2 1

∣

∣

∣

∣

= −
∣

∣

∣

∣

2 1
1 2

∣

∣

∣

∣

.

(c) When all elements of one row (column) are multiplied by a scalar, k, the determinant is
multiplied by k. e.g.

2

∣

∣

∣

∣

2 1
2 2

∣

∣

∣

∣

=

∣

∣

∣

∣

4 2
2 2

∣

∣

∣

∣

= 2

∣

∣

∣

∣

4 2
1 1

∣

∣

∣

∣

= 4

∣

∣

∣

∣

2 1
1 1

∣

∣

∣

∣

.

(d) If all elements of any row (column) are zero the value of the determinant is zero. e.g.
∣

∣

∣

∣

4 2
0 0

∣

∣

∣

∣

= 0.

(e) If two rows (columns) are identical, the value of the determinant is zero. e.g.
∣

∣

∣

∣

4 2
4 2

∣

∣

∣

∣

= 0.



8

(f) If one row (column) is a scalar multiple of another row (column), the value of the deter-
minant is zero. e.g.

∣

∣

∣

∣

4 2
2 1

∣

∣

∣

∣

= 0.

(g) When any multiple of one row (column) is added to another row (column), the value of
the determinant is unchanged. e.g.

∣

∣

∣

∣

4 2
4 6

∣

∣

∣

∣

=

∣

∣

∣

∣

4 2
0 4

∣

∣

∣

∣

(row 2 is replaced by row 2 – row 1).
(h) det AT = det A. e.g.

∣

∣

∣

∣

4 2
4 6

∣

∣

∣

∣

=

∣

∣

∣

∣

4 4
2 6

∣

∣

∣

∣

.

(i) det (AB) = det A × det B = det (BA).
(j) det (A−1) = (det A)−1.

Worked example

By expansion (using the top row, since there is a zero in it):
∣

∣

∣

∣

∣

∣

1 3 0
2 6 4
−1 0 2

∣

∣

∣

∣

∣

∣

= 1 ×
∣

∣

∣

∣

6 4
0 2

∣

∣

∣

∣

− 3 ×
∣

∣

∣

∣

2 4
−1 2

∣

∣

∣

∣

+ 0 ×
∣

∣

∣

∣

2 6
−1 0

∣

∣

∣

∣

= (6 × 2 − 4 × 0) − 3(2 × 2 − (−1) × 4) = 12 − 3 × 8 = −12.

By row/column manipulation
∣

∣

∣

∣

∣

∣

1 3 0
2 6 4
−1 0 2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1 3 0
0 0 4
−1 0 2

∣

∣

∣

∣

∣

∣

(row 2) → (row 2) − 2 × (row 1)

= 4

∣

∣

∣

∣

∣

∣

1 3 0
0 0 1
−1 0 2

∣

∣

∣

∣

∣

∣

take out factor of 4 from row 2

= 4

∣

∣

∣

∣

∣

∣

1 3 0
0 0 1
−1 0 0

∣

∣

∣

∣

∣

∣

(row 3) → (row 3) − 2 × (row 2)

= 4

∣

∣

∣

∣

∣

∣

0 3 0
0 0 1
−1 0 0

∣

∣

∣

∣

∣

∣

(row 1) → (row 1) + (row 3)

= −4

∣

∣

∣

∣

∣

∣

−1 0 0
0 0 1
0 3 0

∣

∣

∣

∣

∣

∣

exchange rows 1 and 3 = 4

∣

∣

∣

∣

∣

∣

−1 0 0
0 3 0
0 0 1

∣

∣

∣

∣

∣

∣

exchange rows 2 and 3

= 4 × (−1) × 3 × 1 = −12 (using the properties of a diagonal matrix).

E. Kreyszig, Advanced Engineering Mathematics, Chapter 6.
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Eigenvalues and eigenvectors

The eigenvalues, λ, and eigenvectors, x, of an n×n matrix, A, are both defined by the equation,

Ax = λx

The eigenvalue equation is written in the alternative form,

(A − λI)x = 0;

nontrivial solutions exist if

det(A − λI) = 0,

which determines λ. The eigenvectors are then the (non-unique) solutions of (A− λI)x = 0, for
each possible value of λ.

The “characteristic polynomial” of A is the expansion of the determinant of A−λI, expressed
as a polynomial in λ:

det(A − λI) ≡ det(A) + a1λ + a2λ
2 + ... + an−1λ

n−1 + anλn.

Factorizing:

det(A − λI) ≡ (λ1 − λ)(λ2 − λ)...(λn − λ),

where λj, with j = 1, 2, ..., n, are the eigenvalues, and det(A) = λ1λ2...λn.
e.g. Find the eigenvalues and eigenvectors of





2 −2 2
1 1 1
1 3 −1





The eigenvalues are the solution of
∣

∣

∣

∣

∣

∣

2 − λ −2 2
1 1 − λ 1
1 3 −1 − λ

∣

∣

∣

∣

∣

∣

= 0.

That is,

−λ3 + 2λ2 + 4λ − 8 = (−2 − λ)(2 − λ)2 = 0,

or λ = −2 or 2.
For λ = −2, the eigenvector satisfies





4 −2 2
1 3 1
1 3 1









x1

x2

x3



 =





0
0
0



 ,

so that

x = α





4
1
−7



 ,

with α an arbitrary constant.
For λ = 2, the eigenvector satisfies





0 −2 2
1 −1 1
1 3 −3









x1

x2

x3



 =





0
0
0



 ,

so that

x = β





0
1
1



 ,



10

with β another arbitrary constant.

• Real matrices (matrices with entries that are purely real) may have real eigenvalues, or
eigenvalues that occur as complex conjugate pairs, or a combination of both.

• Symmetrical matrices have purely real eigenvalues.
• The eigenvalues of Ap are λp, for p a positive integer, if λ denotes the eigenvalues of A. The

eigenvectors of A are also the eigenvectors of Ap.
• If A−1 exists, the eigenvalues of A−p are λ−p, for p a positive integer. The eigenvectors of

A are also the eigenvectors of A−p.
• If det(A) = 0, at least one of the eigenvalues must equal zero.
• The eigenvalues of a triangular (diagonal) matrix are equal to the diagonal elements of the

matrix. i.e. λj = Ajj. e.g.




1 2 3
0 4 5
0 0 6





has eigenvalues 1, 4 and 6. The corresponding eigenvectors are

α





1
0
0



 , β





2
3
0



 , γ





16
25
10



 ,

where α, β and γ are arbitrary constants.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 7.
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Systems of ordinary differential equations

A system of n ordinary differential equations, such as

x′

1 = a11x1 + a12x2 + ... + a1nxn + f1(t)
x′

2 = a21x1 + a22x2 + ... + a2nxn + f2(t)
...

x′

n = an1x1 + an2x2 + ... + annxn + fn(t)

can be written in the matrix form,

x′ = Ax + f(t).

The system need not always have first derivatives – e.g. x′′ = Ax + f .

To find the homogeneous solution, pose x = veλt. Then,

λv = Av.

Hence, there are n values for λ given by the eigenvalues of A; the corresponding eigenvectors
give v. e.g. Consider

x′ = Ax ≡
(

1 2
3 2

)

x.

The eigenvalues of A are −1 and 4. The corresponding eigenvectors are

A1

(

1
−1

)

(λ = −1) and A2

(

2
3

)

(λ = 4),

where A1 and A2 are arbitrary. The (homogeneous) solution is therefore

x = A1e
−t

(

1
−1

)

+ A2e
4t

(

2
3

)

.

For the particular solution, xp say, we pose a trial based on the form of f(t). e.g. f(t) = f0e
2t,

pose xp = ue2t, where u is a constant vector to be determined by substitution into the system
of ODEs:

x′

p = Axp + e2tf0 −→ u = (2I − A)−1f0.

The general solution is the combination of the homogeneous and particular solutions:

x = A1v1e
λ1t + A2v2e

λ2t + ... + Anvneλnt + xp,

where the constants A1, ..., An are to be determined by imposition of the initial condition. Note
that the computation of the eigenvectors vk is not unique – there is an overall undetermined
constant. This constant can be taken to be the corresponding constant Ak.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 3.
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Laplace Transforms
The definition:

L{f(t)} =

∫

∞

0
e−stf(t)dt ≡ f̄(s).

There is an inverse transform,

L−1{f̄(s)} =

∫

C
estf̄(s)

ds

2π
≡ f(t),

where C is a particular curve (the “Bromwich contour”) on the complex s plane. (The inverse
transform cannot be used without more knowledge of complex analysis.)

Being defined by an integral, the transform has the linearity property:

L{af(t) + bg(t)} = L{af(t)} + L{bg(t)} = aL{f(t)} + bL{g(t)} = af̄(s) + bḡ(s).

To solve ODEs with Laplace Transforms: Note the relations,

L{y} = ȳ(s) L{y′} = sȳ(s) − y(0) L{y′′} = s2ȳ(s) − y′(0) − sy(0),

which follow from the definition of the transform and integrating by parts. Hence, when we
Laplace transform the ODE,

ay′′ + by′ + cy = f(t),

we obtain

ȳ(s) =
f̄(s) + ay′(0) + (as + b)y(0)

as2 + bs + c
.

The final terms in the numerator are given by the initial conditions, and it is convenient to apply
them at this stage. Finally, and most difficultly, we need to invert the Laplace transform so that
we may recover y(t) from y(s). This is to be accomplished using some algebraic tricks and the
table of transforms.

Some useful tricks:
• Partial fractions: e.g.

1

(s − d)(s − e)
=

A

s − d
+

B

s − e
,

1

(s − d)2(s − e)
=

A

(s − d)2
+

B

s − d
+

C

s − e

and
1

(s2 + d2)(s − e)
=

As + B

s2 + d2
+

C

s − e
,

where A, B and C can be determined by recombining the fractions and equating coefficients of
the powers of s. The rule is, add as many powers of s in the numerator (a polynomial in s) as
needed – one less than in the denominator.

• First shifting theorem: We know L{eatf(t)} = f̄(s − a). If ȳ(s) is not in the table but
contains s in the combination s−a, then ȳ(s−a) might be in the table, and we can use a shift to
invert the transform. e.g. 1/(s + 4)4 is not in the table, but 1/s2 is, and would have an inverse
transform of t3/3!. Comparing s + 4 with s − a implies that a = −4. Hence we use the shifting
theorem and write L−1{1/(s + 4)4} = e−4tt3/3!. Another example:

s

s2 + 2s + 5
=

s

(s + 1)2 + 4
=

(s + 1)

(s + 1)2 + 4
− 1

(s + 1)2 + 4
= L{e−t cos 2t} − 1

2
L{e−t sin 2t}.

E. Kreyszig, Advanced Engineering Mathematics, Chapter 5.
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Table of useful Laplace Transforms

f(t) f̄(s)

1 1/s, s > 0

tn, n = 0, 1, 2, ... n!/sn+1, s > 0

eat 1/(s − a), s > a

sin at a/(s2 + a2), s > 0

cos at s/(s2 + a2), s > 0

sinhat a/(s2 − a2), s > |a|

cosh at s/(s2 − a2), s > |a|

t sin at 2as/(s2 + a2)2, s > 0

t cos at (s2 − a2)/(s2 + a2)2, s > 0

First derivative: y′(t) sȳ(s) − y(0)

Second derivative: y′′(t) s2ȳ(s) − y′(0) − sy(0)

Heaviside step function: H(t − a) e−as/s

Dirac delta function: δ(t − a) e−as

First shifting theorem: eatf(t) f̄(s − a)

e.g. tneat n!/(s − a)n+1

Second shifting theorem: f(t − a)H(t − a) e−asf̄(s)

e.g. e6(t−a)H(t − a) e−as/(s − 6)

Convolution theorem:
∫ t
0 f(u)g(t − u)du f̄(s)ḡ(s)


