MIDTERM #2, MATH 300

Wednesday, March 22, 2006

Student No: _____Name (Print): ___

- 1. (12 marks) Answer true or false to the following statements by putting either true or false in the boxes. Give valid reasons for all your answers.
 - (a) If f(z) is analytic on a simple closed smooth curve C then $\oint_C f(z)dz = 0$.

(b) The function $f(z) = ze^{1/z}$ has a pole at z = 0.

(c) The power series $\sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}$ converges to the function $\cos \sqrt{z}$ for all z.

(d) If the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for z = 2 + i then it converges for z = i.

- 2. (12 marks) The following questions require little or no computation.
 - (a) Suppose f(z) and g(z) are analytic for $|z| \le 1$ and f(z) + g(z) = 0 for all z such that |z| = 1. Show that f(z) + g(z) = 0 for all z such that $|z| \le 1$.

(b) Find the Laurent series for $f(z) = \frac{1}{z^2(z-1)}$ valid for |z| > 1.

(c) Find the radius of convergence R of the power series $\sum_{j=0}^{\infty} \frac{z^{2j}}{3^j}$.

3. (12 marks) Compute $\int_C \frac{\sin \pi z}{z^2(z-2)} dz$, where C is the circle |z| = 1 with the positive orientation.

4. (12 marks) Suppose $P(z) = (z - r_1)^{s_1}(z - r_2)^{s_2}$ is a polynomial with distinct roots $(r_1 \neq r_2)$. Show that $\oint_{C_R} \frac{zP'(z)}{P(z)} dz = 2\pi i (r_1 s_1 + r_2 s_2)$ for all R sufficiently large, where C_R is the positively oriented circle |z| = R.