SOLUTIONS TO MIDTERM #2, MATH 300

- 1. (12 marks) Answer true or false to the following statements. Give valid reasons for all your answers.
 - (a) If f(z) is analytic on a simple closed smooth curve C then $\oint_C f(z)dz = 0$.
 - (b) The function $f(z) = ze^{1/z}$ has a pole at z = 0.
 - (c) The power series $\sum_{n=0}^{\infty} (-1)^n \frac{z^n}{(2n)!}$ converges to the function $\cos \sqrt{z}$ for all z.

(d) If the power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ converges for z = 2 + i then it converges for z = i.

Solution:

(a) False. For example $\int_C \frac{1}{z} dz = 2\pi i$ where *C* is the positively oriented unit circle. The function f(z) = 1/z is analytic in the punctured plane $\{z \mid z \neq 0\}$ but not at the origin. The Cauchy Integral Theorem states that $\oint f(z)dz = 0$ if f(z) is analytic on the simple closed contour *C* and **analytic inside** *C*.

(b) False. It has an essential singularity at z = 0 since the Laurent series about z = 0is $ze^{1/z} = \sum_{n=0}^{\infty} \frac{1}{n!} z^{-n+1}$. There are infinitely many negative powers of z.

Remark: Suppose f(z) has an isolated singularity at $z = z_0$, that is, f(z) is analytic in some open annulus $\{z \mid 0 < |z - z_0| < R\}$. Then the singularity at z_0 is:

- removable if f(z) can be defined at $z = z_0$ so that it becomes analytic there. A good example of this is the function $f(z) = \frac{\sin z}{z}$. The formula for the function doesn't make sense at z = 0, but if we define f(0) = 1 then it becomes analytic at z = 0.
- a pole of order n if the Laurent series expansion at z_0 has the form

$$f(z) = a_{-n}(z - z_0)^{-n} + a_{-n+1}(z - z_0)^{-n+1} + \dots + a_0 + \dots, \text{ where } a_{-n} \neq 0, n > 0.$$

In other words f(z) has a pole at $z = z_0$ if the Laurent series expansion has negative powers of $z - z_0$, but only finitely many. The order of the pole is n if there are no negative powers $(z - z_0)^k$ for k < -n.

• essential if there are infinitely many negative powers of $z - z_0$ in the Laurent series expansion of f(z) at $z = z_0$. Typical examples are $e^{1/z}$ and $\sin(1/z)$.

(c) True. This follows from replacing z by $\sqrt{z} = z^{1/2}$ in the Maclaurin expansion of the cosine function: $\cos z = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$. Remark: The function \sqrt{z} is multivalued on the complex plane \mathbb{C} , but $\cos \sqrt{z}$ is single valued because the cosine function is even. **EXERCISE:** Determine the Maclaurin series expansions of the functions $\sqrt{z} \sin \sqrt{z}$ and $\frac{\sin \sqrt{z}}{\sqrt{z}}$. (d) True since |2+i| > |i|. Lemma 2 on page 253 of the text states that if a power series

(d) True since |2+i| > |i|. Lemma 2 on page 253 of the text states that if a power series $\sum_{n=0}^{\infty} a_n z^n$ converges for some z with |z| = R then it converges for all z with |z| < R.

- 2. (12 marks) The following questions require little or no computation.
 - (a) Suppose f(z) and g(z) are analytic for $|z| \le 1$ and f(z) + g(z) = 0 for all z such that |z| = 1. Show that f(z) + g(z) = 0 for all z such that $|z| \le 1$.
 - (b) Find the Laurent series for $f(z) = \frac{1}{z^2(z-1)}$ valid for |z| > 1. (c) Find the radius of convergence R of the power series $\sum_{j=1}^{\infty} \frac{z^{2j}}{3^j}$.

Solution:

(a) Let C be the unit circle positively oriented. We need only show that f(z)+g(z) = 0 for all z inside C. Since f(z)+g(z) is analytic on C and inside C we can apply a Cauchy Integral Formula:

$$f(z) + g(z) = \frac{1}{2\pi i} \int_C \frac{f(\zeta) + g(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_C \frac{0}{\zeta - z} d\zeta = 0$$

(b) $\frac{1}{z^2(z-1)} = \frac{1}{z^3(1-1/z)} = \sum_{n=0}^{\infty} \frac{1}{z^{n+3}}$ by the geometric series: $\frac{1}{1-1/z} = \sum_{n=0}^{\infty} \frac{1}{z^n}$, which converges since |z| > 1.

(c) The radius of convergence is $R = \sqrt{3}$ since

$$\lim_{j \to \infty} \left| \frac{z^{2j+2}}{3^{j+1}} / \frac{z^{2j}}{3^j} \right| = \frac{|z^2|}{3} < 1 \iff |z| < \sqrt{3}$$

3. (12 marks) Compute $\int_C \frac{\sin \pi z}{z^2(z-2)} dz$, where C is the circle |z| = 1 with the positive orientation.

First we compute the partial fraction decomposition of $f(z) = \frac{1}{z^2(z-2)}$:

$$f(z) = \frac{1}{z^2(z-2)} = \frac{A_1}{z} + \frac{A_2}{z^2} + \frac{A_3}{z-2}$$
$$A_1 = \frac{d}{dz} \left(z^2 f(z) \right) \Big|_{z=0} = \frac{d}{dz} \left(z-2 \right)^{-1} \Big|_{z=0} = -\frac{1}{4}$$
$$A_2 = z^2 f(z)|_{z=0} = \frac{1}{z-2} \Big|_{z=0} = -\frac{1}{2}$$

The value of A_3 is immaterial since $\int_C \frac{\sin \pi z}{z-2} dz = 0$ by the Cauchy Integral Theorem. Thus

$$\int_{C} \frac{\sin \pi z}{z^{2}(z-2)} dz = -\frac{1}{4} \int_{C} \frac{\sin \pi z}{z} dz - \frac{1}{2} \int_{C} \frac{\sin \pi z}{z^{2}} dz$$
$$= -\frac{1}{4} \times 2\pi i \times \sin \pi z|_{z=0} - \frac{1}{2} \times 2\pi i \times \frac{d}{dz} (\sin \pi z)|_{z=0}$$
$$= -\pi^{2} i$$

4. (12 marks) Suppose $P(z) = (z - r_1)^{s_1}(z - r_2)^{s_2}$ is a polynomial with distinct roots $(r_1 \neq r_2)$. Show that $\oint_{C_R} \frac{zP'(z)}{P(z)} dz = 2\pi i (r_1 s_1 + r_2 s_2)$ for all R sufficiently large, where C_R is the positively oriented circle |z| = R. Solution: $\frac{zP'(z)}{P(z)} = \frac{s_1 z}{z - r_1} + \frac{s_2 z}{z - r_2}$ and therefore $\oint_{C_R} \frac{zP'(z)}{P(z)} dz = \oint_{C_R} \left(\frac{s_1 z}{z - r_2} + \frac{s_2 z}{z - r_2} \right) dz$

$$\oint_{C_R} \frac{zP(z)}{P(z)} dz = \oint_{C_R} \left(\frac{s_1 z}{z - r_1} + \frac{s_2 z}{z - r_2} \right) d$$

= $2\pi i \left(s_1 r_1 + s_2 r_2 \right)$

so long as R is large enough that the roots r_1, r_2 are inside the circle |z| = R.