
SOLUTIONS TO MIDTERM #2, MATH 300

1. (12 marks) Answer true or false to the following statements. Give valid reasons for all
your answers.

(a) If f(z) is analytic on a simple closed smooth curve C then

∮
C

f(z)dz = 0.

(b) The function f(z) = ze1/z has a pole at z = 0.

(c) The power series
∞∑

n=0

(−1)n zn

(2n)!
converges to the function cos

√
z for all z.

(d) If the power series f(z) =
∞∑

n=0

anz
n converges for z = 2 + ı then it converges for

z = ı.

Solution:

(a) False. For example

∫
C

1

z
dz = 2πı where C is the positively oriented unit circle.

The function f(z) = 1/z is analytic in the punctured plane {z | z 6= 0} but not at the

origin. The Cauchy Integral Theorem states that

∮
f(z)dz = 0 if f(z) is analytic on

the simple closed contour C and analytic inside C.

(b) False. It has an essential singularity at z = 0 since the Laurent series about z = 0

is ze1/z =
∞∑

n=0

1

n!
z−n+1. There are infinitely many negative powers of z.

Remark: Suppose f(z) has an isolated singularity at z = z0, that is, f(z) is analytic
in some open annulus {z | 0 < |z − z0| < R}. Then the singularity at z0 is:

• removable if f(z) can be defined at z = z0 so that it becomes analytic there. A

good example of this is the function f(z) =
sin z

z
. The formula for the function

doesn’t make sense at z = 0, but if we define f(0) = 1 then it becomes analytic
at z = 0.

• a pole of order n if the Laurent series expansion at z0 has the form

f(z) = a−n(z−z0)
−n +a−n+1(z−z0)

−n+1 + · · ·++a0 + · · · , where a−n 6= 0, n > 0.

In other words f(z) has a pole at z = z0 if the Laurent series expansion has
negative powers of z − z0, but only finitely many. The order of the pole is n if
there are no negative powers (z − z0)

k for k < −n.

• essential if there are infinitely many negative powers of z−z0 in the Laurent series
expansion of f(z) at z = z0. Typical examples are e1/z and sin(1/z).

1



(c) True. This follows from replacing z by
√

z = z1/2 in the Maclaurin expansion of the

cosine function: cos z =
∞∑

n=0

(−1)n z2n

(2n)!
. Remark: The function

√
z is multivalued on

the complex plane C, but cos
√

z is single valued because the cosine function is even.

EXERCISE: Determine the Maclaurin series expansions of the functions
√

z sin
√

z

and
sin

√
z√

z
.

(d) True since |2+ı| > |ı|. Lemma 2 on page 253 of the text states that if a power series
∞∑

n=0

anz
n converges for some z with |z| = R then it converges for all z with |z| < R.

2. (12 marks) The following questions require little or no computation.

(a) Suppose f(z) and g(z) are analytic for |z| ≤ 1 and f(z) + g(z) = 0 for all z such
that |z| = 1. Show that f(z) + g(z) = 0 for all z such that |z| ≤ 1.

(b) Find the Laurent series for f(z) =
1

z2(z − 1)
valid for |z| > 1.

(c) Find the radius of convergence R of the power series
∞∑

j=0

z2j

3j
.

Solution:

(a) Let C be the unit circle positively oriented. We need only show that f(z)+g(z) = 0
for all z inside C. Since f(z)+g(z) is analytic on C and inside C we can apply a Cauchy
Integral Formula:

f(z) + g(z) =
1

2πı

∫
C

f(ζ) + g(ζ)

ζ − z
dζ =

1

2πı

∫
C

0

ζ − z
dζ = 0

(b)
1

z2(z − 1)
=

1

z3(1− 1/z)
=

∞∑
n=0

1

zn+3
by the geometric series:

1

1− 1/z
=

∞∑
n=0

1

zn
,

which converges since |z| > 1.

(c) The radius of convergence is R =
√

3 since

lim
j→∞

∣∣∣ z2j+2

3j+1
/
z2j

3j

∣∣∣= |z2|
3

< 1 ⇐⇒ |z| <
√

3

3. (12 marks) Compute

∫
C

sin πz

z2(z − 2)
dz, where C is the circle |z| = 1 with the positive

orientation.
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First we compute the partial fraction decomposition of f(z) =
1

z2(z − 2)
:

f(z) =
1

z2(z − 2)
=

A1

z
+

A2

z2
+

A3

z − 2

A1 =
d

dz

(
z2f(z)

) ∣∣∣
z=0

=
d

dz
(z − 2)−1

∣∣∣
z=0

= −1

4

A2 = z2f(z)|z=0 =
1

z − 2

∣∣∣
z=0

= −1

2

The value of A3 is immaterial since

∫
C

sin πz

z − 2
dz = 0 by the Cauchy Integral Theorem.

Thus ∫
C

sin πz

z2(z − 2)
dz = −1

4

∫
C

sin πz

z
dz − 1

2

∫
C

sin πz

z2
dz

= −1

4
× 2πı× sin πz|z=0 −

1

2
× 2πı× d

dz
(sin πz)|z=0

= −π2ı

4. (12 marks) Suppose P (z) = (z − r1)
s1(z − r2)

s2 is a polynomial with distinct roots

(r1 6= r2). Show that

∮
CR

zP ′(z)

P (z)
dz = 2πı(r1s1 +r2s2) for all R sufficiently large, where

CR is the positively oriented circle |z| = R.

Solution:
zP ′(z)

P (z)
=

s1z

z − r1

+
s2z

z − r2

and therefore

∮
CR

zP ′(z)

P (z)
dz =

∮
CR

(
s1z

z − r1

+
s2z

z − r2

)
dz

= 2πı (s1r1 + s2r2)

so long as R is large enough that the roots r1, r2 are inside the circle |z| = R.
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