SOLUTIONS TO HOMEWORK ASSIGNMENT # 6

1. Evaluate the following series:
oo . 1
(@) 3 (-1
n=3

= 1
R

@ S0
Solution:
@3V =2 (F) -0y =g

00 N
1 1 1
St = > (A
n(n + 1) N—oo p—1 n n -+ 1
o A A
T N \\27 3 3 4

I 1 1
= lm|(=————) ==
N—o0 N +1 2

| —

st - 553 4 ()
2

2

z
= 1) =
2+ 22 ) V2(2 + 22)

Note: This is valid only for |2| < v/2 since we have used the geometric series.
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2. Determine the radius of convergence of following series.
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Solution: Let R denote the radius of convergence.
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(c) nlglgo n\j_Tzi =|z|= R=1.

. Find closed form expressions for the following series.

(b) Z(—l)"z— Hint: the sine function.
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Remarks: The function Z is analytic on the entire complex plane,

(2n +1)!
but y/z and sin /z are not On the other hand /2 and sin/z are both single valued
and analytic on the cut plane Q = C —{z =x 4w | < 0,y = 0}. Suppose C is a

circle going once around the origin. If we were to start somewhere on this circle, say
at zp, with a given value of \/Z, (and the resulting value of sin /) and continuously
compute the values of /2 and sin/z as we go once around the circle we would end up

at —y/zp and sin(—,/zg) = —sin /2. Thus SH\I/\_/Z is single valued and analytic on C.
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4. Use the comparison test to show that the following series converge.
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5. Show that the sequence of functions F,(z) = : ,n = 1,2,... converges to 0 if
2N =1
|z] <1, and to 1 if |z] > 1.
Solution: First assume |z| < 1. Then
Z" lim,, o0 2™ 0
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If |z] > 1 then
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Note: The behaviour of the sequence F,,(z) for |z| = 1 is quite chaotic. For example
if z = e>™/* where k is not divisible by 4, then the values of F,(z) are all finite and
repeat in groups of k since F,,(z) = Fj n(2) for all n. On the other hand if z = €*,
where 6 is irrational, then the values of F),(z) are all finite, but can be arbitrarily large.
This follows from the fact that the values of 2™ are never equal to ¢, but they can get
arbitrarily close to .

6. The Bernoulli numbers B,, are defined by the power series
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(b) Show that By = —1/2 and B3 = Bs = By =--- = 0.
(¢) Show that z cot(z) 3 ( 1)”22”32" (2)*"
W = E - :
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Solution:
z z z 4 ze? ze*—1 zef?—e??
1 "9  95z_1\ o =3 = — coth(z/2).
(a) e —1 + 2 2(62 — 1) 2%+ 1 2 e2/2 — o—2/2 9 co (Z/ )
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(b) Since 5 coth(z/2) is an even function it follows that its Maclaurin series represen-

tation must have only even powers of z, and therefore
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Thatis31:—1/2anngzB5:B7:---:O.

cosz  (e”+e77)/2
sinz (e — e ?)/2

(c) By definition cot z = = 12coth(2z) and therefore
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zcot z =1z coth(1z) = 2n)] (22)"" = Z(—l) WZ
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This follows by replacing z by 2:z in the formula for gcoth(z /2).

Note: The function f(z) = i
oz _

the origin is z = 2m2. The singularity at z = 0 is removable. It follows that the series
reprsentation for z cot z is valid for |z| < 7.

1 is analytic for |z| < 27 since the singularity nearest



