
SOLUTIONS TO HOMEWORK ASSIGNMENT # 7

1. Determine the nature of all singularities of the following functions f(z).

(a) f(z) = cos 1/z.

(b) f(z) =
1

z2 sin z
.

(c) f(z) =
z

ez2 − 1
.

Solution:

(a) z = 0 is the only singularity. It is an essential singularity since the Laurent series
expansion about z = 0,

cos 1/z = 1− 1

2!z2
+

1

4!z4
+ · · · ,

has infinitely many negative powers of z.

(b) The singularities are z = 0 and z = nπ, n = ±1,±2, . . . . The singularity at z = 0
is a pole of order 3 since z = 0 is a zero of order 3 of z2 sin z. This follows easily from
the Maclaurin series about z = 0 :

z2 sin z = z3 − 1

3!
z5 +

1

5!
z7 + · · · =

∞∑
n=0

(−1)n 1

(2n + 1)!
z2n+3.

The singularities z = nπ, n = ±1,±2, . . . , are simple poles since they are simple zeros
of z2 sin z.

(c) z = 0 is a simple pole since

z

ez2 − 1
=

z

z2 + z4/2! + z6/3! + · · ·
=

1

z + z3/2! + z5/3! + · · ·
=

1

z
g(z)

where g(z) is analytic at z = 0 and g(0) 6= 0. In fact g(0) = 1, although what’s
important is just that g(0) 6= 0.

The other singularities are the non-zero solutions of ez2
= 1, that is z =

√
2nπı, where

n is a non-zero integer. They are all simple poles since

d

dz
(ez2 − 1) |z=

√
2nπı= 2

√
2nπıe2nπı = 2

√
2nπı 6= 0.

2. Evaluate the following integrals. In each case the contour is positively oriented.

(a)

∫
|z|=R

z̄ndz, where n is an integer.

(b)

∫
|z|=3

cot zdz.
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(c)

∫
|z−1|=4

1

z sin z
dz.

Solution:

(a) Make the substitution z = Reıθ. Then dz = Rıeıθdθ and so∫
|z|=R

z̄ndz =

∫ θ=2π

θ=0

ıRn+1e(−n+1)ıθdθ = ıRn+1

∫ θ=2π

θ=0

e(−n+1)ıθdθ =

{
2πıR2 n = 1
0 n 6= 1

It is obvious

∫ θ=2π

θ=0

e(−n+1)ıθdθ = 2π if n = 1. If n 6= 1 then the Fundamental Theorem

of Calculus gives ∫ θ=2π

θ=0

e(−n+1)ıθdθ =
e(−n+1)ıθ

−n + 1

∣∣∣θ=2π

θ=0
= 0

The point to this question is that the function f(z) = z̄ is not analytic, for if it were

the Cauchy Integral Theorem would tell us that

∫
|z|=R

z̄ndz = 0 for n ≥ 0.

(b) This is a straight forward application of the Cauchy Residue Theorem:∫
|z|=3

cot zdz = 2πıResidue(cot z, z = 0) = 2πı
z cos z

sin z

∣∣∣
z=0

= 2πı.

The singularities of cot z =
cos z

sin z
are z = nπ, n = 0,±1,±2, . . . They are all simple

poles, but only the singularity at z = 0 is inside the cirlce |z| = 3.

(c) The singularities of
1

z sin z
inside the circle |z − 1| = 4 are z = 0 and z = π. The

singularity at z = 0 is a pole of order 2 since the Laurent series at z = 0 is

1

z sin z
=

1

z2(1− z2/3! + z4/5!−+ · · ·)
=

1

z2
+

1

6
+ · · ·

Here we have used the geometric series:

1

z sin z
=

1

z(z − z3/3! + z5/5!−+ · · ·)
=

1

z2(1− z2/3! + z4/5!−+ · · ·)

=
1

z2(1− (z2/3!− z4/5! + · · ·))

=
1

z2

(
1 + (z2/3!− z4/5! + · · ·) + (z2/3!− z4/5! + · · ·)2 + · · ·

)
=

1

z2
+ 1/3! + higher powers of z

Therefore the residue at z = 0 is 0.
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Another way to see this is that

1

z sin z
=

1

z2
g(z) where g(z) =

z

sin z

Now we could expand g(z) = z/ sin z as a Taylor series about z = 0. But since g(z) is an
even function it follows that the Taylor series will have the form a0 +a1z

2 +a4z
4 + · · · ,

and therefore the residue at z = 0 is 0. We don’t actually have to compute the Taylor
series.

The singularity at z = π is a simple pole and therefore the residue at z = π is
z − π

z sin z

∣∣∣
z=π

= −1/π. Therefore

∫
|z−1|=4

1

z sin z
dz = −2ı.

3. Let f(z) be the power series
∞∑

n=0

n2zn.

(a) Find all z such that the power series converges.

(b) Find a closed form expression for f(z).

Solution:

(a) By the ratio test the series converges for |z| < 1 and diverges for |z| > 1. The series
diverges for |z| = 1 since the terms n2zn do not go to 0 as n →∞ if |z| = 1.

(b) Consider the geometric series
1

1− z
= 1 + z + z2 + z3 + · · · Then

z
d

dz
(1− z)−1 = z + 2z2 + 3z3 + · · ·

Do it one more time:

z + 22z2 + 32z3 + · · · = z
d

dz

(
z

d

dz
(1− z)−1

)
= z

d

dz
(z(1− z)−2) =

z(1 + z)

(1− z)3

4. Find all z such that the power series
∞∑

n=1

1

n2
zn converges.

Solution: By the ratio test we see that
∞∑

n=1

1

n2
zn converges for |z| < 1 and diverges for

|z| > 1. It also converges for |z| = 1 by comparison with the series
∞∑

n=1

1

n2.

5. Suppose f(z) is analytic for |z| ≤ 1 and |f(z)| ≤ M for |z| = 1, where M is some
constant. Show that |f(0)| ≤ M and |f ′(0)| ≤ M.
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Solution: This follows from a Cauchy Integral Formula and the ML inequality:

f(0) =
1

2πı

∫
|z|=1

f(z)

z
dz =⇒ |f(0)| ≤ 1

2π
M2π = M

f ′(0) =
1

2πı

∫
|z|=1

f(z)

z2
dz =⇒ |f ′(0)| ≤ 1

2π
M2π = M

Exercise: What inequalities do you get for |f (n)(0)|?

6. Determine if there is a function f(z) which is analytic in some open neighbourhood of
the origin and which satisfies the following. If there is such a function find a closed
form for it and state where f(z) is analytic.

(a) f (k)(0) = k for k ≥ 0.

(b) f (k)(0) = (k!)2 for k ≥ 0.

(c) f(0) = π and f (k)(0) = (−1)k+12k(k − 1)! for k ≥ 1.

Solution: In all cases we consider the Maclaurin series f(z) =
∞∑

k=0

fk(0)

k!
zk.

(a) f(z) =
∞∑

k=0

fk(0)

k!
zk =

∞∑
k=1

1

(k − 1)!
zk = zez. Thus f(z) is entire.

(b) In this case we would have f(z) =
∞∑

k=0

k!zk, which diverges for all z 6= 0. Thus there

is no such function.

(c) f(z) = π +
∞∑

k=1

(−1)k+1 2k(k − 1)!

k!
zk = π +

∞∑
k=1

(−1)k+1 1

k
(2z)k = π + Log(1 + 2z).

This converges for |z| < 1/2. .

7. Evaluate the following integrals. In each case the contour is positively oriented.

(a)

∫
CR

1

z2 + z + 1
dz, where R > 1 and CR is the real axis from −R to R together

with the upper half of the circle |z| = R.

(b)

∫
|z|=1

z2e1/z sin(1/z)dz.

Solution:

(a) The singularities of f(z) =
1

z2 + z + 1
occur at the roots of z2 + z + 1. The only

root inside the contour CR is z = e2πı/3, and it is a simple pole. Thus
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∫
CR

1

z2 + z + 1
dz = 2πıResidue

(
1

z2 + z + 1
, z = e2πı/3

)
= 2πı

z − e2πı/3

z2 + z + 1

∣∣∣
z=e2πı/3

= 2πı
1

2z + 1

∣∣∣
z=e2πı/3

=
2π√

3

(b) The only singularity of z2e1/z sin(1/z) occurs at z = 0, and it is an essential
singularity. Therefore the formula for computing the residue at a pole will not work,
but we can still compute some of the coefficients in the Laurent series expansion about
z = 0 :

z2e1/z sin(1/z) = z2

(
1 +

1

z
+

1

2!z2
+

1

3!z3
+ · · ·

) (
1

z
− 1

3!z3
+

1

5!z5
−+ · · ·

)
= z2

(
1

z
+

1

z2
+

(
1

2
− 1

6

)
1

z3
+ · · ·

)
= z + 1 +

1

3z
+ · · ·

=⇒ Residue(z2e1/z sin(1/z), z = 0) =
1

3

Therefore

∫
|z|=1

z2e1/z sin(1/z)dz =
2πı

3
.

Exercise: Read about the Cauchy product in the text.

8. Evaluate

∫ ∞

0

x2 + 1

x4 + 1
dx.

Solution:

Consider the integral

∫
CR

1 + z2

1 + z4
dz, where R > 0 and CR is the positively oriented

contour comprised of the segment of the real axis from −R to R and then the upper
half of the circle |z| = R. Let C ′

R, C ′′
R denote the real axis portion and the circular

portion resp. Then lim
R→∞

∫
C′′

R

1 + z2

1 + z4
dz = 0 since the degree of z4 + 1 is 2 more than

the degree of z2 + 1. The singularities are at the solutions of the equation z4 + 1 = 0,
that is

z = eπı/4, z = e3πı/4, z = e5πı/4, z = e7πı/4.

The only singularities in the upper half plane are z = eπı/4, z = e3πı/4, and they are
simple poles. It follows that∫ ∞

−∞

x2 + 1

x4 + 1
dx = 2πı

(
Residue

(
1 + z2

1 + z4
, eπı/4

)
+ Residue

(
1 + z2

1 + z4
, e3πı/4

))
= 2πı

(
(z − eπı/4)(1 + z2)

1 + z4

∣∣∣
z=eπı/4

+
(z − e3πı/4)(1 + z2)

1 + z4

∣∣∣
z=e3πı/4

)
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= 2πı

(
1 + ı

4e3πı/4
+

1− ı

4eπı/4

)
= −πı

2

(
(1− ı)e3πı/4 + (1 + ı)eπı/4)

)
= −πı

2

(
(1− ı)

(
−1 + ı√

2

)
+ (1 + ı)

(
1 + ı√

2

))
= − πı

2
√

2

(
−(1− ı)2 + (1 + ı)2

)
= π

√
2

Therefore

∫ ∞

0

x2 + 1

x4 + 1
dx =

π√
2
.

Remarks: In this calculation we have used the fact that lim
R→∞

∫
C′′

R

P (z)

Q(z)
dz = 0,

where P (z), Q(z) are polynomials such that degree(Q) ≥ degree(P ) + 2. See page

322. The basic reason for this is that
P (z)

Q(z)
behaves like 1/Rd on the arc, where

d = degree(Q) − degree(P ); whereas the arc only has length πR. Therefore the ML
inequality guarantees that the integral goes to 0.

9. Evaluate

∫ π

−π

1

1 + sin2 θ
dθ.

Solution:

We make the substitution z = eıθ. Then dz = ıeıθdθ = ızdθ, or dθ =
dz

ız
. Moreover

sin θ =
eıθ − e−ıθ

2ı
=

z − 1/z

2ı
. Therefore∫ π

−π

1

1 + sin2 θ
dθ =

∫
|z|=1

1

ız

(
1 +

(
z−1/z

2ı

)2
)dz =

∫
|z|=1

1

ız
(
1− z2−2+1/z2

4

)dz

=
4

ı

∫
|z|=1

1

z (6− z2 − 1/z2)
dz =

4

ı

∫
|z|=1

z

6z2 − z4 − 1
dz

The singularities occur at solutions of z4 − 6z2 + 1 = 0, that is z = ±
√

3± 2
√

2. All

of them are simple poles, but only z = ±
√

3− 2
√

2 are inside the circle |z| = 1. Next
we compute the residues at these singularities:

Residue

(
z

6z2 − z4 − 1
, z =

√
3− 2

√
2

)
=

z(z −
√

3− 2
√

2)

6z2 − z4 − 1

∣∣∣
z=
√

3−2
√

2

=

√
3− 2

√
2

−4(3− 2
√

2)3/2 + 12
√

3− 2
√

2
=

1

−4(3− 2
√

2) + 12
=

1

8
√

2

In a similar manner we calculate that

Residue

(
z

6z2 − z4 − 1
, z = −

√
3− 2

√
2

)
=

1

8
√

2
.
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Therefore∫ π

−π

1

1 + sin2 θ
dθ =

4

ı
× 2πı× (the sum of the residues) =

4

ı
× 2πı× 1

4
√

2
= π

√
2

10. Show that

∫ ∞

−∞

1

(1 + x2)n+1
dx =

π(2n)!

22n(n!)2
for n = 0, 1, 2, . . .

Solution: We use an argument similar to that used in question 8. In particular see the

remark at the end of that question. The only singularity of
1

(1 + z2)n+1
in the upper

half plane is at z = ı, and it is a pole of order n + 1. Therefore∫ ∞

−∞

1

(1 + x2)n+1
dx = 2πıResidue

(
1

(1 + x2)n+1
, z = ı

)
=

2πı

n!

dn

dzn

(z − ı)n+1

(1 + z2)n+1

∣∣∣
z=ı

=
2πı

n!

dn

dzn
(z + ı)−n−1

∣∣∣
z=ı

=
2πı

n!
(−n− 1)(−n− 2) · · · (−n− n)(2ı)−2n−1

=
2πı

n!
(−1)n (n + 1)(n + 2) · · · (2n)

(2ı)2n+1

=
π

22n

(n + 1)(n + 2) · · · (2n)

n!
=

π(2n)!

22n(n!)2
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