Math 302, Assignment 1 Solutions

(1) Let S = {1,{},c} be a sample space. List all possible events.

Solution: {}, {1}, {{}}, {c}, {1, {}}, {L. e}, {{}, ¢}, {1 {},c}-

(2) Let ©Q be a sample space and P be a probability. Prove that there can’t
exist events E, F' that satisfy

P(E\ F) = é P(EUF) = % and P(ENF)°) ==

Solution: The formula P(A) = 1 — P(A°) yields that
P(ENF)=1-P(ENF)) = 1
The third axiom of probability implies that

:]P(EUF):IP’(E\F)+IP’(EQF)+IP’(F\E)=1+%+P(F\E),
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but P(F \ E) > 0, which gives a contradiction.

(3) We roll a fair die until the first 1 comes up. What is the probability that
the number of tosses is odd?
Solution: Let X ~ Geom(1/6).

]P’(Xe{l,3,5,...}):é ()22 2) R
L

6 1-25/36 11
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In the second equality, we summed the geometric series.

(4) Assuming a fair poker deal, what is the probability of a
(a) royal flush

(b) straight flush

(c) flush

)

)

Solution: The number of all poker hands is (552) = 2,598,960 and they
are equally likely.
a) In a given suit there is only one royal flush, there are 4 possible suits, so
the probability is
4 B 1
2,598,960 649,740
b) In a given suit there are 10 sequences of five in a row, since the lowest
value can be A,2,3,4,5,6,7,8,9,10, but the last one is a royal flush. As
there are 4 possible suits, the probability is
4-9 1
2,598,960 72,193




c) A given suit contains 13 cards, there are (*?) = 1,287 ways to choose 5.

There are 10 which form a sequence, so the probability is
4-(1287-10) 1
2,598,960 509"
d) There are 10 possibilities to choose the lowest value of the sequence,
then for any value 4 different suit can be assigned. That is 10 -4° = 10,240

possibilities, from which there are 40 straight flushes and royal flushes.
Therefore the probability is

10,240 —40 1
2,598,960 255

e) There are ('?) = 78 possibilities to choose the values of the two pairs,
and there is 11 possibility for the value of the last card. We can choose
(;1) = 6 possible suits for both pairs and 4 possible suits for the single card,

which gives the probability
78-11-62 -4 1

2,598,960  21°

How many ways are there to deal 52 standard playing cards to four players
(so that each player gets 13 cards)? Suppose you are world champion in
card dealing, and can deal 52 cards in just one second. Compare the time
it would need you to deal all possible combinations with the current age of
the universe.

Solution: Mathematically, the question describes the set of all functions
f (“ways of dealing”) from the set of cards C = {1,...,52} to the set of
players {1,2,3,4}, in such a way that every player gets exactly 13 cards, i.e.
#{ist. f(i) =1} =13 = #{i s.t. f(i) =2} = .... Note that we labeled
the cards 1,...,52 and the players 1,2,3,4 in an arbitrary way. This does
not affect the number of functions from {1,...,52} to {1,2,3,4}, though,
since sets are not ordered.

Clearly, any “way of dealing” f is uniquely defined by the four sets {i s.t. f(i) =|ji}

1}, ..., {i s.t. f(i) = 4}, and thus the number of such functions is exactly
the number of ways of partitioning C' = {1,...,52} into 4 sets, each of size
52. This is just the multinomial coefficient

52 52 N
(13, 13,13, 13) BEETE 5.4 1028,

If you can deal one set of cards per second, you’d be able to deal 3.1 - 107
sets per year. So it would take you 1.7-102! years to deal all combinations.
The current age of the universe is 1.3 - 10'0 years. It would take you about
130 billion times longer to complete your dealing.

We toss a fair die three times. What is the probability that all tosses
produce different outcomes?

Solution: The natural sample space S consists of the (ordered) sequences
of 3 tosses, because then every outcome is equally likely. Then |S| = 6 =



216. The outcomes with different values correspond the 3-permutations of

the 6-element set {1,...,6}, their number is 6 - 5 -4 = 120. (There are 6

options for choosing the first value, 5 for the second and so on.) Thus the
120 _ 5

probability is 575 = 3.

Prove that the number of unordered sequences of length k with elements
from a set X of size n is (”Jrk*l .

Hint: For illustration, first consider the example n = 4,k = 6. Let the
4 elements of the set X be denoted a,b,c,d. Argue that any unordered
sequence of size 6 consisting of elements a, b, ¢, d can be represented uniquely
by a symbol similar to “ - |-|-:|]-”, corresponding to the sequence aabeed.
Now count the number of choices for the vertical bars.

Solution: Let the elements of X be {z1,...,2z,}. We want to count all
sequences (y1, ..., yx) with y; € X, not counting as different sequences that
are obtained from each other via a permutation of the y;’s.

Any sequence (y1,...,yi) is therefore equivalent to precisely one where all
(if any) x1’s appear first, then all (if any) zo’s and so on. Let’s call a
sequence ordered in this way a representative sequence. No two different
representative sequences are permutations of each other, and so the number
of unordered sequences is exactly equal to the number of representative

sequences.
But each representative sequence corresponds uniquely to a symbol of the
kind «--|---]- -]+, with exactly k dots, and n — 1 bars. Namely, the

number of dots before the first bar corresponds to the number of x1’s in
the representative sequence, the number of dots between the first and the
second bar to the number of x5’s in the sequence, and so on.

Since the symbol ---|---|---|--- has length number of dots + number of
bars = k +n — 1, and we may select any of these positions for the n — 1
bars. The number of such choices is ("*7") = ("*F~'), proving the claim.
You own n colors, and want to use them to color 6 objects. For each object,
you randomly choose one of the colors. How large does n have to be so that
odds are that no two objects will have the same color (i.e., every object is
colored in a different color)?

Solution: A coloring is a map that associates to each object its color. If
there are 6 objects and n colors, it is thus defined uniquely by a map from
{1,2,3,4,5,6} to {1,2,...,n}. There are n® such functions, and thus n%
ways to color 6 objects with n colors randomly.
The event that no two objects receive the same color corresponds to the
set of injective functions. There are n(n —1)---(n —5) = (71’_17!6)! of them.
Thus, the probability of coloring all objects differently is p,, = #’76),
The numbers p,, become larger than 0.75 as soon as n > 56.

(This can be coded in Python as follows:

from math import factorial as fact

p=0; n=6

while p < 0.75:
p=fact(n)/((n**6)*fact(n-6))
n+=1



p, n

)

Assume that the events E;, E5 are independent.
a) Prove that the events F$, ES are also independent.
b) If, in addition, P(E1) = § and P(E3) = %. Prove that
2
P(E, UE,) = 3
c¢) If; in addition, E3 is a third event that is independent of F; and of FEs,
and such that P(F3) = ;. Prove that

17 19
— <P(AUB < —.
24 — (AU UC)_24

Solution:
(a) We have
P(E{NES)=1—-P(E; UE,)
—1- (IP’(E1) +P(Ey) —P(Ey N Eg))

=1 (P(E) + P(E2) — P(E))P(E) )
= (1-P(E1))(1 - P(E2)) = P(ET)P(ES)
which proves independence.
(b) There are two ways to do the computation. We may either use inclusion-
exclusion according to
P(E, U Ey) =P(Ey) + P(Ey) — P(FE1 N Ey)
1 1 1 2
=P(E P(Ey) —P(E)P(Es)==-+-— ===
(B1) +P(E2) —P(E)P(E2) =5+ 5 - = 3,
or we may use that, by (a), E, FS are also independent, which allows us
to compute

P(ELU Ey) =1 - P(ET N E5) =1 - P(ET)P(E;) =1 -

DN | =
[SCRN )

(c) Using inclusion/exclusion, we compute

]P(El UFE,U Ed) = ]P)(El) + ]P(EQ) + P(ES) — ]P(El N EQ) — IED(EQ N E3)

— P(E, N E3) + P(Ey N Ey N E3)
1 1 1 1 1 1

:§+§+Z*6*ﬁ*§+P(E1ﬂEQOE3)
17
:ﬂ+P(E1ﬂE20E3)

We used here that the pairs (Eq, Ez), (E1, E3) and (Es, E3) are indepen-
dent. Since we do not assume that the triple Ey, Es, F5 is independent,
we cannot compute the probability of the F; N Es N E3 exactly, but since
E{NE>;NE3is contained in all three of E1NEy, E1NE3 and FoNE3, it must
have probability smaller than any of these, i.e. 0 <P(E; N EyN E3) < 1—12
This immediately gives the claim.
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(10) Eight rooks are placed randomly on a chess board. What is the probability
that none of the rooks can capture any of the other rooks? (In non-chess
terms: Randomly pick 8 unit squares from an 8 x 8 square grid. What is
the probability that no two squares share a row or a column?)

Hint: How many choices do you have to place rooks in the first row? After
you have made your choice, how many choices do you have for the second?
Continue this reasoning.

Solution: The total number of choosing 8 positions for the rooks on a
board with 64 fields is (684). The number of favorable outcomes is 8!: there
are 8 possibilities two choose a square from the first row, 7 ways to choose
one from the second row, and so on. Thus our probability in question is

8! (81)2

P "o

8
(11) We toss two dice. Consider the events
E: The sum of the outcomes is even.

F: At least one outcome is 5.
Calculate the conditional probabilities P(E | F') and P(F'| E).

Answer:P(E) =1/2, P(F) =11/36, P(EN F) =5/36, so
P(ENF) P(ENF)

PEIE) = 5 B(E)

—=5/11 and P(F | E) = —5/18.

(12) A fair die is rolled repeatedly.
(a) Give an expression for the probability that the first five rolls give a
three at most two times.
(b) Calculate the probability that the first three does not appear before the
fifth roll.
(c) Calculate the probability that the first three appears before the twenti-
eth roll, but not before the fifth roll.

Solution:
a) Let X denote the number of threes on the first five rolls, then our
probability is

PX<2)=P(X=0)+P(X =1)+P(X =2) = (2)° +5(2)*(3) + 10(2)*(3)%.

b) The event in question is that none of the first four rolls is a three. On
each die the probability of not rolling three is 5/6, so by independence the
probability in question is (5/6)*.

c) Let A be the event that none of the first four rolls is a three, and B
be the event that some of the rolls from 5-19 is a three, then our event
in question is A N B. By part b) we have P(B) = (5/6)* and similarly
we obtain P(B¢) = (5/6)!°, so P(B) = 1 — (5/6)!. Since A and B are
independent, we obtain

P(AN B) = B(A)P(B) = (5/6)* (1 - (5/6)"%).



(13) * Let the sequence of events Ey, Fs, ..., E, be independent, and assume
that P(E;) = 7. Show that P(E, U---UE,) = %5

Solution: The sequence Ef, ES, ..., ES is also independent. This was
shown for n = 2 in problem 3 above, and is a special case of Fact 2.23 in
the textbook. It can be proven by induction, using the inclusion/exclusion
formula. From this fact, the claim follows by the calculation

P(E,U---UE,) =1-P(ESN---NES)

=~ w

= 1 B(E) - B(E) =1 3

[SCI )
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n+1 n+1




