
Math 302, Assignment 3 Solutions

(1) An evil mathematician has trapped you in a dungeon behind 5 doors. Every door is locked
with a keypad, in which you must enter a number between 1 and 6000. You can enter one
number into the keypad every second. The lock will open if you enter one of 15 special
numbers the evil mathematician has randomly selected for each lock.
(a) Use the exponential random variable to approximate the probability that it’ll take

you longer than 25 minutes to open the first door.
(b) Use the Poisson random variable to approximate the probability that after one hour,

you have escaped the dungeon.

Solution: The exponential and Poisson approximations replace this problem by the
following: You flip one coin every second, flipping Head opens the door, and the probability

of flipping Head is 15
6000 =

1

400
. This approximation would be exact if your strategy was

to just randomly enter numbers into the keypad. [Of course, a better strategy would be
to try to remember the numbers you have already tried unsuccessfully; in average you’d
have to remember 400 numbers before your success, so good luck with that unless you’re
using a strategy; you can convince yourself that the approximations won’t change much in
the present case (drawing without replacement from an urn with a large number of balls
is approximately the same as drawing with replacement)].

(a) On average, we will have λ = 60 · 1
400 =

3

20
= 0.15 successes per minute. We therefore

model the time until the first success (in minutes) by an Exp(0.15) random variable X.
The probability in question is then

P(X > 25) =

∫ ∞
25

0.15e−0.15x dx = e−0.15·25 = e−3.75.

(b) We model number of doors opened after one hour by a Poisson(60 · λ) =Poisson(9)
random variable Y . The probability in question is then

P(Y ≥ 5) = 1− P(Y < 4) = 1−
(

1 + 9 + 92

2! + 93

3! + 94

4!

)
e−9 ≈ 94%

(2) Suppose that the continuous RV X has c.d.f. given by

F (x) =


0 if x <

√
2

x2 − 2 if
√

2 ≤ x <
√

3

1 if
√

3 ≤ x
(a) Find the smallest interval [a, b] such that P(a ≤ X ≤ b) = 1.
(b) Find P(2 < X < 3).
(c) Find P(X = 3

2 ).

(d) Find P(1 ≤ X ≤ 3
2 ).

(e) Find the p.d.f. of X.

Solution: a) Since P([a, b]) = F (b)− F (a) the smallest such interval is [
√

2,
√

3].

b) Since F is constant on the interval [2, 3], we have P(2 < X < 3) = 0.

c) The probability of taking a fixed value is zero for any value. Note: An essential feature
here is that F is a continuous function, as it should be, being the anti-derivative of a



2

p.d.f.. There are situation where the c.d.f. is not continuous (and the p.d.f. has very
strong singularities), and in these situations, single values can have nonzero probability.
Such random variables are not part of the 302 curriculum.

d)

P(1 ≤ X ≤ 3/2) = P(X ≤ 3/2)− P(X < 1)

= F (3/2)− F (1)

=

(
9

4
− 2

)
− 0 =

1

4
.

e)

f(x) = F ′(x) =

{
2x if

√
2 < x ≤

√
3,

0 otherwise.

Note that actually F (x) is not differentiable at x =
√

2 and
√

3, we can define f(x)
arbitrarily there, it won’t change the integrals.

(3) (a) Define the function

f(x) =

{
3x− b x ∈ [0, 1]
0 otherwise

Show that there is no value of b for which this is the p.d.f. of some RV X.
(b) Let

f(x) =

{
1
2 cosx x ∈ [−b, b]
0 otherwise

Show that there is exactly one value of b for which this could be the p.d.f. of some
RV X.

Solution: a) First f(x) ≥ 0 for all x ∈ R, so b ≤ 0. We also need
∫∞
−∞ f(x) dx = 1, so

1 =

∫ 1

0

(3x− b) dx =
3

2
− b.

Thus we have b = 1
2 which does not satisfy b ≤ 0, so f is not a density function for any b.

b) We have ∫ b

−b

1
2 cosx dx =

1

2
(sin b− sin(−b)) = sin b,

and this equals 1 if b = π
2 + 2πk, where k is any integer. If k 6= 0, then the interval [−b, b]

would contain points at which cosx is negative, which is impossible for a p.d.f.. Thus,
only k = 0 is allowed, and indeed, f is a nonnegative function and has integral 1 with this
choice of b. It could therefore be the p.d.f. of a random variable.

(4) Let c > 0 and X ∼ Unif[0, c]. Show that the RV Y = c − X has the same c.d.f. and
therefore also the same p.d.f. as X.

Solution: We have

P(Y ≤ b) = P(X ≥ c− b) =


0 b ≤ 0∫ c
c−b

1
c = b

c 0 ≤ b ≤ c
1 c ≤ b

,
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which is the same as P(X ≤ b). Since the p.d.f. is the derivative of the cdf, also the p.d.f.’s
of X and Y coincide.

(5)* Compute the nth moment of an Exp(λ) random variable.

Solution: We have

EXn =

∫ ∞
0

xn · λe−λx dx = λ−n
∫ ∞
0

xne−x dx

Let us call the latter integral In. Using integration by parts, we have

In =
[
− xne−x

]∞
0

+ nIn−1 = nIn−1

if n ≥ 1. Since I0 = 1 by the normalization property (or computation), we conclude that
In = n!, and EXn = λ−nn!.

(6) Let X be a random variable with p.d.f.

f(x) =

{
cx−3 x > 2
0 otherwise

(a) Find c so that f is a p.d.f.
(b) Compute the c.d.f. of X.
(c) Find P(X > 3|X < 5).
(d) Find the median of X, i.e. the value m such that P(X > m) = P(X ≤ m).

(e) Calculate E
√
X.

Solution: (a) We must have
∫∞
−∞ f(x)dx = 1, so c = 8. (b)

F (b) =

∫ b

−∞
f(x) dx =

{
0 b < 2∫ b
2

8x−3 b ≥ 2
=

{
0 b < 2
1− 4b−2 b ≥ 2

(c)

P(X > 3|X < 5) =
P({X > 3} ∩ {X < 5})

P(X < 5)
=

P(X ∈ (3, 5))

P(X < 5)
=
F (5)− F (3)

F (5)
=

64

189

(d) We need to solve F (m) = 1
2 , which gives m = 2

√
2.

(e)

E
√
X =

∫ ∞
−∞

√
x f(x) dx =

∫ ∞
2

√
x2x−2 dx =

4
√

2

3
.

(7) A stick of length ` is broken into two pieces at a position X ∼ Unif[0, `]. Let Y denote
the length of the smaller piece.
(a) Calculate the c.d.f. of Y , that is, calculate P(Y ≤ b).
(b) Calculate the p.d.f. of Y . Can you identify what kind of random variable Y is?

Solution: a) The length of the smaller piece takes values Y ∈ [0, `/2]. By geometric
considerations, the c.d.f. is

FY (y) = P(Y ≤ y) = P(X ≤ y or X ≥ `− y)

= P(X ≤ y) + P(X ≥ `− y)

=

∫ y

0

1

`
dt+

∫ `

`−y

1

`
dt =

2y

`
.
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Thus

FY (y) =


0 if y < 0,
2y
` if 0 ≤ y ≤ `/2,

1 if y > `/2.

b) We have

fY (y) = F ′Y (y) =

{
2/` if 0 ≤ y ≤ `/2,
0 otherwise .

We recognize that Y ∼ Unif[0, `/2]

(8) Let X be an Exp(2) random variable. Find a number a such that {X ∈ [0, 1]} is indepen-
dent of {X ∈ [a, 2]}.

Solution: If a < 0 then all probabilities are the same as in the case a = 0, so we may
assume that 0 ≤ a ≤ 1. We have

P(X ∈ [0, 1]) = FX(1)− FX(0) = 1− e−2,

and

P(X ∈ [a, 2]) = FX(2)− FX(a) = e−2a − e−4.
The probability of intersection is

P(X ∈ [0, 1], X ∈ [a, 2]) = P(X ∈ [a, 1])] = FX(1)− FX(a) = e−2a − e−2.

The definition of independence gives the equation

e−2a − e−2 = (1− e−2)(e−2a − e−4),

so

e−2a = 1− e−2(1− e−2),

that is,

a = −1

2
ln(1− e−2(1− e−2)) ≈ 0.062.

(9) Let X ∼ N (2, 4) be a normal random variable. Compute:
(a) P(X < 6).
(b) P(X ≤ 6).
(c) P(X < 1|X > −1).
(d) EX2

(e) Determine c so that P(X > c) = 1
3 .

To compute probabilities, use only the values of the c.d.f. of a standard normal ran-
dom variable found here: https://en.wikipedia.org/wiki/Standard_normal_table#

Cumulative.

Solution: Let Φ(z) be the c.d.f. of the standard normal RV. Then the c.d.f. of X is
FX(x) = Φ(x−µσ ) = Φ(1

2x− 1). Note that the table on wikipedia only shows the values of
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Φ(z) for z ≥ 0. The other values have to be obtained from symmetry!
(a)

P(X < 6) = Φ( 6−2
2 ) = 0.97725

(b) P(X ≤ 6) = P(X < 6) = 0.97725, since X is a continuous RV.
(c) We have P(X ∈ (−1, 1)) = Φ(− 1

2 ) − Φ(− 3
2 ) = Φ( 3

2 ) − Φ( 1
2 ) = 0.93319 − 0.69146 (by

symmetry) and P(X > −1) = 1− Φ(− 3
2 ) = Φ(3

2 ) = 0.93319 (again by symmetry), and so

P(X < 1|X > −1) = 1− 0.69146
0.93319 = 0.25903.

(d) EX2 = σ2 + µ2 = 8.
(e) We have Φ(0.43) = 2

3 according to the table, and so P(X > 2(0.43 + 1)) = 1
3 , that is,

c = 2.86.

(10) Let X ∼ N (µ, σ2), and, for a, b ∈ R, define the random variable Y = aX + b. Show that
Y ∼ N(aµ+ b, a2σ2).

Solution: Let X ∼ N(µ, σ2) and let Y = aX + b. Then Z = X−µ
σ ∼ N(0, 1). The

cumulative distribution function of Y is

FY (x) = P(Y ≤ x) = P(aX + b ≤ x)

= P(a(σZ + µ) + b ≤ x)

= P
(
Z ≤ x− (aµ+ b)

aσ

)
= Φ

(
x− (aµ+ b)

aσ

)
.

Thus

fY (x) = F ′Y (x) =
1

aσ
ϕ

(
x− (aµ+ b)

aσ

)
,

where

ϕ(x) =
1√
2π
e−x

2/2

is the p.d.f. of a standard normal random variable. We obtained that fY (x) is the
density function of a normal random variable with mean aµ + b and variance (aσ)2, so
Y ∼ N(aµ+ b, (aσ)2).

(11) You randomly throw darts at a dartboard, one dart every second. Suppose that every dart
independently hits the dartboard at distance X from the center, where X is a Unif[0, 30]
random variable. Your target, the bullseye, is located around the center and has radius 2.
(a) Suppose you throw darts for 1 minute. Approximate the probability that you score

more than 5 bullseye.
(b) Approximate the probability that you throw your first bullseye within half a minute?
(c) Suppose that, every morning for 100 days, you throw darts for half a minute as above.

Approximate the probability that you will throw more than 75 bullseye.
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Solution: (a) There are 60 attempts, each with probability P(Unif[0, 30] ∈ [0, 2]) = 1
15 .

The exact probability is therefore P(X > 5), where X ∼ Bin(60, 1
15 ), i.e.∑

k=6

(
60

k

)
(1/15)k(14/15)60−k =

some integer with 69 digits

some integer with 70 digits
.

We approximate the number of successes by a Poisson(4) - RV Y , and get P(Y > 5) =
1− 643

15 e
−4 = 21%.

(b) The time X in seconds of the first success is a Geom( 1
15 ) RV. Thus,

P(X ≤ 30) = 1−
(
1− 1

15

)30
=

some integer with 35 digits

some other integer with 35 digits
≈ 1− e− 1

15 ·30 = 1− e−2 ≈ 86%.

We could have approximated this time by an Exp( 1
15 ) RV if we were measuring time in

seconds, or by an Exp(4) RV if we were measuring time in minutes. In both cases, we get
the probability 1− e−2.
(c) According to (b), every day, you’ll throw a bullseye with probability p ≈ 86%. Thus,
the number of bullseye in 100 days is a Bin(100, p) random variable X. The exact proba-
bility P(X > 75) is a ratio of two numbers that don’t even fit on a page! By the normal
approximation, X−86√

100·0.86·0.14 is approximately a standard normal RV. Therefore, using the

customary continuity correction (optional!)

P(X > 75) = P
(

X−86√
100·0.86·0.14 >

75.5−86√
100·0.86·0.14

)
≈ P(Z > −3.03) = P(Z < 3.03) = 0.99878

(12)* Let X be a standard normal random variable. Compute EXn for all n ∈ N.

Solution: Let In = E(Zn), we know that I0 = 1 and I1 = 0. Now let n ≥ 2, we prove
a recursion for In. As ϕ′(x) = −xϕ(x), we can use integration by parts with f(x) = xn−1

and g′(x) = xϕ(x):

In =

∫ ∞
−∞

xnϕ(x) dx

=

∫ ∞
−∞

xn−1(xϕ(x)) dx

= xn−1(−ϕ(x))|∞−∞ −
∫ ∞
−∞

(n− 1)xn−2(−ϕ(x)) dx

= 0 + (n− 1)

∫ ∞
−∞

xn−2ϕ(x) dx

= (n− 1)In−2.

Let k!! (k semifactorial) denote the product of positive integers from 1 to k which has
the same parity as k, so k!! = k(k − 2)(k − 4) . . . The above recursion implies that
In = (n− 1)!!I1 = 0 if n is odd, and In = (n− 1)!!I0 = (n− 1)!! if n is even.
If n is odd, then xnϕ(x) is odd and integrable on (−∞,∞), which proves directly that
E(Zn) =

∫∞
−∞ xnϕ(x) dx = 0.


