
Math 302, Assignment 4

1. Suppose that X has moment generating function

MX(t) = 1
3e

−3t + 1
6 + 1

2e
t.

(a) Find the mean and variance of X by differentiating the m.g.f. above.

(b) Find the p.m.f. of X. Use your expression for the p.m.f. to check your answers from part (a).

Solutions: (a) We have

µ = M ′
X(0) = −1 +

1

2
= −1

2

σ2 = M ′′
X(0)− 1

4
= 3 +

1

4
− 1

4
=

13

4

(b) By looking at the m.g.f., we recognize that X takes values −3, 0, 1, with P(X = −3) = 1
3 , P(X =

0) = 1
6 ,P(X = 1) = 1

2 . Therefore, we can calculate again

µ =
1

3
· (−3) +

1

6
· (0) + 1

2
· 1 = −1

2

σ2 =
(1
3
· (−3)2 +

1

6
· (0)2 + 1

2
· (1)2

)
− 1

4
=

9

4

2. You have two dice, one with three sides labeled 0, 1, 2 and one with 4 sides, labeled 0, 1, 2, 3. Let X1 be
the outcome of rolling the first die, and X2 the outcome of rolling the second. The rolls are independent.

(a) What is the joint p.m.f. of (X1, X2)?

(b) Let Y1 = X1 ·X2 and Y2 = max{X1, X2}. Make a table for the joint p.m.f. of (Y1, Y2).

(c) Are Y1, Y2 independent?

Solution: (a) By independence we have p(x, y) = (1/3)(1/4) = 1/12 for all x ∈ {0, 1, 2} and y ∈
{0, 1, 2, 3}.

(b)

Table 1: The p.m.f. of (Y1, Y2) with the marginals.
Y1 ↓ Y2 → 0 1 2 3 pY1

0 1/12 1/6 1/6 1/12 1/2
1 0 1/12 0 0 1/12
2 0 0 1/6 0 1/6
3 0 0 0 1/12 1/12
4 0 0 1/12 0 1/12
6 0 0 0 1/12 1/12
pY2

1/12 1/4 5/12 1/4

(c) For the marginal distributions see the margins of the above table. Since

P(Y1 = 1, Y2 = 0) = 0 ̸= P(Y1 = 1)P(Y2 = 0),



the variables Y1 and Y2 are not independent.

3. Let X ∼ Exp(2), Y ∼ Unif([1, 3]), and assume that X and Y are independent. Calculate P(Y −X ≥ 1
2 ).

Solution: The joint density function is

f(x, y) = fX(x)fY (y) =

{
e−2x if x > 0 and 1 < y < 3,

0 otherwise.

Let T be defined by
T = {(x, y) : x > 0, 1 < y < 3, x ≤ y − 1/2},

then we have

P(Y −X ≥ 1/2) =

∫∫
T

f(x, y) dy dx

=

∫ 3

1

∫ y− 1
2

0

e−2x dxdy

=
1

2

∫ 3

1

1− e−2y+1dy

= 1 + e
[1
2
e−2y

]3
1
= 1 +

1

2
e−5 − 1

2
e−1.

4. The random variables X,Y have joint probability density function

f(x, y) =

{
C e−x−e−x−2y

ey−1 if x > 0 and y > 0,

0 otherwise.

(a) What is the value of C?

(b) Are X and Y independent?

(c) Find P(X < Y ).

Solution: (a) We have

1 =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dxdy = C

∫ ∞

0

e−x dx

∫ ∞

0

1− e−2y

ey − 1
dy =

3

2
C,

thus C = 2
3 .

(b) The variables X and Y are independent since the joint p.d.f. factors into a function of x times a
function of y.
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(c) Let E = {(x, y) : x < y}, then

P(X < Y ) =

∫∫
E

f(x, y) dxdy =
2

3

∫ ∞

0

1− e−2y

ey − 1

∫ y

0

e−x dxdy

=
2

3

∫ ∞

0

1− e−2y

ey − 1
(1− e−y)

=
2

3

∫ ∞

0

(e−y − e−3y) =
2

3
(1− 1/3) =

4

9
.

5. Let X1 and X2 be two discrete random variables with joint p.m.f. P(X1 = k1, X2 = k2). Prove the
following claims from the lecture:

(a) If g : R2 → R is a function, then

E g(X1, X2) =
∑
k1,k2

g(k1, k2) · P(X1 = k1, X2 = k2).

Hint: Remember that the left hand side is by definition E g(X1, X2) =
∑

l l · P(g(X1, X2) = l),
where the sum is over all values of g(X1, X2), i.e. over all l such that l = g(k1, k2) for some value
k1 of X1 and some value k2 of X2.

(b) E[X1 +X2] = EX1 + EX2. Hint: Use part (a).

Solution: (a) Consider the set V1 of possible values of X1, and V2 of X2. In other words, V1 consists of
all k1 such that P(X1 = k1) > 0, and similarly for V2. Consider now L = g(V1, V2) =

⋃
(k1,k2)

{g(k1, k2)}.

By definition, we have

E g(X1, X2) =
∑
ℓ∈L

ℓ · P(g(X1, X2) = ℓ).

Now, observe that {g(X1, X2) = ℓ} is the event consisting of the union of all events {X1 = k1, X2 = k2}
where the pair (k1, k2) satisfies g(k1, k2) = ℓ. Thus, by additivity of the probability

P(g(X1, X2) = ℓ) =
∑

g(k1,k2)=ℓ

P(X1 = k1, X2 = k2).

Then,

E g(X1, X2) =
∑
ℓ∈L

∑
g(k1,k2)=ℓ

ℓ · P(X1 = k1, X2 = k2)

=
∑
ℓ∈L

g(k1,k2)=ℓ

g(k1, k2) · P(X1 = k1, X2 = k2).

Next, observe that
⋃
ℓ∈L

⋃
g(k1,k2)=ℓ

{(k1, k2)} is the set of possible values of (X1, X2) (this is a tautology).

Therefore,

Eg(X1, X2) =
∑

(k1,k2)

g(k1, k2) · P(X1 = k1, X2 = k2).
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This proves the claim.

(b) By part (a) and the axioms of probability, we have

E(X1 +X2) =
∑
k1,k2

(k1 + k2)P(X1 = k1, X2 = k2)

=
∑
k1,k2

k1P(X1 = k1, X2 = k2) +
∑
k1,k2

k2P(X1 = k1, X2 = k2)

=
∑
k1

k1P(X1 = k1) +
∑
k2

k2P(X2 = k2) = EX1 + EX2.

6. Let X and Y be either two independent Poisson RV’s, or two independent Exponential RV’s, with
parameters µ, λ. Compute the p.m.f. / p.d.f. of X + Y .

Solution:

Case Poisson: Remember that a Poisson RV takes values k = 0, 1, 2, . . . with probability P(X = k) =
λk

k! e
−λ. If X,Y are independent Poisson, we therefore have that X + Y also takes values 0, 1, 2, . . ., and

we have to find P(X + Y = k).
First, we need to find all solutions to x + y = k, where x, y ∈ {0, 1, 2, . . .}. Clearly, these are just the
pairs (0, k), (1, k − 1), (2, k − 2), . . . , (k − 1, 1), (k, 0). Now, we have to sum the joint p.m.f. of X and Y
over these pairs (the joint p.m.f. is just the product of the individual p.m.f.’s by independence). We get

P(X + Y = k) =

k∑
x=0

P(X = x, Y = k − x)

=

k∑
x=0

λx

x!
e−λ · µ

y

y!
e−µ

= e−λ−µ 1

k!

k∑
x=0

k!

x!y!
λxµy = e−λ−µ (λ+ µ)k

k!

where in the last step, we used the binomial theorem. Thus we have determined the p.m.f. of X + Y .
We note that it is just the p.m.f. of Poisson RV with parameter λ+ µ. Thus, a sum of two independent
Poisson RV’s is again Poisson, with the sum of the parameters.

Case Exponential: Remember that the p.d.f. of Exponential is

fX(x) =

{
λe−λx x > 0
0 x ≤ 0

We now use the convolution formula

fX+Y (y) =

∫ ∞

−∞
fX(x)fY (y − x) dx.

Note that the integrand vanishes when x < 0 since fX(x) is zero there. It also vanishes if x > y, since
fY (y− x) has a negative argument for such x, and so vanishes. Thus, if y < 0, the integral vanishes, and
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if y > 0, it equals

fX+Y (y) =

∫ y

0

λe−λx · µe−µ(y−x) dx = λ · µ · e−µy ·
∫ y

0

e(µ−λ)x dx =
λµ

µ− λ

[
e−λy − e−µy

]
.

(This holds for µ ̸= λ. For µ = λ, we get λ2 · y · e−λy).

7. Compute the moment generating functions of the Geom(p) and the Exp(λ) random variables.

Solution:

Case Geometric: Using the definition of the m.g.f. and the geometric series, we get

Eet·Geom(p) =
∑
k≥1

etk · P(Geom(p) = k)

∑
k≥1

etk · p · (1− p)k−1

= p · et ·
∑
k≥1

(
et
)k−1 · (1− p)k−1 =

p · et

1− (1− p)et

Note: We could now compute the mean / variance from this function by taking derivatives at 0. Compare
this to the tricks we needed in the lecture to compute the mean of Geometric!

Case Exponential: Using the definition, we have

Eet·Exp(λ) =

∫ ∞

−∞
et·xf(x) dx

=

∫ ∞

0

et·x · λe−λx dx

=

{
λ

λ−t t < λ

∞ else

8.* Let X be a continuous random variable with p.d.f. f(x) and g : R → R be a strictly increasing function.
Show that the p.d.f. of g(X) equals

fg(X)(y) =
f(g−1(y))

g′(g−1(y))

Solution:

We compute the c.d.f., using that g is strictly increasing.

Fg(X)(b) = P(g(X) ≤ b) = P(X ≤ g−1(b)) = FX(g−1(b)).

Here, g−1(b) is the inverse function of g (e.g. g−1(b) =
√
b if g(x) = x2, or g−1(b) = arctan b if

g(x) = tanx). Using the chain rule

d

dx
Fg(X)(x) = F ′

X(g−1(x)) · d

dx
g−1(x)

= fX(g−1(x)) · 1

g′(g−1(x))
,

where we used a theorem about the derivative of the inverse function.
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