Lecture 1: Review of methods to solve Ordinary Differential Equations

(Compiled 4 January 2019)

In this lecture we will briefly review some of the techniques for solving First Order ODE and Second Order Linear ODE, including Cauchy-Euler/Equidimensional Equations

Key Concepts: First order ODEs: Separable and Linear equations; Second Order Linear ODEs: Constant Coefficient Linear ODE, Cauchy-Euler/Equidimensional Equations.

1 First Order ordinary Differential Equations:

1.1 Separable Equations:

$$\frac{dy}{dx} = P(x)Q(y)$$

$$\int \frac{dy}{Q(y)} = \int P(x) dx + C$$
(1.1)

Example 1:

$$\frac{dy}{dx} = \frac{4y}{x(y-3)}$$

$$\left(\frac{y-3}{y}\right) dy = \frac{4}{x} dx$$

$$y - 3\ln|y| = 4\ln|x| + C$$

$$y = \ln(x^4y^3) + C$$

$$Ax^4y^3 = e^y$$
(1.2)

1.2 Linear First Order equations - The Integrating Factor:

$$y'(x) + P(x)y = Q(x) \tag{1.3}$$

Can we find a function F(x) to multiply (4.3) by in order to turn the left hand side into a derivative of a product:

$$Fy' + FPy = FQ \tag{1.4}$$

$$(Fy)' = Fy' + F'y = FQ$$
 (1.5)

So let F' = FP which is a separable Eq.

$$\frac{dF}{F(x)} = P(x) dx \Rightarrow \int \frac{dF}{F} = \int P(x) dx + C$$
Therefore $\ln F = \int P(x) dx + C$
or $F = Ae^{\int P(x) dx}$ choose $A = 1$

$$F = e^{\int P(x) dx}$$
 integrating factor (1.6)

Therefore

$$e^{\int P(x) dx} y' + e^{\int P(x) dx} P(x) y = e^{\int P(x) dx} Q(x)$$

$$(e^{\int P(x) dx} y)' = e^{\int P(x) dx} Q(x)$$

$$y(x) = e^{-\int P(x) dx} \left\{ \int e^{\int x} P(t) dt Q(x) dx + C \right\}$$
(1.7)

Example 2:

$$y' + 2y = 0$$

$$F(x) = e^{2x} \Rightarrow e^{2x}y' + e^{2x}2y = (e^{2x}y)' = 0$$

$$e^{2x}y = c$$

$$y(x) = Ce^{-2x}$$
(1.8)

Example 3: Solve

$$\frac{dy}{dx} + \cot(x)y = 5e^{\cos x}, \ y(\pi/2) = -4$$
 (1.9)

$$P(x) = \cot x \quad Q(x) = 5e^{\cos x}$$

$$F(x) = e^{\int \cot x \, dx} = e^{\ln(\sin x)} = \sin x$$

$$(1.10)$$

Therefore $\sin(x)y' + \cos(x)y = (\sin(x)y)' = 5e^{\cos x} \sin x$

$$\sin(x)y = -5e^{\cos x} + C$$

$$y(x) = -\frac{5e^{\cos x} - C}{\sin x}$$

$$-4 = y(\pi/2) = -\frac{5 - C}{1} \Rightarrow C = 1$$
Therefore $y(x) = \frac{1 - 5e^{\cos x}}{\sin x}$

2 Second Order Constant Coefficient Linear Equations:

$$Ly = ay'' + by' + cy = 0$$

Guess $y = e^{rx}$ $y' = re^{rx}$ $y'' = r^2e^{rx}$
$$Ly = [ar^2 + br + c]e^{rx} = 0$$
 provided $[] = 0$

Indicial Eq.:

$$g(r) = ar^{2} + br + c = 0 r_{1,2} = -\frac{b \pm \sqrt{b^{2} - 4ac}}{2a}$$
 or $g(r) = a(r - r_{1})(r - r_{2}) = 0$ (2.1)

Case I: $\Delta = b^2 - 4ac > 0, r_1 \neq r_2, y(x) = c_1 e^{r_1 x} + c_2 e^{r_2 x}$ is the general solution.

Case II: $\Delta = 0$, $r_1 = r_2$, repeated roots $Ly = a(r - r_1)^2 e^{rx} = 0$. In this case obtain only *one* solution $y(x) = e^{r_1 x}$. How do we get a second solution?

FIGURE 1. Left Figure: Roots of the characteristic polynomial $g(r) = ar^2 + br + c$ for the different cases of the discriminant $\Delta = b^2 - 4ac$. We consider special solution, in which $g(r) = a(r - (r_1 - \epsilon))(r - (r_1 + \epsilon)) = a[(r - r_1)^2 - \epsilon^2] \approx a(r - r_1)^2$. Right Figure: We consider the special solution (2.3) for the case in which the two parameters c_1 and c_2 have been chosen to be $c_2 = -c_1 = -\frac{1}{2\epsilon}$, which represents a straight line in the two-parameter $c_1 - c_2$ space

First Method: Perturbation of the double root: Consider a small perturbation (see figure 1 a) to the double root case, such that $g(r) = a(r - (r_1 - \epsilon))(r - (r_1 + \epsilon)) = a[(r - r_1)^2 - \epsilon^2] \approx a(r - r_1)^2$. In this case the two, very close but distinct, roots of g(r) = 0 are given by:

$$r = r_1 + \epsilon \text{ and } r = r_1 - \epsilon$$
 (2.2)

Now since we still have two distinct roots in this perturbed case, the general solution is:

$$y(x) = c_1 e^{(r_1 + \epsilon)x} + c_2 e^{(r_1 - \epsilon)x}$$
(2.3)

Now choosing a special solution by selecting $c_1 = \frac{1}{2\epsilon} = -c_2$, and we obtain a family of solutions that depend on the small parameter ϵ (see figure 1 b):

$$y(x,\epsilon) = \frac{e^{(r_1+\epsilon)x} - e^{(r_1-\epsilon)x}}{2\epsilon} \approx \left| \frac{\partial}{\partial r} e^{rx} \right|_{r=r_1}$$
 (2.4)

Now taking the limit as $\epsilon \to 0$ by making use of L'Hospital's Rule, we obtain the following limiting solution:

$$y(x,\epsilon) = e^{r_1 x} \left(\frac{e^{\epsilon x} - e^{-\epsilon x}}{2\epsilon} \right) \xrightarrow{\epsilon \to 0} x e^{r_1 x} = \left| \frac{\partial}{\partial r} e^{r x} \right|_{r=r_1}$$
 (2.5)

Second Method: taking the derivative with respect to r: From (2.4) and (2.5) we see that the new solution xe^{r_1x} was obtained by taking the derivative of $y(x,r) = e^{rx}$ with respect to r and then making the substitution $r = r_1$. This

is, in fact, a general procedure that we will use later in the course. To see why this procedure works, let

$$y(r,x) = e^{rx}$$

$$Ly(r,x) = a(r-r_1)^2 e^{rx}$$

$$L\left[\frac{\partial y}{\partial r}(r,x)\right]_{r=r_1} = \left[2a(r-r_1)e^{rx} + a(r-r_1)^2 x e^{rx}\right]_{r=r_1} = 0$$
Therefore $\left[\frac{\partial y}{\partial r}(r,x)\right]_{r=r_1} = x e^{r_1 x}$ is also a solution. (2.6)

Thus, to summarize, the general solution for the case of a double root is:

$$y(x) = c_1 e^{r_1 x} + c_2 x e^{r_1 x} (2.7)$$

Case III: Complex Conjugate Roots: $\Delta = b^2 - 4ac < 0$

$$r_{\pm} = -\frac{b}{2a} \pm \frac{i\sqrt{4ac - b^2}}{2a} = \lambda \pm i\mu$$

$$y(x) = c_1 e^{(\lambda + i\mu)x} + c_2 e^{(\lambda - i\mu)x}$$

$$= e^{\lambda x} \left[A\cos\mu x + B\sin\mu x \right].$$
(2.8)

Example 4:

$$Ly = y'' + y' - 6y = 0$$

$$y = e^{rx}(r^2 + r - 6) = (r + 3)(r - 2) = 0$$

$$y(x) = c_1 e^{-3x} + c_2 e^{2x}$$
(2.9)

Example 5:

$$Ly = y'' + 6y' + 9y = 0$$

$$y = e^{rx}(r+3)^2 = 0$$

$$y(x) = c_1 e^{-3x} + c_2 x e^{-3x}$$
(2.10)

Example 6:

$$\begin{array}{rcl} Ly & = & y'' - 4y' + 13y = 0 \\ y & = & \mathrm{e}^{rx}: & r^2 - 4r + 13 = 0 \\ & & r = \frac{4 \pm \sqrt{16 - 52}}{2} = 2 \pm 3i \end{array}$$
 Therefore $y(x) = & \mathrm{e}^{2x} \left[A \cos 3x + B \sin 3x \right].$

3 Cauchy/Euler/Equidimensional Equations:

$$Ly = x^2y'' + \alpha xy' + \beta y = 0. {(3.1)}$$

Aside: Note if we let $t = \ln x$ or $x = e^t$ then $\frac{d}{dx} = \frac{d}{dt} \frac{dt}{dx} \Rightarrow \frac{d}{dt} = x \frac{d}{dx}$.

$$\frac{d^2}{dt^2} = x \frac{d}{dx} \left(x \frac{d}{dx} \right) = x^2 \frac{d^2}{dx^2} + x \frac{d}{dx} \Rightarrow x^2 \frac{d^2}{dx^2} = \frac{d^2}{dt^2} - \frac{d}{dt}$$
 (3.2)

Therefore
$$\ddot{y} - \dot{y} + \alpha \dot{y} + \beta y = 0$$

 $\ddot{y} + (\alpha - 1)\dot{y} + \beta y = 0$ (3.3)

$$y = e^{rt} \Rightarrow r^2 + (\alpha - 1)r + \beta = 0$$
 Characteristic Eq.

Review of methods to solve Ordinary Differential Equations

Back to (3.1): Guess $y = x^r$, $y' = rx^{r-1}$, and $y'' = r(r-1)x^{r-2}$.

Therefore
$$\{r(r-1) + \alpha r + \beta\} x^r = 0$$

 $f(r) = r^2 + (\alpha - 1)r + \beta = 0$ as above. (3.4)

$$r_{\pm} = \frac{1 - \alpha \pm \sqrt{(\alpha - 1)^2 - 4\beta}}{2} \tag{3.5}$$

Case 1: $\Delta = (\alpha - 1)^2 - 4\beta > 0$ Two Distinct Real Roots r_1, r_2 .

$$y = c_1 x^{r_1} + c_2 x^{r_2} (3.6)$$

If r_1 or $r_2 < 0$ then $|y| \to \infty$ as $x \to 0$.

Case 2: $\Delta = 0$ Double Root $(r - r_1)^2 = 0$.

We obtain only one solution in this case:

$$y = c_1 x^{r_1} (3.7)$$

To get a second solution we use second method introduced above, in which we differentiate with respect to the parameter r:

$$\frac{\partial}{\partial r} L[x^r] = L\left[\frac{\partial}{\partial r} x^r\right] = L[x^r \log x]$$

$$\frac{\partial}{\partial r} \left\{ f(r)x^r \right\} = f'(r)x^r + f(r)x^r \log x = 0 \quad \text{since } f(r) = (r - r_1)^2.$$
(3.8)

General Solution: $y(x) = (c_1 + c_2 \log x)x^{r_1}$.

Check:

$$L(x^{r_1} \log x) = x^2 (x^r \log x)'' + \alpha x (x^r \log x)' + \beta (x^r \log x) -$$

$$= x^2 \left[r(r-1)x^r \log x + rx^{r-2} + (r-1)x^{r-2} \right] + \alpha x \left[rx^{r-1} \log x + x^{r-1} \right] + \beta (x^r \log x)$$

$$= \left\{ r^2 + (\alpha - 1)r + \beta \right\} x^r \log x + \left\{ 2r - 1 + \alpha \right\} x^r = 0$$
(3.9)

Case 3: $\Delta = (\alpha - 1)^2 - 4\beta < 0$.

$$r_{\pm} = \frac{(1-\alpha)}{2} \pm i \frac{\left[4\beta - (\alpha - 1)^{2}\right]^{1/2}}{2} = \lambda \pm i\mu$$

$$y(x) = c_{1}x^{(\lambda+i\mu)} + c_{2}x^{(\lambda-i\mu)} \qquad x^{r} = e^{r \ln x}$$

$$= c_{1}e^{(\lambda+i\mu)\ln x} + c_{2}e^{(\lambda-i\mu)\ln x}$$

$$= x^{\lambda} \left\{ c_{1}e^{i\mu\ln x} + c_{2}e^{-i\mu\ln x} \right\}$$

$$= A_{1}x^{\lambda}\cos(\mu \ln x) + A_{2}x^{\lambda}\sin(\mu \ln x)$$
(3.10)

Observations:

• If x < 0 replace by |x|.

5

• The two solutions are linearly independent as we can verify by applying the Wronskian test, as follows:

$$w(y_1, y_2) = \begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix} = y_1 y_2' - y_1' y_2 \quad \text{(look up the definition of the Wronskian)}$$

$$= \left\{ x^{\lambda} \cos(\mu \ln x) \right\} \left\{ \log x x^{\lambda} \sin(\mu \ln x) + x^{\lambda - 1} \cos(\mu \ln x) \mu \right\}$$

$$- \left\{ x^{\lambda} \log x \cos(\mu \ln x) - x^{\lambda - 1} \sin(\mu \ln x) \mu \right\} \left\{ x^{\lambda} \sin(\mu \ln x) \right\}$$

$$= \mu x^{2\lambda - 1} \quad \text{independent for } x \neq 0.$$

Example 7:

$$x^{2}y'' - xy' - 2y = 0, \quad y(1) = 0, \quad y'(1) = 1$$

$$y = x^{r} \quad r(r-1) - r - 2 = 0 \quad r^{2} - 2r - 2 = 0$$

$$(r-1)^{2} = 3 \quad r = 1 \pm \sqrt{3}$$
(3.11)

$$y = c_1 x^{1+\sqrt{3}} + c_2 x^{1-\sqrt{3}}$$

$$y(1) = c_1 + c_2 = 0 c_2 = -c_1$$

$$y(x) = c_1 \left(x^{1+\sqrt{3}} - x^{1-\sqrt{3}} \right)$$

$$y'(x) = c_1 \left[\left(1 + \sqrt{3} \right) x^{\sqrt{3}} - \left(1 - \sqrt{3} \right) x^{-\sqrt{3}} \right] \Big|_{x=1} = c_1 2\sqrt{3} = 1$$

$$(3.12)$$

Therefore
$$y(x) = \frac{1}{2\sqrt{3}} \left(x^{1+\sqrt{3}} - x^{1-\sqrt{3}} \right).$$
 (3.13)

Example 8:

$$x^{2}y'' - 3xy' + 4y = 0 \quad y(1) = 1 \quad y'(1) = 0$$
$$y = x^{r} \implies r(r-1) - 3r + 4 = r^{2} - 4r + 4 = 0 \quad (r-2)^{2} = 0$$
(3.14)

$$y(x) = c_1 x^2 + c_2 x^2 \log x$$

$$y(1) = c_1 = 1 \quad y'(1) = [2x + c_2 (2x \log x + x)]_{x=1}$$

$$= 2 + c_2 = 0$$
(3.15)

Therefore $y(x) = x^2 - 2x^2 \log x$.