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Lecture 1: Review of methods to solve Ordinary
Differential Equations

(Compiled 4 January 2019)
In this lecture we will briefly review some of the techniques for solving First Order ODE and Second Order Linear ODE,
including Cauchy-Euler/Equidimensional Equations

Key Concepts: First order ODEs: Separable and Linear equations; Second Order Linear ODEs: Constant Coefficient
Linear ODE, Cauchy-Euler/Equidimensional Equations.

1 First Order ordinary Differential Equations:

1.1 Separable Equations:

dy
& = P)QW) (11)
dy /
—— = [ P(x)dz+C
Qy) &
Example 1:
dy _ 4y
dr  x(y—3)
(y—?)) dy = 4 dr
Y x
y—3nly|=4ln|z|+C (1.2)

y=l(a'y’) +C

Azty® = e¥

1.2 Linear First Order equations - The Integrating Factor:

y'(z) + P(z)y = Q(x) (1.3)

Can we find a function F(z) to multiply (4.3) by in order to turn the left hand side into a derivative of a product:

Fy + FPy=FQ (1.4)

(Fy) =Fy' + F'y=FQ (1.5)
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So let F' = F'P which is a separable Eq.

dF dF
W:P(x)dxé/Y:/P(x)dm—kC

Therefore In F' = /P(m) dx+C (1.6)

or F=Ae/ P@dz  choose A =1

F =l P@)de integrating factor

Therefore
eJ P(z) dxy/ + of P(z) d£P(m)y —of P(x)daﬁQ(l.)
(ef P(z) dmy)/ — o P@) sz(x) (1.7)
y(z) = e~ J P@)dz {fefz PO At (z) da + C’}
Example 2:
Y +2y=0 (1.8)
F(z) = €2 = &2y 4 e272y = (e27y)' = 0
ety =c
y(z) = Ce™?"
Example 3: Solve
d ,
d—y + cot(z)y = 5e°*, y(w/2) = —4 (1.9)
x
P(z) = cotx Q(xr) = b5e™s”
. 1.1
F(I) _ ef cot z dz _ eIn(sm z) sin x ( 0)
Therefore sin(x)y’ 4 cos(x)y = (sin(z)y) = 5e°°** sin x
sin(x)y = —5e°*s* + C
_ BT _C
y(r) = =50 (1.11)
—d=y(r/2)=-3¢=C=1
Therefore y(z) = 1_8515’12”
2 Second Order Constant Coefficient Linear Equations:
Ly=ay’' +by +cy=0
Guess y =™ ¢ =re™ 3 =r2e’™
Ly = [ar? + br + cJe™ = 0 provided [] =0
Indicial Eq.:
giry=ar*+br+c = 0 1o = _bEvb2—dac \/‘;—4‘10 2.1)
org(r)=a(r—ri)(r—re) = 0 )

Case I: A = b% — dac > 0,71 # 72, y(7) = c1e"% + coe™® is the general solution.
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Case II: A = 0, 71 = 73, repeated roots Ly = a(r — r1)?e"™® = 0. In this case obtain only one solution y(x) = "%,

How do we get a second solution?

g(r) =ar*+br+c

A =0b>—4ac<0

A=b—4ac=0
lC2
A =b>—4ac >0
r = b
o cl

FIGURE 1. Left Figure: Roots of the characteristic polynomial g(r) = ar® + br 4 ¢ for the different cases of the discriminant
A = b® — 4ac. We consider special solution, in which g(r) = a(r — (r1 — €))(r — (r1 4+ €)) = a[(r — r1)? — %] = a(r —r1)>.
Right Figure: We consider the special solution (2.3) for the case in which the two parameters c¢; and ¢z have been chosen to
be co = —c1 = fi, which represents a straight line in the two-parameter ¢; — c2 space

First Method: Perturbation of the double root: Consider a small perturbation (see figure 1 a) to the double root case,
such that g(r) = a(r — (r1 — €))(r — (r1 +¢€)) = a[(r — r1)? — €] = a(r — r1)?. In this case the two, very close but

distinct, roots of g(r) = 0 are given by:
r=ri+eandr=r —¢ (2.2)

Now since we still have two distinct roots in this perturbed case, the general solution is:

y(z) = c1e(MTIT 4 gyelri—az (2.3)
Now choosing a special solution by selecting ¢; = 2% = —cg, and we obtain a family of solutions that depend on the

small parameter € (see figure 1 b):

(rit+e)xz _ J(ri—e)x B
e e
= ~ |— e 2'4
y(x7 6) 26 ‘ 8’,"6 T="r1 ( )
Now taking the limit as e — 0 by making use of L’Hospital’s Rule, we obtain the following limiting solution:
e — e\ g )
— T™T _> ™ — Tr 2.5
y(z,e) =e < 5 ) xe ¢ . (2.5)

Second Method: taking the derivative with respect to r: From (2.4) and (2.5) we see that the new solution ze™* was

obtained by taking the derivative of y(x,r) = €™ with respect to r and then making the substitution r = ;. This
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is, in fact, a general procedure that we will use later in the course. To see why this procedure works, let

TT

y(r,z) = e
Ly(r,x) = a(r—mr)%e

(7, x)} = [2a(r —r)e™ + a(r — r1)?ze™] =0 (2.6)

r=ry T="1

T

L

‘Qv Q:‘Qa
S S

T1T

Therefore [ (r, x)} = xe"? is also a solution.

r=ry

Q

T

Thus, to summarize, the general solution for the case of a double root is:
y(z) = c1e™* + come™® (2.7)

Case III: Complex Conjugate Roots: A = b? — 4ac < 0

b n iv4ac — b2
2a 2a
y(z) = c1ePTT 4 o eAim)z (2.8)

re = =Axip

= e [A cos px + Bsin px] .
Example 4:
Ly=y"+y —6y=0
y=e"?+r—6)=(r+3)(r—2)=0 (2.9)
y(r) = cre73" + cpe®”
Example 5:

Ly=y"+6y' +9y =0
y=e“(r+3)*=0 (2.10)

y(x) = 1673 + cowe ™"

Example 6:

Ly = 4" —4y +13y=0
rT 2
y = €%: r*—4r+13=0
2.11
r= A0 94 3 (211)

Therefore y(x) = >*[Acos3z + Bsin3z].

3 Cauchy/Euler/Equidimensional Equations:

Ly = 2%y" + axy’ + By = 0. (3.1)

d d dt d d
Aside: Note if we let t = Inx or z = e’ then e = T de = T = x%

e d( d L& d L, & d
L 2
<xdx) T e T e T e W (32)

a2~ Vdx

Therefore §—y+ay+py = 0
j+(a=Lg+py = 0

y=et=7r>+(a—1)r+ =0 Characteristic Eq.
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r—2

Back to (3.1): Guess y = 2", ¢/ = rz" !, and ¢’ = r(r — 1)z

Therefore {r(r—1)4+ar+pg}tz" = 0 (3.4)
fry=r*+(a—1)r+B = 0  asabove. ’
l—a+ —1)2 -4
ry = Lo EV(OZ D) AP (3.5)
2
Case 1: A = (o — 1)2 — 48 > 0 Two Distinct Real Roots 71, 7.
y=cz" +cx"™ (3.6)
If 1 or ro < 0 then |y| — oo as ¢ — 0.
Case 2: A = 0 Double Root (r —r1)? = 0.
We obtain only one solution in this case:
y = cix™ (3.7)

To get a second solution we use second method introduced above, in which we differentiate with respect to the

parameter r:

%L[mr] = L [%zr} = L[z" log x]
(3.8)
% {f(rz"} = f'(r)a”+ f(r)z"logz =0 since f(r) = (r —r)2.
General Solution: y(x) = (¢1 + ¢z logx)z™.
Check:
L(z™ logx) = 2®(2" log )" + ax(z"logx) + B(z" logz) —
=2” [r(r—1)a"logz + ra" 2 + (r — 1)a" 7] (3.9)
+ax [ra" Mlogz + 2" '] + B(z" log z)
={r’+(a—1)r+pB}a"logz+{2r —1+a}tz" =0
Case 3: A = (a—1)2 - 48 < 0.
B o B 211/2
T N TR I
2 2
y(:c) — Clx(/\Jrip,) + CQx(Afi,u,) " erlnx
— Cle()\Jrip,) Inz + CQe()\fip,) Inz (310)

— (E)\ {Clezulnz _'_CQG—zulnx}

= Ayz* cos(plnz) + Agx sin(pIn z)
Observations:

o If z < 0 replace by |z|.
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e The two solutions are linearly independent as we can verify by applying the Wronskian test, as follows:

w(y1,ya) = ‘ y,l y? = y1ys — y1y2  (look up the definition of the Wronskian)
Y1 Y2
= {z* cos(plnz)} {logza* sin(uInz) + 22~ cos(ulnx)p}
— {2 logz cos(plnz) — 2 'sin(plnz)p} {2’ sin(plnz)}
= uz**~!  independent for z # 0.
Example 7:
ey’ —ay =2y =0, y(1)=0, y'(1)=1
y=a" r(r—1)—-r—-2=0 r2-2r—-2=0 (3.11)
(r—12=3 r=1+3
Yy = cle‘/g + 623317‘/5
y1)=c14+c2=0 c=—-1
y(z) = c; (m1+‘/§ - xlf‘/g) (3.12)
y'(z) =1 [(1 + \/?;)z‘/g — (1 — \/5)3:*\@] T c12V3 =1
1
Therefore T)=—F+ <x1+‘/§ — xl_‘/g) . 3.13
)= 5 (.13
Example 8:
22y’ =32y’ +4y=0 y(1)=1 %' (1)=0
: ) (3.14)
y=a" = r(r—1)—-3r+4=r*—4dr+4=0 (r—2*=0
y(x) = c12® + cox’ logx
y()=c1=1 ¢'(1) =22+ co (2zloga + z)],_, (3.15)

=2+c=0

Therefore y(z) = 22 — 222 log z.



