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Lecture 2: Series solutions to ODE with variable coefficients

(Compiled 14 August 2019)

In this lecture we will introduce series methods for the solution of variable coefficient ODE. We introduce the concepts of

ordinary points about which Taylor series solutions are obtained and singular points about which more general solutions

are required.

Key Concepts: Variable coefficient ODE, Series Solutions, Ordinary Points and Taylor Series, Singular Points,
radius of convergence of power series.

2 Series Solution of ODEs

2.1 Power Series:

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n polynomial approximation.

Idea: Extend the polynomial to include infinitely many terms.

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · Power Series

=

∞∑
n=0

anx
n (2.1)

Example 1: ex = 1 + x
1! +

x2

2! +
x3

3! + · · ·+
xn

n! + · · · =
∞∑

n=0

xn

n! .

More General Power Series:

f(x) =

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + · · · (2.2)
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2.2 Taylor series

If we know all the derivatives of a function f(x) at a single point x0 then we can solve for the coefficients of a power

series that represents the function at neighboring points x as follows:

f(x) =

∞∑
n=0

an(x− x0)
n = a0 + a1(x− x0) + a2(x− x0)

2 + · · ·

f ′(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x− x0)

n + · · ·

⇒ f ′(x0) = a1

f ′′(x) = 2a2 + 3 · 2a3(x− x0) + · · ·+ n(n− 1)an(x− x0)
n−2 + · · ·

⇒ f ′′(x0) = 2a2

f (3)(x) = 3!a3 + 4 · 3 · 2(x− x0) + · · ·+ n(n− 1)(n− 2)an(x− x0)
n−3 + · · ·

⇒ f (3)(x0) = 3!a3

f (n)(x0) = n!an ⇒ an =
f (n)(x0)

n!

Therefore f(x) =

∞∑
n=0

f (n)(x0)

n!
(x− x0)

n (2.3)

Alternative Form of Taylor Series:

f(x0 + h) =

∞∑
n=0

f (n)(x0)

n!
hn (2.4)

Example 2: Taylor-Maclauren expansions of common functions

ex =

∞∑
n=0

xn

n!

sinx =

∞∑
n=0

(−1)n x2n+1

(2n+ 1)!
sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
(2.5)

cosx =

∞∑
n=0

(−1)n x2n

(2n)!
coshx =

∞∑
n=0

x2n

(2n)!

eiθ = 1 + iθ +
(iθ)2

2!
+

(iθ)3

3!
+ · · ·

=

(
1− θ2

2!
+

θ4

4!
− · · ·

)
+ i

(
θ − θ3

3!
+ · · ·

)
(2.6)

= cos θ + i sin θ

ex = 1 + x+
x2

2!
+

x3

3!
+ · · ·

=

(
1 +

x2

2!
+

x4

4!
+ · · ·

)
+

(
x+

x3

3!
+ · · ·

)
= coshx+ sinhx

e−x = coshx− sinhx

coshx = (ex + e−x)/2

sinhx = (ex − e−x)/2
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2.3 Series Solution to a constant coefficient ODE:

Example 3: In this example we use power series to solve the linear ODE

y′ + 2y = 0 (2.7)

which we solved by integrating factor in the previous lecture. Since the unknown solution y(x) and all its derivatives

are defined implicitly by the ODE y′ = −2y, let us look for a series solution of the form: y(x) =
∞∑

n=0
anx

n.

y′ =

∞∑
n=1

annx
n−1 (2.8)

Therefore y′ + 2y =
∞∑

n=1

annx
n−1 +

∞∑
n=0

2anx
n = 0

In the first sum let

m = n− 1 n = 1⇒ m = 0

n = m+ 1

Therefore
∞∑

m=0
am+1(m+ 1)xm +

∞∑
n=0

2anx
n = 0

n⇔ m :
∞∑

m=0
{am+1(m+ 1) + 2am}xm = 0

(2.9)

am+1 = − 2
(m+1)am

a1 = −2a0, a2 = + 2
2
2
1a0, a3 = − 2

3 ·
2
2 ·

2
1a0 = (−1)3 23

3! a0,

. . . , am = (−1)m 2m

m! a0

Therefore y(x) = a0
∞∑

m=0

(−2x)m

m! = a0e
−2x

(2.10)

2.4 Variable coefficient ODE: ordinary and singular points

Example 4: We consider the following Cauchy-Euler equation:

(x− 1)y′′ + y′ = 0 (2.11)

whose solution is obtained as follows

y = (x− 1)r ⇒ r(r − 1) + r = r2 = 0 r = 0, 0.

So that y(x) = A+B ln |x− 1| is the general solution (2.12)

Method I: The first method we consider for obtaining a series solution to (2.11) is to use the ODE to calculate all the

derivatives of y(x) by direct differentiation and then to substitute these derivatives into Taylor’s formula. Although

this method can, in principle, be applied to any suitable ODE, we will see that the computations can rapidly become

tedious. However, this method does highlight when the power series method will fail.
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Assume that y(0) and y′(0) are given, then

y′′ = − y′

x− 1
⇒ y′′(0) = y′(0)

y(3) = − y′′

x− 1
+

y′

(x− 1)
2 =⇒ y(3)(0) = +y′′(0) + y′(0) = 2y′(0)

Substituting this into Taylor’s formula y(x) = y(0) + xy′(0) + x2

2 y′′(0) + x3

3! y
(3)(0) + · · ·

y(x) = y(0) + y′(0)

{
x+

x2

2
+

x3

3
+ · · ·

}
(2.13)

We observe that this process works for equation (2.11) using the expansion point x0 = 0, but will not work for

x0 = 1, which is called a singular point. In fact, a power series expansion is possible for all points x0 ̸= 1, which are

called ordinary points.

Method II: We now consider an alternative, and more convenient, method for determining the coefficients of a power

series solution to the ODE, by substituting the power series into the ODE and determining recursion formulae for

these coefficients. Expand around the ordinary point x0 = 0:

y(x) =

∞∑
n=0

cnx
n, y′ =

∞∑
n=1

ncnx
n−1, y′′ =

∞∑
n=2

cnn(n− 1)xn−2 (2.14)

(x− 1)

∞∑
n=2

cnn(n− 1)xn−2 +

∞∑
n=1

ncnx
n−1 = 0

−
∞∑

n=2

cnn(n− 1)xn−2 +

∞∑
n=2

cn {n(n− 1) + n}xn−1 + c1 = 0 (2.15)

m− 1 = n− 2⇒ m = n− 1 n = 2⇒ m = 1 n = m+ 1

−c2 · 2 · 1 + c1 +

∞∑
m=2

[
−cm+1(m+ 1)m+ cmm2

]
xm−1 = 0

where c0 and c1 are arbitrary:

cm+1 =
m

m+ 1
cm m ≥ 2 c2 =

c1
2

c3 =
2

3
c2 =

c1
3

c4 =
3

4
c3 =

c1
4
. . . cn =

c1
n

Therefore

y(x) = c0 + c1

∞∑
n=1

xn

n
. (2.16)

We observe that the solutions (2.13) and (2.16) obtained by the two different methods are identical.

Recall

1

1− x
= 1 + x+ x2 + · · ·

∫
1

1− x
dx = − ln |1− x| = x+

x2

2
+

x3

3
+ · · ·

y(x) = A+B ln |x− 1| (2.17)

Thus the series solution is identical to the solution (2.12) provided |x| ≤ 1. We note that the radius of convergence of

convergence for the power series (2.13) is 1, which corresponds to the distance between the expansion point x0 = 0

and the nearest singular point x = 1.
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Power series solution of general variable coefficient linear ODE:

Consider solving variable coefficient linear ODEs of the form

P (x)y′′ +Q(x)y′ +R(x)y = 0 Homogeneous Eq. (2.18)

Divide through by P (x):

Ly = y′′ + p(x)y′ + q(x)y = 0 p(x) = Q/P, q(x) = R/P (2.19)

In order to calculate the higher derivatives of y(x) to substitute into Taylor’s formula, we rewrite (2.19) as follows

y′′ = −p(x)y′ − q(x)y

If y(x0) and y′(x0) are given, then y′′(x0) can be obtained directly from the ODE. Higher derivatives of y can, in

turn, be obtained by differentiating the ODE repeatedly. This process will be successful provided p(x) and q(x) are

infinitely differentiable at x = x0. In this case p(x) and q(x) are said to be analytic at x0 and have Taylor expansions

of the form

i.e. p(x) = p0 + p1(x− x0) + · · · =
∞∑
k=0

pk(x− x0)
k

q(x) = q0 + q1(x− x0) + · · · =
∞∑
k=0

qk(x− x0)
k

Ordinary points: The expansion point x0 is said to be an ordinary point of (2.19) if p(x) = Q/P and q(x) = R/P

are analytic at x0. If x0 is an ordinary point it is possible to obtain power series expansions of the solution y(x) of

the form:

y(x) =

∞∑
n=0

cn(x− x0)
n. (2.20)

The idea is to substitute the expansion (2.20) into (2.19) and solve for the unknown coefficients cn in order to

determine a solution.

Observations:

• If P , Q and R are polynomials then a point x0 such that P (x0) ̸= 0 is an ordinary point.

• If x0 = 0 is an ordinary point then we assume

y =

∞∑
n=0

cnx
n, y′n =

∞∑
n=1

cnnx
n−1, y′′n =

∞∑
n=2

cnn(n− 1)xn−2

0 = Ly =

∞∑
n=2

cnn(n− 1)xn−2 +

( ∞∑
n=0

pnx
n

) ∞∑
n=1

ncnx
n−1 (2.21)

+

( ∞∑
n=0

qnx
n

)( ∞∑
n=0

cnx
n

)

∞∑
m=0

{
(m+ 2)(m+ 1)cm+2 +

(
p0(m+ 1)cm+1 + · · ·+ pmc1

)
+ (q0cm + · · ·+ qmc0)}xm = 0 (2.22)

yields a non-degenerate recursion for the cm. At an ordinary point x0 we can obtain two linearly independent

solutions of the form (2.20).
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Singular Points: If p(x) or q(x) are not analytic at x0, then x0 is said to be a singular point of (2.19). For example

if P , Q and R are polynomials and P (x0) = 0 and Q(x0) ̸= 0 or R(x0) ̸= 0 then x0 is a singular point. Or if

p(x) =
√

(x) and q(x) = 2, then x0 = 0 is a singular point because p(x) is not differentiable at x = 0.

The radius of convergence of (2.20) is at least as large as the radius of convergence of each of the series expansions

for p(x) = Q/P and q(x) = R/P , i.e., up to the closest singularity to x0.

Example 5 The Airy equation: Consider the Airy equation, which arises in Quantum Mechanics:

Ly = y′′ − xy = 0 (2.23)

We observe that x = 0 is an ordinary point.

y =
∞∑

n=0
cnx

n, y′ =
∞∑

n=1
cnnx

n−1, y′′ =
∞∑

n=2
cnn(n− 1)xn−2

∞∑
n=2

cnn(n− 1)xn−2 =
∞∑

n=0
cnx

n+1

m+ 1 = n− 2 n = m+ 3 n = 2⇒ m = −1

c22x
0 +

∞∑
m=0

[
cm+3(m+ 3)(m+ 2)− cm

]
xm+1 = 0

c2 = 0 cm+3 = cm
(m+3)(m+2) m = 0, 1, . . .

(2.24)

(1) c0 → c3 → c6.

c3 =
c0
3.2

, c6 =
c3
6.5

=
c0

6.5.3.2
, c9 =

c0
9.8.6.5.3.2

c3n =
c0

(3n)(3n− 1)(3n− 3)(3n− 4) . . . 9.8.6.5.3.2
(2.25)

y0(x) = 1 +
x3

3.2
+

x6

6.5.3.2
+ · · ·+ x3n

(3n)(3n− 1) . . . 3.2
+ . . .

(2) c1 → c4 → c7 →.

c4 =
c1
4.3

c7 =
c1

7.6.4.3
c10 =

c1
(10.9)(7.6)(4.3)

(2.26)

c3n+1 =
c1

(3n+ 1)(3n)(3n− 2)(3n− 3) . . . (7.6)(4.3)

y1(x) = x+
x4

4.3
+

x7

7.6.4.3
+ · · ·+ x3n+1

(3n+ 1)(3n) . . . 4.3
(2.27)

y(x) = c0y0(x) + c1y1(x)

Radius of Convergence:

lim
m→∞

cm+3

cm
|x|3 = lim

m→∞

|x|3

(m+ 3)(m+ 2)
= 0 < 1 ρ =∞. (2.28)

See B&D for expansion of Airy Solution about x0 = 1:, i.e. y(x) =
∑

an(x− 1)n. It is useful to write x = (x− 1)+1.

y′′ = (x− 1)y + y (2.29)
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Example 6 The Hermite Equation

Consider the Hermite equation, which has application in Quantum mechanics and numerical analysis:

Ly = y′′ − 2xy′ + λy = 0 (2.30)

Since x = 0 is an ordinary point let y(x) =

∞∑
n=0

anx
n then

Ly =

∞∑
n=2

ann(n− 1)xn−2 − 2

∞∑
n=1

annx
n + λ

∞∑
n=0

anx
n = 0. (2.31)

m = n− 2→ n = m+ 2 m← n m← n

n = 2⇒ m = 0

Therefore
∞∑

m=1

[
am+2(m+ 2)(m+ 1)− 2amm+ λam

]
xm + [a22 + λa0]x

0 = 0. (2.32)

x0 :

a2 = −λa0/2 (2.33)

xm :

am+2 =
(2m− λ)am

(m+ 1)(m+ 2)
m ≥ 1 (2.34)

a0:

a2 = −λ

2
a0, a4 =

(4− λ)

4.3
a2 =

(4− λ)(−λ)
4.3.2

a0, a6 =
(8− λ)(4− λ)(−λ)

6.5.4.3.2
a0

a2k =
[4(k − 1)− λ][4(k − 2)− λ] . . . [−λ]

(2k)!
a0 (2.35)

y0 = a0

[
1− λ

2
x2 +

(λ− 4)λ

4!
x4 +

(8− λ)(4− λ)(−λ)
6!

x6 + · · ·
]

a1:

a3 =
(2− λ)

3.2
a1; a5 =

(6− λ)

5!
(2− λ)a1; a7 =

(10− λ)(6− λ)(2− λ)

7!
a1, . . . (2.36)

y1 = a1

[
x+

(2− λ)

3!
x3 +

(6− λ)(2− λ)

5!
x5 +

(10− λ)(6− λ)(2− λ)x7

7!
+ · · ·

]
The general solution is of the form

y(x) = Ay0(x) +By1(x) (2.37)

Note:

(a) If λ = 2n then the recursion yields am+2 = 0 = am+4 = · · · for m = n. Thus if n is an even integer then the

series solution y0 will terminate and become a polynomial of degree n.

In this case:

y0(x) = a0

[
1− nx2 + n(n− 2)22

x4

4!
− n(n− 2)(n− 4)

23x6

6!
+ · · ·

+(−1)n/2n(n− 2) . . . 2.
(
2n/2

)xn

n!

]
. (2.38)
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On the other hand if n is an odd integer then the series solution y1(x) will terminate and become a polynomial

of degree n. In this case

y1(x) = a1

[
x− 2(n− 1)

x3

3!
+ 22(n− 1)(n− 3)

x5

5!

− (n− 1)(n− 3)(n− 5)23
x7

7!
+ · · · (2.39)

+ (n− 1)(n− 3) . . . 3.1(−2)
(n−1)

2
xn

n!

]
(b) For example in the special case λ = 4 = 2n then n = 2.

y0(x) = a0[1− 2x2]. (2.40)


