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Lecture 11: Fourier Cosine Series

(Compiled 4 August 2017)

In this lecture we use separation of variables to solve the heat equation subject to Neumann boundary conditions. In
this case we reduce the problem to expanding the initial condition function f(z) in an infinite series of cosine functions
- known as the Fourier Cosine Series.

Key Concepts: Heat Equation; Neumann Boundary Conditions; separation of variables; Fourier Cosine Series.

11 The heat equation subject to Homogenous Neumann Boundary Conditions

We consider the heat equation subject to the following initial and boundary conditions:
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FIGURE 1. Consider a conducting bar with thermal conductivity o that has an initial temperature distribution
u(x,0) = f(x) and whose endpoints are insulated

Heat Equation : u; = 0ug,, 0<z <L (11.1)
ou(0,t ou(L,t
Boundary Conditions : 9u(0.) =0= Ju(L,t) (11.2)
Ox Oox

Initial Condition : u(z,0) = f(x) (11.3)



11.1 Separation of Variables - Fourier sine Series:

Consider the heat conduction in an insulated rod whose endpoints are insulate for all time and within which the
initial temperature is given by f(z) as shown in figure 1.

Fourier’s Guess:
u(z,t) = X (2)T(t) (11.4)
wy = X (2)T(t) = a*uge = 2 X" (2)T(1)

~a?XT:

);/((;)) = azl(“t()t) = Constant = —\2. (11.5)

Time equation

. ar
T(t) = —a?X°T(t) — = —a*Ndt
A 11.6
In|T| = —a?)t+c (11.6)
T(t) = De=o"*’t,
Case I: Spatial equation assuming that \ # 0:
X"(x) + N X(x) =0

11.
Guess X(z)=e = (r?+A\)e™ =0 r=+\i (11.7)
X = 1 4 cpem
= Acos Az + Bsin Az
X' = —Alsin Az + BAcos Az
Now impose the boundary conditions:
ou(0,
0 = 8—% 2 = X'(0)T®t) = X'(0)=0 118)
0 = =2 = X'(T1(t) = X'(L)=
Now substitute the solution from (11.8) and use the fact that we have assumed that A # 0
0 = X'(0) = —AX0+BX = B=0 (11.9)
0 = X'(L) = —AxsinALA = X\, =(%F) n=12,... ’
Therefore for the case A # 0 we have the countably infinite set of eigenvalues and eigenfunctions
An = (n—ﬂ) n=12,...and X, (z) = cos (@) (11.10)
L L
Case II: Spatial equation assuming that X\ = 0:
In this case the spatial ODE reduces to
X"z) = 0 (11.11)
which has a general solution
X(zx) = Al+ Bz
X'() = B (11.12)
Now imposing the boundary conditions
0 X'(0) B = B=0
0 X'(L) B = B=0 (11.13)
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The complete set of eigenvalues and eigenfunctions are thus:

An = ("f”) n=0,1,2...and Xo(z) =1, Xn(z) = cos (?) . n=12.... (11.14)
2( nx )2
Thus  uy(z,t) =e ()™ cos (?) n=0,1,2,...
are all solutions of u; = a?u,, that satisfy the boundary conditions (11.2). (11.15)

Since (11.1) is linear, a linear combination of solutions is again a solution. Thus the most general solution is for the

form

i nmx _a?(nx 2
u(z,t) :AOJrZAncos (T)e (), (11.16)
n=1

What about the initial condition u(z,0) = f(z)? If we let ¢ = 0 in (11.16), then to complete the solution process we

are reduced to determining the coefficients A,, in the series

””) . (11.17)

u(z,0) = f(z) = A0+ZA cos( 7

n=1

As in the last lecture we use the inner product < .,. > to project f(z) onto the basis functions in the series:

”m) (11.18)

fl@) = Ao—l-ZA cos( T

n=1

<fvcos<km:> /Lf cos( )dx_Ao/Lcos< >d +ZA /cos( : )cos<kz$> da(11.19)
0 0

1
Recall the identity cos(A) cos B = 3 {cos(A — B) + cos(A + B)}. Therefore

L
Jnk = /cos (?) cos <kzx) dx

L
%/cos ——&—cos(n—i—k)Ld n#k
0
{s k)ma/L sin(n—i—k‘)ﬂ'x/L}L
k)r/L (n+k)m/L |,

(11.20)

nmwxr

1
T2
0
L
Jnn = /(1052 (T) dr =
L
L
/

l\')\r—l

L

2
/1+COS< n;mc) dzx
0
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Substituting these integrals into (11.19) we obtain the following expressions for the Fourier Coefficients Ay

f(z)dw. (11.21)

f(@) cos <m) dz. (11.22)

Finally the solution of the initial boundary value problem (11.1) is
> nmwx 2(nx )2
) =A A, (—) —a® ()"t 11.2
u(z,t) o+ ; cos (——)e L (11.23)

where A,, are defined in (11.21)-(11.22). We observe that as t — oo it follows that u(z,t) — Ao, which is just the
average value of the initial heat f(x) distributed in the bar as can be seen from (11.21). This is consistent with
physical intuition.

It is sometimes convenient to re-define the Fourier coefficients as follows:

(Z():QAO
ak:Ak, k:1,2,...

L
2 k
so that the aj assume the unified form ayx = 7 / f(z) cos (?) dr k=0,1,2,... (11.24)
0

In terms of the new coefficients ay, defined in (11.24) the Fourier expansion for the initial condition function f(z) is

of the form

flx) = % + i Gy, COS (?) (11.25)

n=1

while the solution of the heat equation (11.1) is of the form

o0 o \ 2
u(z,t) = % + Z an, €OS (%) e’ (11.26)
n=1

Example 11.1 Fourier Cosine Expansion: Determine the Fourier coefficients ay, for the function
fl@y=2, 0<z<l=1L (11.27)

and use the resulting Fourier Cosine expansion to prove the identity

GRS U S S
] 32 52 720 (2k+1)2

Solution:

1 n 4
BV _
ap = 2/ x cos(nmx)dr = 27( ) = { ntzz, T odd
0

n2m?2 0, n even
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substituting these expressions for the a,, into (11.25), we obtain
f@) o=t =23 L cos(@k+ 1)) (11.28)
r)=r=—-— — ——————cos T .
2 w2 = (2k +1)2

To obtain the required identity we set £ = 1 in and rearrange terms. The partial sums are shown in figure 2
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FI1GURE 2. These figures show the partial sums of the Fourier Cosine Series

In figure 3 we plot the same graphs but on a larger domain than [0, L] = [0, 1].

2 terms of the Fourier Series 3 terms of the Fourier Series 5 terms of the Fourier Series
1 1 1
0.8 0.8 0.8
x 0.6 x 0.6 < 06
g x =
" 04 T 04 = 04
0.2 0.2 0.2
0 0 0
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X
(a) Sum till n = 2 terms (b) Sum till n = 3 terms (¢) Sum till n = 5 terms

FIGURE 3. These figures show the partial sums of the Fourier Cosine Series
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MATLAB Code:

%fourier cos example
clear;clf;dx=0.001;dt=0.001,
x=-2:dx:2;xr=0:dx:1;nterms=10;ntime=100;
for nt=1:ntime
t = (nt-1)*dt;
for n=1:nterms
K=0:1:n;
u(:,n+1)=0.5-4*(cos(pi*(2*K+1)"*x)*(exp(-p
plot(x',u(:,n+1),'r-' xr' xr','k-",' linewid
tit=[num2str(n+1)," terms of the Fourier Se
end
if mod(nt,5)==0,pause(.02);end
end

iN2*(2*K+1)./2*1)./(2*K+1).A2)")/pin2;
th',2);ax=axis;ax=[0 1 0 1.2];axis(ax);
ries Jititle(tit);xlabel('x’);ylabel(‘u(x,t), f(x)

=x');pause(.01)



