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Lecture 12: Heat equation on a circular ring - full Fourier
Series

(Compiled 19 December 2017)

In this lecture we use separation of variables to solve the heat equation subject on a thin circular ring with periodic

boundary conditions. In this case we reduce the problem to expanding the initial condition function f(x) in an infinite

series of both cosine and sine functions, which we refer to as the Full Range Fourier Series.

Key Concepts: Heat Equation; Periodic Boundary Conditions; separation of variables; Full Fourier Series.

12.1 Heat equation on a circular Ring - Full Fourier Series

Figure 1. Consider a thin conducting ring with thermal conductivity α2 that has a given initial temperature distribution

Physical Interpretation: Consider a thin circular wire in which there is no radial temperature dependence, i.e.,

u(r, θ) = u(θ) so that
∂u

∂r
= 0. In this case the polar Laplacian reduces to

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

=
∂2u

∂(rθ)2
(12.1)
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and if we let x = rθ then ∂2u
∂(rθ)2 = uxx. In this case the heat distribution in the ring is determined by the following

initial value problem with periodic boundary conditions

ut = α2uxx (12.2)

BC:
u(−L, t) = u(L, t)
∂u

∂x
(−L, t) =

∂u

∂x
(L, t)

 Periodic BC

IC: u(x, 0) = f(x)

Assume u(x, t) = X(x)T (t).

As before:
X ′′(x)

X(x)
=

Ṫ (t)

α2T (t)
= −λ2.

IVP:
Ṫ (t)

α2T (t)
= −λ2 ⇒ T (t) = ce−λ2t.

r =
2L

2π
=

L

π
= Constant.

BVP:

X ′′ + λ2X = 0

X(−L) = X(L)

X ′(−L) = X ′(L)


Eigenvalue Problem

look for λ such that

nontrivial x can be found.

X(x) = A cos(λx) +B sin(λx)

X(−L) = A cos(λL)−B sin(λL) = A cos(λL) +B sin(λL) = X(L)

therefore 2B sin(λL) = 0

X ′(x) = −Aλ sinλx+Bλ cos(λx) (12.3)

X ′(−L) = +Aλ sin(λL) +Bλ cos(λL) = −Aλ sin(λL) +Bλ cos(λL) = X ′(L)

therefore 2Aλ sin(λL) = 0

Therefore λnL = (nπ) n = 0, 1, . . . .

Solutions to (12.2) that satisfy the BC are thus of the form

un(x, t) = e−(
nπ
L )

2
α2t

{
An cos

(nπx
L

)
+Bn sin

(nπx
L

)}
. (12.4)

Superposition of all these solutions yields the general solution

u(x, t) = A0 +

∞∑
n=1

{
An cos

(nπx
L

)
+Bn sin

(nπx
L

)}
e−(

nπ
L )

2
α2t. (12.5)

In order to match the IC we have

f(x) = u(x, 0) = A0 +

∞∑
n=1

An cos
(nπx

L

)
+Bn sin

(nπx
L

)
. (12.6)



Fourier Series 3

As before we obtain expressions for the An and Bn by projecting f(x) onto sin
(nπx

L

)
and cos

(nπx
L

)
.

L∫
−L

f(x)

{
sin

(
mπx
L

)
cos

(
mπx
L

) }
dx = A0

L∫
−L

{
sin

(
mπx
L

)
cos

(
mπx
L

) }
dx (12.7)

+
∞∑

n=1

An

L∫
−L

cos
(nπx

L

){
sin

(
mπx
L

)
cos

(
mπx
L

) }
dx

+
∞∑

n=1

Bn

L∫
−L

sin
(nπx

L

){
sin

(
mπx
L

)
cos

(
mπx
L

) }
dx.

As in the previous example we use the orthogonality relations:

L∫
−L

sin
(mπx

L

)
sin

(nπx
L

)
dx = Lδmn

L∫
−L

cos
(mπx

L

)
cos

(nπx
L

)
dx = Lδmn m and n ̸= 0 (12.8)

= 2L m = n = 0
L∫

−L

sin
(mπx

L

)
cos

(nπx
L

)
dx = 0 ∀m,n.

Plugging these orthogonality conditions into (12.7) we obtain

A0 =
1

2L

L∫
−L

f(x) dx = average value of f(x) on [−L,L]

An =
1

L

L∫
−L

f(x) cos
(nπx

L

)
dx and Bn =

1

L

L∫
−L

f(x) sin
(nπx

L

)
dx.


(12.9)

Observations:

(1) (12.6) and (12.9) represent the full Fourier Series Expansion for f(x) on the interval [−L,L].

(2) By defining an =
1

L

L∫
−L

f(x) cos
(nπx

L

)
dx =


2A0

An

and bn = Bn the Fourier Series (12.6) is often written

in the form

f(x) =
a0
2

+
∞∑

n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
. (12.10)


