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Lecture 13: Full Range Fourier Series

(Compiled 19 December 2017)

In this lecture we consider the Full Range Fourier Series for a given function defined on an interval [—L, L]. Outside this
interval we see that the Fourier Series represents the periodic extension of the function f(x).

Key Concepts: Full Range Fourier Series; Periodic Extension; Complex Fourier Series.

13.1 Fourier Series

We consider the expansion of the function f(z) of the form
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by, = I / f(z)sin (T) dx (13.2)
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Observations:
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(1) Note that cos (n%(x—l-T)) = cos (?) provided n% = 2m, T = — and similarly sin (%(w—f— 2L)) =
n
sin (?) Thus each of the terms of the Fourier Series S(z) on the RHS of (13.1) is a periodic function having
a maximal period 2L. As a result the function S(x) is also periodic.

How does this relate to f(z) which may not be periodic?

The function S(x) represented by the series is known as the periodic extension of f on [—L, L].
(2) If f (or its periodic extension) is discontinuous at a point xo then S(z) converges to the average value of f

across the discontinuity.
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Fourier Series 3

10 terms of the Fourier Series
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FIGURE 1. Truncated Fourier Series approximation to f(x) using 10 terms. Notice the periodic extension of the function that
was sampled on [—m, 7] and the oscillations in the Fourier Series near the points of discontinuity. Also note that at the point

of discontinuity z =7, S(7) = 1 {f(z#*) + f(z7)}

13.2 It can be useful to shift the interval of integration from [—L, L] to [¢,c + 2]

Since the periodic extension fe(x) is periodic with period 2L (as are the basis functions cos (?) and sin (?) ).
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13.3 Complex Form of Fourier Series
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