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Lecture 15: Convergence of Fourier Series

(Compiled 3 March 2014)

In this lecture we state the fundamental convergence theorem for Fourier Series, which assumes that the function f(x)

is piecewise continuous. At points of discontinuity of f(x) the Fourier Approximation SN (x) takes on the average value
1

2

[
f(x+)+ f(x−)

]
and exhibits the so-called Gibbs Phenomenon in which the convergence is pointwise but not uniform.

We explore the Gibbs phenomenon for a simple step function.

Key Concepts: Convergence of Fourier Series, Piecewise continuous Functions, Gibbs Phenomenon.

15.1 Convergence of Fourier Series

• What conditions do we need to impose on f to ensure that the Fourier Series converges to f .

• We consider piecewise continuous functions:

Theorem 1 Let f and f ′ be piecewise continuous functions on [−L,L] and let f be periodic with period 2L, then f

has a Fourier Series

f(x) ∼ a0
2 +

∞∑
n=1

an cos
(

nπx
L

)
+ bn sin

(
nπx
L

)
= S(x)

where

an = 1
L

L∫
−L

f(x) cos
(

nπx
L

)
dx and bn = 1

L

L∫
−L

f(x) sin
(

nπx
L

)
dx.

(15.1)

The Fourier Series converges to f(x) at all points at which f is continuous and to
1
2
[
f(x+) + f(x−)

]
at all points

at which f is discontinuous.

• Thus a Fourier Series converges to the average value of the left and right limits at a point of discontinuity of the

function f(x).
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15.1.1 Illustration of the Gibbs Phenomenon - nonuniform convergence

• Near points of discontinuity truncated Fourier Series exhibit oscillations - overshoot.

−2 −1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

x/π

S
N
(x

) 
fo

r 
N

=
5

Figure 1. Fourier Series for a step function

Example 15.1 Consider the half-range sine series expansion of

f(x) = 1 on [0, π]. (15.2)

f(x) = 1 =
∞∑

n=1
bn sin(nx)

where bn = 2
π

π∫
0

sin(nx) dx = 2
π

[− cos nx
n

]π

0
= 2

πn

[
1− (−1)n

]

=
{

4/πn n odd
0 n even

Therefore f(x) = 4
π

∞∑
n=1

n odd

sin(nx)
n = 4

π

∞∑
m=0

sin(2m+1)x
(2m+1) .

(15.3)

Note:

(1) f(π/2) = 1 =
4
π

∞∑
m=0

sin
[
(2m + 1)π/2

]

(2m + 1)
=

4
π

{
1− 1

3
+

1
5
− · · ·

}
. Therefore

π

4
= 1− 1

3
+

1
5
− · · · .

(2) Recall the complex Fourier Series example for the function

f(x) =
{ −1 − π ≤ x < 0

1 0 < x < π
(15.4)

which turns out to be equivalent to the odd extension of the above function represented by the half-range sine

expansion, which we can see from the following calculation
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f(x) =
∞∑

n=−∞
n odd

2
πineinx = 4

π

∞∑
n=1

n odd

einx−e−inx

2in

= 4
π

∞∑
n=1

n odd

sin(nx)
n .

(15.5)

15.1.2 Now consider the explicit summation of the first N terms

SN (x) =
4
π

N∑
m=0

sin(2m + 1)x
(2m + 1)

=
4
π

Im

{
N∑

m=0

ei(2m+1)x

(2m + 1)

}
(15.6)

S′N (x) =
4
π

Im

{
N∑

m=0

iei(2m+1)x

}
(15.7)

=
4
π

Im

{
ieix

N∑
m=0

(
ei2x

)m

}
(15.8)

=
4
π

Im

{
ieix

(
1 + ei2x + · · ·+ (

ei2x
)N

1− ei2x

)
(1− ei2x)

}
(15.9)

=
4
π

Im

{
ieix

(
1− ei2(N+1)x

1− ei2x

)}
(15.10)

=
4
π

Im

{
i

(
1− ei2(N+1)x

eix − e−ix

)}
(15.11)

=
2
π

Im

{
ei2(N+1)x − 1

sinx

}
(15.12)

=
2
π

sin 2(N + 1)x
sin x

. (15.13)

Therefore

t = 2(N + 1)u du = dt
2(N+1)

↙
SN (x) = 2

π

x∫
0

sin 2(N+1)u
sin u du ' 2

π

2(N+1)x∫
0

sin t
t dt

(15.14)

Observe S′N (x) =
2
π

sin 2(N + 1)x
sin x

= 0 when 2(N + 1)xN = π thus the maximum value of SN (x) occurs at

xN =
π

2(N + 1)
(15.15)
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Figure 2. (2/π)sin(2(N + 1)x)/sin(x) for N = 5
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Figure 3. Integral of (2/π)sin(2(N + 1)x)/sin(x)


