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Lecture 18: Heat Conduction Problems with
time-independent inhomogeneous BC (Cont.)

(Compiled 3 March 2014)

In this lecture we continue to investigate heat conduction problems with inhomogeneous boundary conditions using the

methods outlined in the previous lecture.

Key Concepts: Inhomogeneous Boundary Conditions, Particular Solutions, Steady state Solutions;
Separation of variables, Eigenvalues and Eigenfunctions, Method of Eigenfunction Expansions.

Reference Sections: Boyce and Di Prima Sections 10.5, 10.6, 11.2, and 11.3

18 Heat Conduction Problems with inhomogeneous boundary conditions (continued)

18.1 Heat conduction with some heat loss and inhomogeneous boundary conditions

Example 18.1 Heat Equation with some heat loss:

ut = α2uxx − u 0 < x < L, t > 0 (18.1)

BC: u(0, t) = 0 u(L, t) = u1 (18.2)

IC: u(x, 0) = g(x). (18.3)

Figure 1. Bar subject to heat loss all along its length with inhomogeneous Mixed BC

Look for the steady state solution u∞(x):

α2u′′∞ − u∞ = 0

u∞(x) = A cosh
(x

α

)
+ B sinh

(x

α

)

u∞(0) = A = 0 u∞(L) = B sin h

(
L

α

)
= u1 B =

u1

sin h
(

L
α

) .

(18.4)
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Therefore

u∞(x) = u1 sinh
(x

α

)/
sinh

(
L

α

)
. (18.5)

Now let u(x, t) = u∞(x) + v(x, t).

ut = α2uxx − u ⇒
u(0, t) = 0 ⇒
u(L, t) = u1 ⇒
u(x, 0) = g(x) ⇒

vt = α2vxx − v

0 = u∞(0) + v(0, t)
u1 = u∞(L) + v(L, t) = u1 + v(L, t)
u∞(x) + v(x, 0) = g(x)

⇒





vt = α2vxx − v

v(0, t) = 0
v(L, t) = 0
v(x, 0) = g(x)− u∞(x).

(18.6)

To solve (18.6) we separate variables v(x, t) = X(x)T (t). Therefore

Ṫ (t)
T (t)

=
α2X ′′

X
− 1 ⇒ 1

α2

(
Ṫ (t)
T (t)

+ 1

)
=

X ′′(x)
X(x)

= −λ2. (18.7)

Therefore

Ṫ (t) = −(λ2α2 + 1)T (t) ⇒ T (t) = ce−(1+λ2α2)t (18.8)

X ′′ + λ2X = 0 ⇒ X(x) = A cos λx + B sin λx (18.9)

⇒ X(0) = 0 ⇒ A = 0 X(L) = B sin(λL) = 0 ⇒ λn =
(nπ

L

)

n = 1, 2, . . . . (18.10)

Therefore

v(x, t) =
∞∑

n=1

bne−(1+λ2
nα2)t sin

(πx

L

)
(18.11)

v(x, 0) = g(x)− u∞(x) =
∞∑

n=1

bn sin
(nπx

L

)
⇒ bn (18.12)

=
2
L

L∫

0

{g(x)− u∞(x)} sin
(nπx

L

)
dx. (18.13)

Therefore

u(x, t) = u1 sinh
(x

α

)/
sin h

(
L

α

)
+

∞∑
n=1

bne−(1+λ2
nα2)t sin

(nπx

L

)
. (18.14)

Remark 1 Note: The −u term in the PDE is responsible for the e−t factor in the solution.
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18.2 Heat conduction with inhomogeneous Neumann boundary conditions

Example 18.2 Inhomogeneous Neumann BC:

ut = α2uxx 0 < x < L, t > 0 (18.15)

BC: ux(0, t) = A ux(L, t) = B (18.16)

IC: u(x, 0) = g(x). (18.17)

Figure 2. Initial, transient, and steady solutions to the heat conduction problem (18.15)-(18.17) with inhomogeneous
Neumann BC

• Try for a steady solution: u′′∞(x) = 0, u∞(x) = αx + β, ux = α but then we cannot match both BC unless

A = B = α. This means that if we are pumping and removing heat from the rod at different rates then the

temperature does not reach a steady state.

• Instead of subtracting off a steady solution we subtract a particular solution which depends on x and t of the

form:

w(x, t) = ax2 + bx + ct (18.18)

wt = c = α2wxx = 2α2a ⇒ c = 2α2a. (18.19)

Then

w(x, t) = ax2 + bx + 2α2at (18.20)

solves the heat equation.

Now we determine the constants a and b so that w(x, t) satisfies the inhomogeneous BC:

wx = 2ax + b : wx(0, t) = b = A, wx(L, t) = 2aL + A = B. (18.21)

Therefore a = (B −A)/2L. Therefore

w(x, t) =
(B −A)

2L
x2 + Ax + α2

(
B −A

L

)
t. (18.22)

Now let u(x, t) = w(x, t) + v(x, t)

ut = wt + vt = α2(wxx + vxx) ⇒ vt = α2vxx

ux(0, t) = A = wx(0, t) + vx(0, t) = A + vx(0, t) ⇒ vx(0, t) = 0
ux(L, t) = B = wx(L, t) + vx(L, t) = B + vx(L, t) ⇒ vx(L, t) = 0
u(x, 0) = g(x) = w(x, 0) + v(x, 0) ⇒ v(x, 0) = g(x)− w(x, 0)

. (18.23)
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Equations (18.23) represent the homogeneous Neumann BVP seen previously. Therefore

u(x, t) =
(B −A)

2L
x2 + Ax + α2

(
B −A

L

)
t +

a0

2
(18.24)

+
∞∑

n=1

an cos
(nπx

L

)
e−α2(nπx

L )t

where

an =
2
L

L∫

0

{
g(x)−

[
(B −A)

2L
x2 + Ax

]}
cos

(nπx

L

)
dx. (18.25)


