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Lecture 20: Heat conduction with time dependent
boundary conditions using Eigenfunction Expansions

(Compiled 26 November 2019)

The ultimate goal of this lecture is to demonstrate a method to solve heat conduction problems in which there are time
dependent boundary conditions. The idea is to construct the simplest possible function, w(x,t) say, that satisfies the
inhomogeneous, time-dependent boundary conditions. The solution u(z,t) that we seek is then decomposed into a sum
of w(z,t) and another function v(z,t), which satisfies the homogeneous boundary conditions. When these two functions
are substituted into the heat equation, it is found that v(z,t) must satisfy the heat equation subject to a source that
can be time dependent. As in Lecture 19, this forced heat conduction equation is solved by the method of eigenfunction
expansions.

Key Concepts: Time-dependent Boundary conditions, distributed sources/sinks, Method of Eigen-
function Expansions.

20 Heat Conduction Problems with Time Dependent Boundary Conditions

20.1 Inhomogeneous Derivative Boundary Conditions using Eigenfunction Expansions

Example 20.1 Let us revisit the problem with inhomogeneous derivative BC (Ezample 18.2) - but we will now use

Eigenfunction Ezrpansions.

U = gy O<zxz<L, t>0 (20.1)
BC: u,(0,t) = A wu,(L,t)=B (20.2)
IC: u(z,0) = g(x) (20.3)

First look for a function of the form h(z) = az? + bx that satisfies the inhomogeneous BC:
h(z) = ax® +bx, hy(z) = 2az +b
hy(0)=b=A hy(L)=2aL+A=B=a=(B—-A)/2L

h(z) = (BQ_LA> 2% + Az

Now let
u(z,t) = h(x) + v(z,t).
Substitute into the PDE:
up = (h(j‘)—i—v(x,t))t = a?uy, = o (h(z) + v(x,t))m = 0?20+ a*vy,.

Therefore

vy = &gy + 2002 (20.4)



A =uz(0,t) = hy(0) + v,(0,t) = A+ V,(0,t) = v,(0,£) =0 (20.5)
B =y, (L,t) = hy(L) + Vu(L,t) = B+ Vo (L,t) = v (L,t) =0 (20.6)
g(z) = u(z,0) = h(z) + v(z,0) = v(z,0) = g(x) — h(x). (20.7)

We now use an Eigenfunction Expansion to solve the BVP (20.4)-(20.7). Because of the homogeneous Neumann BC

we assume an expansion of the form

mrx)

v(z,t) = 0o(t)/2 + nz::l O (t) cos (T
. > . nwx
v = do(1)/2 + ; B (t) cos (T)
> nmw . /nTx >, nm\ 2 nwx
v =300 {= () foin (FF7) e = 2o a0 { (7) }COS ("2)
n=1 n=1
We also expand the inhomogeneous term in (20.4) in terms of the Eigenfunctions:

o0
200% = ap/2 + Zan cos (%) ap = 4aa®,a, =0 n>1.
n=1

Therefore
2 2 _ 2 _ 2 N o (T2 nmr
0= v — Vg — 2a0” = D9(t)/2 — 20 —l—;{vn—l—a (L) vn}cos(L).
Therefore
o(t) = 4a0® = Bo(t) = 4ac’t + ¢o
. 2 2(nm)2
in(t) = —a? (%) B = O(t) = 0, (0)e ()L,
Therefore
_ 4ac’t+cy o= . —a?(2E)% nwT
v(z,t) = — + nz:lvn(O)e cos (T) .
B B-A\ , B R nwe
ole) = o) =ale) — { (572 ) a2 4 o} = o0,0) = § + 3 m0es ()
2 / B-A
4 _ - 2
co—L/[g(x) {( 5T ):c +Ax}] dx
0
2 i B-A
~ _Z _ - 2 A L
0, (0) L/[g(x) {( 5T )Jc + x}] cos( 7 ) dx
0
Thus

B—-A > nz
u(z,t) = <2L> 22 + Ax + 2a0’t + %O + Z {;n(o)e—az(T)zt cos (?)
n=1

which is identical to the solution obtained in Example 18.2.
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20.2 Time-dependent Boundary Conditions using Eigenfunction Expansions

Example 20.2 Time Dependent Boundary Conditions - general case:

ut=a2um, O<zx<L
IC: u(z,0) = f(x). (20.8)
IS QLA TCON
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FIGURE 1. Bar subject to a time-dependent Dirichlet BC

Let |w(z,t) = ¢o(t) +x( w(0,t) = ¢o(t); w(L,t) = ¢1(t). Now let u(z,t) = w(x,t) + v(x,t).

Then

5100 — 9ol0)
)

wy + v = @ (W +0zz)
v =0 Vg — Wy wp =g+ %((231 — o)
BC: u(0,t) = ¢o(t) = w(0,t) + v(0,t) = ¢o(t) +v(0,t) = v(0,t) =0
u(L,t) = ¢1(t) = w(L,t) + v(L,t) = ¢p1(t) + v(L,t) = v(L,t) =0
IC: u(zx,0) = f(x) = w(z,0) + v(z,0) = v(z,0) = f(z) — w(zx,0). (20.9)

Thus we need to solve the following BVP for v(x,t):

Ve = Oéz’l)mm — Wt
BC: v(0,t) =0 wv(L,t)=0 (20.10)
IC: v(z,0) = f(z) — w(x,0).

Now v(z,t) can be found using an eigenfunction expansion. The eigenfunctions and eigenvalues associated with the
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Dirichlet B C are

nw
T
let S(z,t) = —w,

and v(x,t) = Z Op () sin( A, x)

then v; = Z O () sin(Apz) and vg, = Z by (t) { =22} sin(A, )

thus 0 = vy — @?v, — S(, 1)

Therefore
- i {vn +a?A2, — S’n(t)} sin(Anz) (20.11)
n=1
Since the eigenfunctions are linearly independent it follows that { } = 0 in (20.11) or
%’L +a®\20, = S, (t) (20.12)

but (20.12) is just a first order linear ODE with an integrating factor
Thus

Integrating we obtain
or

Thus

- t
= Z /e“"2’\i(t—7)gn(7) dr + e‘“z’\itcn sin(\,z)
0

All we need to do to complete the solution of this problem is to determine the coefficients ¢,,. These we obtain from

the initial condition as follows

g(z) — {{¢1(0) — ¢0(0)} ( ) + ¢0(0 } ch sin(\, )
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But this is just a Fourier sine series in which

L
2 us
=2 [ (01~ 1000 - 001 (3) - 0] ()

0

Finally
_ _ = —a?A2(t—7) & —a?A2¢ :
u(x,t) = (p1(t) — do(t)) ( ) + ¢o(t) Z {/ Sp(T)dr + e n cn} sin A\, z.
n=1
Specific case: Let ¢o(t) = At, ¢1(t) =0, and f(x) =
In this case
w(z,t) = At + %(0 — At) = At (1 - %) . (20.13)

wp = gy O<z<L
BC: u(0,t) = At w(L,t)=0 (20.14)
IC: u(z,t) = 0.

Let u(z,t) = w(z,t) + v(z,t) where w(z,t) = At (1 - Z) Then

vy = QPug, — A (1 — %)
v(0,t) = 0 = v(L,1) (20.15)
v(z,0) =
Let
s(z,t)=—A (1 - %) = g $n(t) sin (?)
L
by = %/A (% - 1) sin (%x) dw (20.16)
24
T am
Now let
vz, t) = iv (t) sin (@)
) = 2 n
(20.17)
v zi@ (t) sin (w) Vg = — 3 0] (t)(mr>2 n(@)
t 2 n y Vs 2 n i i
Therefore
0 =1 — vy — s(x,t) = i {ﬁn(t) + 012(%>2/Dn + f;:} sin (%) . (20.18)
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Therefore
nm\ 2 2A
An t S An t) = ——
b (t) +a? () onlt) = ——
e+ () 4, (1)) = ~ 22" ()’
nw
2(nm 2t/\ 2AL2 2(nm )%y
U int) = ~ o ) B
2AL2 2( nr\2
i (1) = Bpe ()t
on(t) o?(nm)3 e
2AL?
= 9,(0) = B,,.
0 = 9,(0) o2 (nr)? +
Therefore
2AI2 _az(M)Z’f
on(t) = a?(nm)3 (e T 1)
Therefore
x 2AL% & (e_a2(%)2t—1) . (N7
(w t)_At<1_E)+7r3a2 n3 sm( L )

20.2.1 Summary of guesses for w(x,t) to remove different inhomogeneous boundary conditions

Consider the following heat equation subject to a loss represented by —yu and a source S(z,t):

up = 0Pz, —yu+ S(z,t)
Mized BC' I
u(0.6) = 60(t), us(Lit) = 62(t), w= oo+ ro
Mized BC II
wn(0.8) = do(t), u(L,t) = 61(t), w= (61— boL) + boa
Dirichlet BC
w(0.8) = 9o(t), u(Lit) = 61(t), w =60+ (61— o) T

Neumann BC
2

ux(oﬁt) = ¢O(t)7 Uaf(L7t) = Qsl(t)v w = oz + (¢1 - ¢O);T
Let u(x,t) = w(z,t) + v(z,t)

wi + vy = a2(wxr + Uz:t) - 7(w + U) + S(:t,t)

vy = gy — YU + {azwm —yw — wt} + S(z,t)

(20.19)
(20.20)

(20.21)
(20.22)

(20.23)

(20.24)

(20.25)



