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Lecture 23: The wave equation on finite domains - solution
by separation of variables

(Compiled 30 October 2015)

In this lecture we discuss the solution of the one dimensional wave equation on a finite domain using the method of

saparation of variables. The process proceeds in much the same was as with the heat equation. However, in this case the

time equation is a second order ODE which has an indicial equation with complex roots, which lead to time functions

that are sines and cosines rather than the exponential decay, which was the case with the heat equation. Depending

on the boundary conditions for the spatial ODE we obtain the same eigenvalue problems as we did for the case of the

heat equation. Each of these eigensolutions are associated with particular periodic extension, e.g. the Dirichlet BC give

rise to eigenfunctions that are sines that are associated with the odd periodic extension of the solution defined on the

domain (0, L). We will demonstrate, using separation of variables, that the solution of the wave equation on a finite

domain is none other than the D’Alembert solution in which the initial condition functions are the periodic extensions

of the initial conditions that correspond to the boundary conditions that apply to the particular problem.

Key Concepts: The one dimensional Wave Equation; Finite Domains; Separation of Variables; Even and Odd
Extensions and D’Alembert’s solution for finite domains.

Reference Section: Boyce and Di Prima Section 10.7

23 Solution of the 1D wave equation on finite domains

23.1 Solution by separation of variables

Example 23.1

utt = c2uxx 0 < x < L, t > 0 (23.1)

BC: u(0, t) = 0, u(L, t) = 0 (23.2)

IC: u(x, 0) = f(x), ut(x, 0) = g(x) (23.3)

For a guitar string c =

√
T0

ρ0
whereas for an elastic bar c =

√
E

ρ
.

Separate Variables u(x, t) = X(x)T (t)

T̈ (t)
c2T (t)

=
X ′′(x)
X(x)

= −λ2 (23.4)
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T̈ (t) + λ2c2T (t) = 0 ⇒ T (t) = c1 cos(λct) + c2 sin(λct) (23.5)

X ′′ + λ2X = 0
X(0) = 0 = X(L)

}
⇒ X(x) = A cos(λx) + B sin λx

X(0) = A = 0 X(L) = B sin λL = 0

}

λn =
nπ

L
n = 1, 2, . . .

Xn = sin
(nπx

L

) .

Therefore

u(x, t) =
∞∑

n=1

An cos
(

nπct

L

)
sin

(nπx

L

)
+ Bn sin

(
nπct

L

)
sin

(nπx

L

)
(23.6)

u(x, 0) =
∞∑

n=1

An sin
(nπx

L

)
= f(x) ⇒ An = 2

L

L∫
0

f(x) sin
(

nπx
L

)
(23.7)

ut(x, t) =
∞∑

n=1

−An

(nπc

L

)
sin

(
nπct

L

)
sin

(nπx

L

)
+ Bn

(nπc

L

)

cos
(

nπct

L

)
sin

(nπx

L

)
(23.8)

ut(x, 0) =
∞∑

n=1

Bn

(nπc

L

)
sin

(nπx

L

)
= g(x) ⇒ Bn

(
nπc
L

)
= 2

L

L∫
0

g(x) sin
(

nπx
L

)
dx .

(23.9)

Therefore

u(x, t) =
∞∑

n=1

{
An cos

(
nπct

L

)
+ Bn sin

(
nπct

L

)}
sin

(nπx

L

)
. (23.10)

Observations

(1) Period and Frequency of vibration:

cos
(nπc

L
(t + T )

)
= cos

(
nπct

L

)
provided

nπcT

L
= 2π (23.11)

thus Tn =
(

2L

c

)
1
n

is the period (seconds per cycle) of mode n. fn =
1
Tn

= n
( c

2L

)
are the natural frequencies

of vibration.

(2) Modes of Vibration: Standing waves of wavelength λn =
2L

n
.

In the following four figures we plot the fist four modes of vibration. The first, known as the fundamental mode

of vibration, is associated with the lowest frequency f1 =
1
T1

=
( c

2L

)
. All higher frequencies, also known as

overtones, are integer multiples of this fundamental frequency. The nodes in these modal plots are indicated

by solid circles, which represent the points at which the displacement associated with a given mode is zero.
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I: The fundamental mode of vibration with 2 nodes

X1(x) = sin
(πx

L

)

0 0.5 1
0

0.5

1

x/L

 s
in

(1
πx

/L
) 

 Mode number 1

II: The second mode of vibration or first overtone with 3 nodes

X2(x) = sin
(

2πx

L

)

0 0.5 1
−1

−0.5

0

0.5

1

x/L

 s
in

(2
πx

/L
) 

 Mode number 2

III: The third mode of vibration with 4 nodes

X3(x) = sin
(

3πx

L

)
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IV: The fourth mode of vibration with 5 nodes

X4(x) = sin
(

4πx

L

)
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23.2 Interpretation of the Fourier Series solution in terms of D’Alembert’s Solution

Recall the double angle trigonometric identities

sin(A±B) = sin A cosB ± cosA sin B;

cos(A±B) = cosA cos∓ sin A sin B, (23.12)

which we are going to use to interpret the solution (23.10) in terms of D’Alembert’s Solution for an infinite domain.

Using (23.12) we obtain

cos
(

nπct

L

)
sin

(nπx

L

)
=

1
2

{
sin

nπ

L
(x + ct) + sin

(nπ

L

)
(x− ct)

}
(23.13)

sin
(nπx

L

)
sin

(
nπct

L

)
=

1
2

{
cos

nπ

L
(x− ct)− cos

nπ

L
(x + ct)

}
(23.14)

Now

∞∑
n=1

An cos
(

nπct

L

)
sin

(nπx

L

)
=

1
2

∞∑
n=1

An

[
sin

(nπ

L

)
(x + ct)

+ sin
(nπ

L

)
(x− ct)

]
(23.15)

=
1
2

[fo(x + ct) + fo(x− ct)] (23.16)

where f0 is the odd periodic extension of f . Similarly,

∞∑
n=1

Bn sin
(

nπct

L

)
sin

(nπx

L

)
=

1
2

∞∑
n=1

Bn

[
cos

nπ

L
(x− ct)− cos

nπ

L
(x + ct)

]
=

1
2

[G(x− ct)−G(x + ct)] .(23.17)

where

G(x) :=
1
2

∞∑
n=1

Bn cos(
nπ

L
x) and Bn =

bg
n

λncL
=

∫ L

0

g(x) sin λnxdx (23.18)

G(x) : =
∞∑

n=1

Bn cos(
nπ

L
x) and Bn =

bg
n

λnc
=

2
λncL

∫ L

0

g(x) sin λnxdx

=
∞∑

n=1

bg
n

λnc
cos(

nπ

L
x) and bg

n =
2
L

∫ L

0

g(x) sin λnxdx

therefore

G′(x) = −1
c

∞∑
n=1

bg
n sin(

nπ

L
x) = −1

c
go(x)

Thus

G(x) = −1
c

∫ x

0

go(s)ds + D
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∞∑
n=1

Bn sin
(

nπct

L

)
sin

(nπx

L

)
=

1
2

[G(x− ct)−G(x + ct)] (23.19)

=
1
2c






−

x−ct∫

0

go(s) ds + D


−


−

x+ct∫

0

go(s) ds + D






 (23.20)

=
1
2c

x+ct∫

x−ct

go(s) ds (23.21)

Therefore, combining (23.16) and (23.21) we obtain the following expression for the solution of the wave equation

for a finite domain in the form of D’ALembert’s solution

u(x, t) =
1
2

[fo(x + ct) + fo(x− ct)] +
1
2c

x+ct∫

x−ct

go(s) ds (23.22)

where fo and go are the odd periodic extensions of f and g on [0, L] i.e.

fo(x) =
{

f(x) 0 < x < L and f0(x + 2L) = f0(x0)
−f(−x) −L < x < 0

(23.23)

go(x) =
{

g(x) 0 < x < L and go(x + 2L) = go(x)
−g(−x) −L < x < 0

. (23.24)

Observations

(1) Equation (23.22) above shows that the Wave Equation Solution for a string tied down at its ends is given by

D’Alembert’s Solution (see (23.25) in Lecture 23) in which the initial displacement function is given by the

odd periodic extension f0 of the initial displacement of the string, and the initial velocity function is given by

the odd periodic extension of g0.

(2) Information is carried along the characteristic curves x + ct = const x− ct = const.

(3) Observe that the time dependence of the solution involves sin
(

nπct

L

)
and cos

(
nπct

L

)
which do not decay

with time. Thus the solutions to the Wave Equation persist with time, whereas the solutions to the Heat

Equation typically decay exponentially with time.


