Lecture 25: More Rectangular Domains: Neumann Problems, mixed BC, and semi-infinite strip problems

(Compiled 4 August 2017)

In this lecture we Proceed with the solution of Laplace's equations on rectangular domains with Neumann, mixed boundary conditions, and on regions which comprise a semi-infinite strip.

Key Concepts: Laplace's equation; Rectangular domains; The Neumann Problem; Mixed BC and semi-infinite strip problems.

Reference Section: Boyce and Di Prima Section 10.8

25 More Rectangular Domains with mixed BC and semi-infinite strip problems

25.1 The Neumann Problem on a rectangle - only flux boundary conditions

Example 25.1 The Neumann Problem:

 $\label{eq:figure 1.} \ \ \text{Inhomogeneous Neumann Boundary conditions on a rectangular domain as prescribed in } \\ (\ref{eq:figure 1.})$

$$u_{xx} + u_{yy} = 0, 0 < x < a 0 < y < b (25.1)$$

$$u_x(0,y) = 0$$
 $u_x(a,y) = f(y)$ (25.2)

$$u_y(x,0) = 0 = u_y(x,b). (25.3)$$

Let u(x, y) = X(x)Y(y).

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = \lambda^2$$
 (25.4)

$$\left.\begin{array}{lll}
Y''(y) + \lambda^2 Y(y) = 0 \\
Y'(0) = 0 = Y'(b)
\end{array}\right\} \qquad \left.\begin{array}{lll}
Y & = A\cos\lambda y + B\sin\lambda y \\
Y' & = -A\lambda\sin\lambda y + B\lambda\cos\lambda y
\end{array} (25.5)$$

$$Y'(0) = \lambda B = 0 \quad \lambda = 0 \text{ or } B = 0.$$
 (25.6)

$$Y'(b) = -A\lambda \sin \lambda b = 0$$
 $\lambda_n = (n\pi/b) \quad n = 0, 1, ...$
 $Y_n = \cos\left(\frac{n\pi y}{b}\right), \quad Y_0 = 1$ (25.7)

$$X_n'' - \lambda^2 X_n = 0 \tag{25.8}$$

$$X_n'(0) = 0 (25.9)$$

n = 0: $X_0'' = 0$, $X_0 = c_0 x + D_0 \Rightarrow X_0' = c_0 \Rightarrow X_0'(0) = c_0 = 0$.

Choose $D_0 = 1$: $X_0 = 1$

$$n \ge 1 \quad X_n = c_n \cosh(\lambda_n x) + D_n \sinh(\lambda_n x)$$

$$X'_n = c_n \lambda \sinh(\lambda_n x) + D_n \lambda \cosh(\lambda_n x)$$

$$X'_n(0) = \lambda_n D_n = 0$$
(25.10)

Choose $c_n = 1$: $X_n = \cosh(\lambda_n x)$.

Thus

$$u_n(x,y) = X_n Y_n = \cosh(\lambda_n x) \cos(\lambda_n y)$$

$$u_0(x,y) = X_0 Y_0 = 1$$
 satisfy homog. BC. (25.11)

Therefore

$$u(x,y) = A_0 + \sum_{n=1}^{\infty} A_n \cosh\left(\frac{n\pi x}{b}\right) \cos\left(\frac{n\pi y}{b}\right). \tag{25.12}$$

Now $f(y) = u_x(a, y)$.

$$u_x(x,y) = \sum_{n=1}^{\infty} A_n\left(\frac{n\pi}{b}\right) \sinh\left(\frac{n\pi x}{b}\right) \cos\left(\frac{n\pi y}{b}\right)$$
 (25.13)

$$u_x(a,y) = \sum_{n=1}^{\infty} \left\{ A_n \left(\frac{n\pi}{b} \right) \sinh \left(\frac{n\pi a}{b} \right) \right\} \cos \left(\frac{n\pi y}{b} \right) = f(y) \dots$$
 (25.14)

This is like a Fourier Cosine Series for f(y) but without the constant term a_0 .

Recall

$$f(y) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi y}{b}\right), \ a_n = \frac{2}{b} \int_0^b f(y) \cos\left(\frac{n\pi y}{b}\right) dy.$$
 (25.15)

Thus the expansion (25.14) is consistent only if $a_0 = 0$. For this to be true we require that

$$\int_{0}^{b} f(y) \, dy = 0 \tag{25.16}$$

if $\int_{0}^{b} f(y) dy \neq 0$ then there is no solution to the boundary value problem 1.

Note

- (1) If $\int_{0}^{b} f(y) dy \neq 0$ there is a **net flux** into the domain through the right hand boundary and, since the other boundaries are insulated, there can be no steady solution the temperature will continually change with time.
- (2) If $\int_{0}^{b} f(y) dy = 0$ there is no net flux through the boundary and a steady state can exist. i.e. It is possible that

$$u_{xx} + u_{yy} = u_t = 0$$
. If $\int_0^b f(y) dy = 0$ then

$$A_n\left(\frac{n\pi}{b}\right)\sinh\left(\frac{n\pi a}{b}\right) = \frac{2}{b}\int_0^b f(y)\cos\left(\frac{n\pi y}{b}\right) dy. \tag{25.17}$$

Therefore

$$A_n = \frac{2}{n\pi \sinh\left(\frac{n\pi a}{b}\right)} \int_0^b f(y) \cos\left(\frac{n\pi y}{b}\right) dy \quad n \ge 1$$
 (25.18)

and

$$u_{\infty}(x,y) = A_0 + \sum_{n=1}^{\infty} A_n \cosh\left(\frac{n\pi x}{a}\right) \cos\left(\frac{n\pi y}{b}\right)$$
 (25.19)

where A_0 is undetermined. u(x,y) is said to be known up to an arbitrary constant.

(3) If $u_{\infty}(x,y)$ is the steady state of a 2D Heat Equation $u_t = u_{xx} + u_{yy}$ with $u(x,y,0) = u_0(x,y)$ then

$$\int_{D} u_t \, dx \, dy = \int_{D} \nabla \cdot \nabla u \, dx \, dy = \int_{\partial D} \frac{\partial u}{\partial n} \, ds = 0.$$
 (25.20)

Therefore

$$\frac{\partial}{\partial t} \left(\int_{D} u \, dx \, dy \right) = 0 \Rightarrow \int_{D} u \, dx \, dy = \text{ const for all time } = \int_{D} u_0(x, y) \, dx \, dy. \tag{25.21}$$

Now

$$\int_{D} u_{\infty}(x,y)dxdy = A_0 \times \operatorname{area}(D) = \int_{D} u_0(x,y) dx$$
(25.22)

Which is the condition that determines A_0 .

25.2 Rectangular domains with mixed BC

Example 25.2 Insulating BC along two sides and specified temperatures on the others:

$$\Delta u = u_{xx} + u_{yy} = 0 (25.23)$$

$$0 = u_x(0, y) = u_x(a, y) = u(x, 0)$$
(25.24)

$$u(x,b) = f(x).$$
 (25.25)

FIGURE 2. Mixed Boundary conditions on a rectangular domain as prescribed in (25.24)

Let u(x,y) = X(x)Y(y).

$$\frac{X''}{X} = -\frac{Y''}{Y} = \pm \lambda^2. \tag{25.26}$$

Since we have homogeneous BC on X'(0) = 0 = X'(a) choose $-\lambda^2$.

(1)
$$X'' + \lambda^2 X = 0$$
 $X'(0) = 0 = X'(a)$.

$$X(x) = A\cos\lambda x + B\sin\lambda x \quad X'(x) = -A\lambda\sin(\lambda x) + B\lambda\cos(\lambda x)$$

$$X'(0) = B\lambda = 0 \Rightarrow B = 0 \quad X'(a) = -A\lambda\sin(\lambda a) = 0$$
(25.27)

Therefore

$$\lambda_n = (n\pi/a) \quad n = 0, 1, 2, \dots \quad X_n(x) = \cos\left(\frac{n\pi y}{a}\right)$$
 (25.28)

are eigenfunctions and eigenvalues.

(2)
$$\lambda_n \neq 0$$
: $Y'' - \lambda^2 Y = 0$ and $Y(0) = 0 \Rightarrow Y_n(y) = A \sinh\left(\frac{n\pi y}{a}\right)$ $n \neq 0$. Thus

$$u_n(x,y) = \cos\left(\frac{n\pi x}{a}\right) \sinh\left(\frac{n\pi y}{a}\right)$$
 (25.29)

satisfy homogeneous BC.

 $\lambda_0 = 0$: In this case the ODE for Y_0 is:

$$Y_0'' = 0 \Rightarrow Y(y) = c_1 y + c_2 \tag{25.30}$$

$$Y_0(0) = c_2 = 0 \Rightarrow Y_0(y) = y \tag{25.31}$$

and $u_0(x,y) = y \cdot 1$ satisfies the homogeneous BC.

Therefore

$$u(x,y) = c_0 y + \sum_{n=1}^{\infty} c_n \sinh\left(\frac{n\pi y}{a}\right) \cos\left(\frac{n\pi x}{a}\right)$$
(25.32)

$$u(x,b) = \frac{(2c_0b)}{2} + \sum_{n=1}^{\infty} c_n \sinh\left(\frac{n\pi b}{a}\right) \cos\left(\frac{n\pi x}{a}\right) = f(x)$$
(25.33)

$$(2c_0b) = \frac{2}{a} \int_0^a f(x) dx; \quad c_n \sinh\left(\frac{n\pi b}{a}\right) = \frac{2}{a} \int_0^a f(x) \cos\left(\frac{n\pi x}{a}\right) dx \tag{25.34}$$

$$c_0 = \frac{1}{ab} \int_0^a f(x) dx; \quad c_n = \frac{2}{a \sinh\left(\frac{n\pi b}{a}\right)} \int_0^a f(x) \cos\left(\frac{n\pi x}{a}\right) dx \tag{25.35}$$

$$u(x,y) = c_0 y + \sum_{n=1}^{\infty} c_n \sinh\left(\frac{n\pi y}{a}\right) \cos\left(\frac{n\pi x}{a}\right). \tag{25.36}$$

25.3 Semi-infinite strip problems

Example 25.3 A Semi-infinite strip with specified temperatures:

FIGURE 3. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.39)

$$u_{xx} + u_{yy} = 0$$
 $0 < x < a, \quad 0 < y < \infty$ (25.37)

$$u(0,y) = 0 = u(a,y) (25.38)$$

$$u(0,y) = 0 = u(a,y)$$
 (25.38)
 $u(x,0) = f(x)$ $u(x,y) \to 0 \text{ as } y \to \infty$ (25.39)

Let u(x,t) = X(x)T(t) and plug into (1a?):

$$\frac{X''(x)}{X(x)} = -\frac{Y''(y)}{Y(y)} = -\lambda^2 \text{ since we have homogeneous } BC \text{ on } X.$$
 (25.40)

(1)

$$\left.\begin{array}{l}
X'' + \lambda^2 X = 0 \\
X(0) = 0 = X(a)
\end{array}\right\} \qquad \left.\begin{array}{l}
\lambda_n = n\pi/a \quad n = 1, 2, \dots \\
X_n = \sin\left(\frac{n\pi x}{a}\right)
\end{array}\right. \tag{25.41}$$

(2) $Y'' - \lambda^2 Y = 0$ $Y(y) = Ae^{-\lambda y} + Be^{\lambda y}$. Since $u(x,y) \to 0$ as $y \to \infty$ we require B = 0. Therefore

$$u_n(x,y) = e^{-\lambda_n y} \sin\left(\frac{n\pi x}{a}\right)$$
 (25.42)

satisfy the homogeneous BC and the BC at ∞ . Thus

$$u(x,y) = \sum_{n=1}^{\infty} c_n e^{-\left(\frac{n\pi}{a}\right)y} \sin\left(\frac{n\pi x}{a}\right).$$
 (25.43)

$$f(x) = u(x,0) = \sum_{n=1}^{\infty} c_n \sin\left(\frac{n\pi x}{a}\right) \Rightarrow c_n = \frac{2}{a} \int_0^a f(x) \sin\left(\frac{n\pi x}{a}\right) dx.$$
 (25.44)

Example 25.4 Semi-infinite strip with inhomogeneous BC:

FIGURE 4. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.47)

$$u_{xx} + u_{yy} = 0 0 < x < a, 0 < y < \infty (25.45)$$

$$u(0,y) = A, \quad B = u(a,y)$$
 (25.46)

$$u(0,y) = A, \quad B = u(a,y)$$
 (25.46)
 $u(x,0) = f(x) \quad u(x,y) \to 0 \text{ as } y \to \infty$ (25.47)

Look for a function v(x) for which v''=0 and which satisfies the inhomogeneous BC. $v = \alpha x + \beta$ $v(0) = A = \beta$ $v(a) = \alpha a + A = B$ Therefore $v(x) = \left(\frac{B-A}{a}\right)x + A$.

$$Laplace$$
's $Equation$

Now let u(x,y) = v(x) + w(x,y).

$$0 = u_{xx} + u_{yy} = v_{xx} + w_{xx} + v_{yy} + w_{yy} \Rightarrow \Delta w = 0$$
 (25.48)

$$A = u(0, y) = v(0) + w(0, y) \Rightarrow w(0, y) = 0$$
(25.49)

$$B = u(a, y) = v(a) + w(a, y) \Rightarrow w(a, y) = 0$$
(25.50)

$$f(x) = u(x,0) = v(x) + w(x,0) \Rightarrow w(x,0) = f(x) - v(x).$$
(25.51)

Thus w satisfies the same BVP as does u in Eg. 3 above.

Therefore

$$u(x,y) = (B-A)(x/a) + A + \sum_{n=1}^{\infty} d_n e^{-\left(\frac{n\pi}{a}\right)y} \sin\left(\frac{n\pi x}{a}\right)$$
 (25.52)

where

$$d_n = \frac{2}{a} \int_0^a \left\{ f(x) - v(x) \right\} \sin\left(\frac{n\pi x}{a}\right) dx. \tag{25.53}$$

7