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Lecture 25: More Rectangular Domains: Neumann
Problems, mixed BC, and semi-infinite strip problems

(Compiled 4 August 2017)

In this lecture we Proceed with the solution of Laplace’s equations on rectangular domains with Neumann, mixed

boundary conditions, and on regions which comprise a semi-infinite strip.

Key Concepts: Laplace’s equation; Rectangular domains; The Neumann Problem; Mixed BC and semi-infinite

strip problems.

Reference Section: Boyce and Di Prima Section 10.8

25 More Rectangular Domains with mixed BC and semi-infinite strip problems

25.1 The Neumann Problem on a rectangle - only flux boundary conditions

Example 25.1 The Neumann Problem:
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FIGURE 1. Inhomogeneous Neumann Boundary conditions on a rectangular domain as prescribed in (?7)

Ugy + Uyy = 0, 0<z<a 0<y<bd (25.1)
Uy(2,0) = 0 = uy(z,b). (25.3)

Let u(z,y) = X (2)Y (y).
X'@) Y’ 250

X(@) Y



Y"(y) +A?Y (y) = 0 Y Acos Ay + Bsin \y
Y'(0)=0=Y'(b) Y’ = —AXsin Ay + BAcos Ay

Y'(0)=AB=0 A=0or B=0.

, ne A = (nw/b) n=0,1,...

Y'(b) = —AAsinAb =0 v — COS(@)’ Yo=1
b

X! —XX,=0

X' (0)=0

TL:OZX(/)/:O,X():CO"E—‘FDO:>X6:C0:>X6(0):C():0.
Choose Dy =1: Xg =1

n>1 X, = c¢,cosh(A,z)+ D, sinh(A\,x)
X! = c¢pAsinh(\,z) + Dy cosh(A,x)
X'(0) = AnDp=0
Choose ¢, = 1: X,, = cosh(A\,z).

Thus

up(z,y) = XY, = cosh(\,z)cos(\.y) } .

satisfy homog. BC.

ug(r,y) = XoYo = 1 Y &

Therefore

u(z,y) = Ao + i A,, cosh (?) cOS (Lzy) .

n=1

Now f(y) = uz(a,y).
o () s (57 o (75
(2 s (252) s (722) = .

This is like a Fourier Cosine Series for f(y) but without the constant term ao.

(@)=
n=1
us(ay) =)
n=1
Recall
e’} 9 b
fly) = % + Zlan cos (n%y) s an =7 /f(y) cos (n—zy) dy.
" 0

Thus the expansion (25.14) is consistent only if ag = 0. For this to be true we require that

b
/f(y)dy ~0
0

b
if / f(y) dy # 0 then there is no solution to the boundary value problem 1.
0
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Laplace’s Equation 3
Note

1) If / f(y)dy # 0 there is a net flux into the domain through the right hand boundary and, since the other

0
boundaries are insulated, there can be no steady solution — the temperature will continually change with time.
b

2) If / f(y) dy = 0 there is no net flux through the boundary and a steady state can exist. i.e. It is possible that

b
um+uyy:ut:O.If/f )dy = 0 then
0

(i (722 = [ tapeos (722 . e
b
Therefore
Ay = e (5] /b fly cos ) dy n>1 (25.18)
and O
oo (2, y) = Ag + ni A, cosh (?) cos (%) (25.19)

where Ay is undetermined. u(z,y) is said to be known up to an arbitrary constant.

(3) If uss(x,y) is the steady state of a 2D Heat Equation us = uzy + uyy with u(z,y,0) = ug(z, y) then

/utdxdy*/v Vuda:dy*/—dsf() (25.20)

D D
Therefore
/udm dy | =0= /udx dy = const for all time = /uo(x,y) dx dy. (25.21)
D D D
Now
/uw(x,y)dxdy = Ay x area(D) = /uo(x,y) dz (25.22)
D D

Which is the condition that determines Ayg.

25.2 Rectangular domains with mixed BC
Example 25.2 Insulating BC along two sides and specified temperatures on the others:
AU = Ugy + Uyy =0 (25.23)
0 = 1,0, ) = a(a, ) = u(x,0) (25.24)
u(x,b) = f(x). (25.25)
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FIGURE 2. Mixed Boundary conditions on a rectangular domain as prescribed in (25.24)

Let u(z,y) = X(2)Y (y).

X// Y//
= =42 25.2
~ v (25.26)

Since we have homogeneous BC on X'(0) = 0 = X'(a) choose —\2.

(1) X"+ XX =0 X'(0)=0=X"(a).

X(x) = Acosizx+ Bsin\x X'(x) = —Alsin(Az)+ BAcos(\z) (25.27)
X'(0) = BAX=0=B=0 X'(a) = —Alsin(ha)=0 '
Therefore
A= (nm/a) n=0,1,2,... X,(x)=cos (%) (25.28)
are eigenfunctions and eigenvalues.
(2) A\ Z0:Y" = X2Y =0 and Y(0) = 0 = Y,,(y) = Asinh (nf:y) n # 0. Thus
B nrry nmy
U (z,y) = cos (—a ) sinh ( . ) (25.29)
satisfy homogeneous BC.
Ao = 0: In this case the ODE for Yy is:
Y/ =0=Y(y) =cry+co (25.30)
YO(O) =cp=0= Y()(y) =y (25.31)

and uo(z,y) =y - 1 satisfies the homogeneous BC.



Laplace’s Equation

Therefore

- . nmy nrx
)= s (755 eon (557)
u(z,y) coy—i—;c sin — ) cos

a

b) | b
(2020 ) ; ¢y sinh (712) cos (@) = f(x)

u(x,b) =

a

(2¢0b) = %/f(z) dr; cpsinh (222) = 2 [ f(z)cos (222) da

1 a
co %/f(ac) dx; cn = W{ﬂx) cos (#42) dx
0
u(z,y) = coy + Z ¢p sinh (%) Ccos (7%33) ’

n=1

25.3 Semi-infinite strip problems

Example 25.3 A Semi-infinite strip with specified temperatures:
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FIGURE 3. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.39)

Uy + Uyy = 0 0<or<a, 0O0<y<oo
w(0,y) = 0 = u(a,y)
u(z,0) = f(z) u(z,y) = 0 as y — oo
Let u(z,t) = X(2)T(t) and plug into (1a?):

X'w) _ _Y'(y)

X)) Y0 = —\? since we have homogeneous BC on X.

(25.32)
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X"+ 22X =0 } A = nw/a n=12...

X(0) = 0= X(a) X, = Sm(?) (25.41)

(2) YY" =AY =0 Y(y) = Ae ™ + BeM. Since u(x,y) — 0 as y — oo we require B = 0. Therefore

Ay i (T
un(x,y) =e sin (—a ) (25.42)
satisfy the homogeneous BC and the BC at co. Thus
u(ay) = 3 epe” (F)vsin (@) . (25.43)
a
n=1
= nwr 2 i nwT
= 0) = nsin (— ) = ¢, = — in(—- | dx. 25.44
f(@) = u(x,0) nz::lc sm( . ) c ab/f(x)sm( . ) x ( )
Example 25.4 Semi-infinite strip with inhomogeneous BC:
44
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FIGURE 4. Diriclet Boundary conditions on a semi-infinite strip as prescribed in (25.47)
Ugg + Uyy =0 0<z<a, 0<y<oo (25.45)
u(0,y) = A, B=u(a,y) (25.46)
u(z,0) = f(z) u(z,y) = 0 as y — oo (25.47)

Look for a function v(x) for which v =0 and which satisfies the inhomogeneous BC.
v=azx+pf v(0)=A=p v =aas+A=DB
Therefore v(x) = (B_A) x4+ A.

a



Laplace’s Equation
Now let u(x,y) = v(z) + w(z,y).
0 = Ugg + Uyy = Vpf FWae + Uy +wyy = Aw =0
A =u(0,y) = v(0) + w(0,y) = w(0,y) =0
B =u(a,y) = v(a) + w(a,y) = w(a,y) =0

f(z) = u(z,0) = v(z) + w(z,0) = w(z,0) = f(x) — v(x).

Thus w satisfies the same BVP as does u in Eg. 3 above.

Therefore
=(B-A A d e (v gip (2T
u(z,y) = ( )(x/a) + +nz::1 e sm( a)
where

a
nmx

dy = %/{f(x) ~ o)} sin (22 dr.

0

(25.52)

(25.53)



