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Lecture 26: Circular domains

(Compiled 15 May 2018)

In this lecture we consider the solution of Laplace’s equations on domains that have a boundary that has at least one
boundary segment that comprises a circular arc.

Key Concepts: Laplace’s equation; Circular domains; Pizza Slice-shaped regions, Dirichlet and Mixed BC.

Reference Section: Boyce and Di Prima Section 10.8

26 General Analysis of Laplace’s Equation on Circular Domains:

26.1 Laplacian in Polar Coordinates

For domains whose boundary comprises part of a circle, it is convenient to transform to polar coordinates. For this

purpose the Laplacian is transformed from cartesian coordinates (z,y) to polar coordinates (r,8) as follows:
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26.2 Introductory remarks about circular domains

Recall the Laplacian in polar coordinates:

o L L = (@t )
0= Au = Ugy + Uyy = Upr + ;ur + r—Qu(;g 0 = tan—1 (/) (26.1)
Let
u(r,0) = R(r)©(0) (26.2)
TQR// + TR/ @/I
= % 26.3
Ro) 6 (26:9)
which leads to r2R"” 4+ rR' — A>R = 0 and ©” 4+ \?20 = 0.
The R Equation: m?>R" +rR — A\2R = 0:
A=0:7"?R'"+rR' =0, R=1r"=vy(y—-1)+7y=9>=0= R(r) =C + Dlnr
A£0: 2R+ 1R — N =0, R=1r"=y(y—1)+7-A2=~2 - A2 =0= R(r) = Cr* + Dr—>.
The © Equation ©" + \20 = 0:
O+ X0 =0, ©=Acos\d + Bsin\j, O = —AXsin A0 + BAcos \d
Different Boundary Conditions and corresponding eigenfunctions:
I ©(0)=0=0(a) \p =nn/a, n=1,2,..., 0,(0) =sinA,0
(I1) ©'(0)=0=0'(a), \p=nm/an=0,1,2,..., ©,(0) € {1,cos \,0}
(III) ©(0) =0=0"(a), \p=02n—1)1/2an=1,2,..., O,(0) =sinA,0
IV) ©0)=0=0(a), \n=02n—1)7/2a;, n=1,2,..., ©,(0) = cosA,0
O(-m) = O(m) B B ] .
(V) o) = O(n) An=n, n=0,1,2,..., 0,(0) € {1,cos \,0,sin \,0}.
The most general solution is thus of the form
u(r,0) = {Ag+aplur} -1+ Z {A,r* + ar™ M} cos A0 (26.4)
n=1
+ Z {Bnr)‘” + 5,17“*)‘"} sin A\, 0. (26.5)
n=1

Observations:

e For problems that include the origin, the condition |u| < co as r — 0 dictates that ap = 0, a, =0 and 3, = 0.
e For problems that involve infinite domains the condition |u| < co as r — oo dictates that A, =0 and B,, = 0.

e The values of \,, and the corresponding eigenfunctions depend on the boundary conditions (I)-(V) that apply.

26.3 Wedge Problems

Example 26.1 Wedge with homogeneous BC on 0 =0, 0 = a < 27

1 1
urT—F;ur—f—ﬁugg:O 0<r<a, 0<0<a (266)
u(r,0) =0 wu(r,a) =0, u(r,0) bounded as r — 0, u(a,d) = f(6) (26.7)
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FIGURE 1. Homogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.7)

Let u(r,0) = R(r) - ©(0).

,(R'+1R) _ 9" _ 2o r?R" +rR' — >R = 0 Euler Eq.
R 0(h) 0"+XN0 = 0

r

u(r,0) = R(r)©(0) =0 = 0(0) = 0; u(r,a) = R(r)©(a) =0 = 0(a) =0

Eigenvalue { 0" + 2?0 =0 © = Acos A + Bsin(\0) . (26.8)
Problem 0(0) =0=0(a) 0(0)=A=0 O(a)= Bsin(Aa) =0
Therefore
An=(nm/a) n=12... ©,=sin (n;r@) . (26.9)
To solve the Euler Eq. let R(r) =7, R =7~ R"” = (v — 1)r7=2. Therefore
Yy =D +7=A =72 =N =0= ==\ (26.10)
Therefore
R(r) = e17* + cor™. (26.11)
Now since u(r,0) < oo as 7 — 0 we require ¢y = 0. Therefore
= axy . [ nml
u(r, ) = nz::lcnr(T) sin <a> (26.12)
= nx nmd
u(a,0) = f(0) = ; {cna(T)}sin (a) . (26.13)
This is just a Fourier Sine Series for f(6): Therefore
cnals) = z/f(e) sin <"”9) do (26.14)
a o

Cn = %a_(%) /f(e)sin (T) do. (26.15)



Therefore

[e%

u(z,0) = Ti cnr(5) sin (TW) . (26.16)

Example 26.2 A wedge with Inhomogeneous BC

FIGURE 2. Inhomogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.18)

1 1
uMJr;uquT—zugg:O 0<r<a, 0<bl<a (26.17)
u(r,0) = ug, u(r,a)=wuy, wu(r,0)<ooasr—0, wu(a,d)=f(0) (26.18)
Let us look for the simplest function of 6 only that satisfies the inhomogeneous BC of the from: w(0) = (u; —ug)—+uo.
«
Note that wgg = 0 and that w(0) = up and w(a) = u;. Then let u(r,0) = w(d) + v(r,H).

1 1 1 1
Upr + LU + 72 4e0 = Urr T o T 72000 = 0 Essentially the problem

1
v(r,0)=0 v(r,a)=0 solved in Example 26.1 (26.19)
v(a,0) = f(0) —w(6)
The solution is
u(r,0) = (u —u)g—&—u —l—ic (%) sin nmf (26.20)
) - 1 0 o 0 P n o .
where
2 nm 7 0
n = —q= (%) / [£(6) — w(6)] sin (m> d. (26.21)
@ o
0
Example 26.3 A wedge with insulating BC on 0 =0 and 0 = a < 27.
1
Urp + r U0 =0 (26.22)

ug(r,0) =0, wg(r,a) =0, u(a,) = f(6)

Let

u(r,0) = R(r)0(6) = 12 <R” + iR’) JR(r) = —0" /0 = )2 (26.23)



Laplace’s Equation 5

‘ [29 (5,0)=0 - vSacsizen

FIGURE 3. Mixed Boundary conditions on a wedge shaped domain (26.22)

©® equation)

0"+ 20 =0 O(6) = Acos A\ + Bsin(\9) (26.24)
0'(0)=0=0'(«a) ©'(0)=BA=0X=0or B=0; '
O'(0) = —AXsin(A0) + B cos(A\0) (26.25)
O'(a) = —AXsin(Aa) =0\, = 2% n=0,1,... '
R equation) 2R +rR! — \2R,, = 0.
n=0: 7R} +R)=(rR)) =0=rR) =dy = Ro(r) =co+dolnr.
n>1: 7R+ 7R, — \R, =0= R, = ¢, + Dpr—>n,
Since u(r, ) < oo (i.e. must be bounded) as r — 0 we require dy = 0 = D,,. Therefore
Co > nr nmd
u(r,6) = 5 + ; cnr(8) cos (a) (26.26)
¢ > nmwd
0 nm
f(0) =u(a,0) = 5 + ; cna( ) cos (a) (26.27)
=2 /f(o)de o = 2a= (%) /f(o) cos <m9> df (26.28)
o « !
0 0
u(r,0) = %0 + nz::l cnr(%) cos (n;r&) . (26.29)
Example 26.4 Mized BC - a ‘crack like’ problem.
1 1
AU = Upr + ~Up + —5Ugg = (26.30)
r r
subject to
u(r,0) =0 %(r, ) =0 (26.31)
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FIGURE 4. Mixed crack-like boundary conditions on a circular domain as prescribed in (26.31)

Let u(r,0) = R(r)©(0).
2 (R +3R) _ 0"(0)
R GO

r =\? (26.32)

©® equation)

" + )30 =0 O =Acos\d + Bsin\0 ©' = —A\sin A\ + B cos \0

26.33
©0)=A=0 O'(r)=DBlcos(Ar) =0= 7\ = T 3w ( )

©(0)=0 ©'(r)=0 2727
1
or A\, = (2n+ 1)5 n=0,1,... A # 0 as this would be trivial.
R equation) r?R” + 7R’ — AR =0 R(r) =17 = 4% — A2 = 0 v = £\. Therefore
un(r,0) = (cnr’\” + dnr_k“) sin A, 6. (26.34)
Since u should be bounded as r — 0 we conclude that d,, = 0. The general solution is thus
- 2n + 1
u(r,0) = cur® D/ 2 sin (( nt )e) (26.35)
n=0 2
£(0) = u(a, 9) = i cna@r /2 gin <(2” i 1) 9) (26.36)
) n 2 . .
n=0
Check orthogonality
[ (f2m+1Y,\ . ((2n+1 [0 m#n
/sm(( 5 >9>sm(< 5 )9)d9_{7r/2 men (26.37)
0
Therefore
92— (n+3) 7 1
cp=2 2 / £(0)sin ((n n 2) 9) 4o (26.38)
T
0

u(r,0) = i cnr(72) sin (<n + ;) e> (26.39)

n=0



