Lecture 26: Circular domains

(Compiled 15 May 2018)

In this lecture we consider the solution of Laplace's equations on domains that have a boundary that has at least one boundary segment that comprises a circular arc.

Key Concepts: Laplace's equation; Circular domains; Pizza Slice-shaped regions, Dirichlet and Mixed BC.

Reference Section: Boyce and Di Prima Section 10.8

26 General Analysis of Laplace's Equation on Circular Domains:

26.1 Laplacian in Polar Coordinates

For domains whose boundary comprises part of a circle, it is convenient to transform to polar coordinates. For this purpose the Laplacian is transformed from cartesian coordinates (x, y) to polar coordinates (r, θ) as follows:

$$r^{2} = x^{2} + y^{2}$$
$$\theta = \tan^{-1}\left(\frac{y}{x}\right)$$

Differentiating with respect to x and y we obtain:

$$2rr_{x} = 2x \quad r_{x} = \frac{x}{r} \quad r_{y} = \frac{y}{r}$$

$$\theta_{x} = \frac{\left(-\frac{y}{x^{2}}\right)}{\left(1 + \left(\frac{y}{x}\right)^{2}\right)} = -\frac{y}{x^{2} + y^{2}} = -\frac{y}{r^{2}} \quad \theta_{y} = \frac{x}{r^{2}}$$

$$u(x, y) = U(r, \theta)$$

$$u_{x} = U_{r}r_{x} + U_{\theta}\theta_{x} = U_{r}\left(\frac{x}{r}\right) + U_{\theta}\left(-\frac{y}{r^{2}}\right)$$

$$u_{y} = U_{r}r_{y} + U_{\theta}\theta_{y} = U_{r}\left(\frac{y}{r}\right) + U_{\theta}\left(\frac{x}{r^{2}}\right)$$

$$u_{xx} = (U_{r})_{x}r_{x} + U_{r}r_{xx} + (U_{\theta})_{x}\theta_{x} + U_{\theta}\theta_{xx}$$

$$= U_{rr}r_{x}^{2} + U_{r}\theta_{x}r_{x} + U_{r}r_{xx} + U_{r}\theta_{r}r_{x}\theta_{x} + U_{\theta}\theta_{x}^{2} + U_{\theta}\theta_{x}^{2}$$

$$r_{xx} = \frac{r - \left(\frac{x^{2}}{r}\right)}{r^{2}} = \frac{y^{2}}{r^{3}} \quad \theta_{xx} = \frac{2yx}{r^{4}}$$

$$u_{xx} = U_{rr}\left(\frac{x^{2}}{r^{2}}\right) + 2U_{r}\theta\left(-\frac{y}{r^{2}}\right)\left(\frac{x}{r}\right) + U_{\theta}\theta\frac{y^{2}}{r^{4}} + U_{r}\left(\frac{y^{2}}{r^{3}}\right) + U_{\theta}\left(\frac{2xy}{r^{4}}\right)$$

$$u_{yy} = U_{rr}r_{y}^{2} + U_{r}\theta_{r}y\theta_{y} + U_{r}r_{yy} + U_{\theta r}r_{y}\theta_{y} + U_{\theta}\theta_{yy}^{2} + U_{\theta}\theta_{yy}$$

$$= U_{rr}\left(\frac{y^{2}}{r^{2}}\right) + 2U_{r}\theta\left(\frac{x}{r^{2}}\right)\left(\frac{y}{r}\right) + U_{\theta}\theta\left(\frac{x^{2}}{r^{4}}\right) + U_{r}\left(\frac{x^{2}}{r^{3}}\right) + U_{\theta}\left(-\frac{2xy}{r^{4}}\right)$$

$$u_{xx} + u_{yy} = U_{rr} + \frac{1}{r}U_{r} + \frac{1}{r^{2}}U_{\theta\theta}$$

26.2 Introductory remarks about circular domains

Recall the Laplacian in polar coordinates:

$$0 = \Delta u = u_{xx} + u_{yy} = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} \qquad \begin{aligned} r &= (x^2 + y^2)^{1/2} \\ \theta &= \tan^{-1}(y/x) \end{aligned}$$
 (26.1)

Let

$$u(r,\theta) = R(r)\Theta(\theta) \tag{26.2}$$

$$\frac{r^2R'' + rR'}{R(r)} = -\frac{\Theta''}{\Theta(\theta)} = \lambda^2$$
 (26.3)

which leads to $r^2R'' + rR' - \lambda^2R = 0$ and $\Theta'' + \lambda^2\Theta = 0$.

The R Equation: $r^2R'' + rR' - \lambda^2R = 0$:

$$\lambda = 0$$
: $r^2 R'' + rR' = 0$, $R = r^{\gamma} \Rightarrow \gamma(\gamma - 1) + \gamma = \gamma^2 = 0 \Rightarrow R(r) = C + D \ln r$

$$\lambda \neq \mathbf{0}: \ r^2R'' + rR' - \lambda^2 = 0, \ R = r^\gamma \Rightarrow \gamma(\gamma - 1) + \gamma - \lambda^2 = \gamma^2 - \lambda^2 = 0 \Rightarrow R(r) = Cr^\lambda + Dr^{-\lambda}.$$

The Θ Equation $\Theta'' + \lambda^2 \Theta = 0$:

$$\Theta'' + \lambda^2 \Theta = 0, \ \Theta = A \cos \lambda \theta + B \sin \lambda \theta, \ \Theta' = -A \lambda \sin \lambda \theta + B \lambda \cos \lambda \theta$$

Different Boundary Conditions and corresponding eigenfunctions:

(I)
$$\Theta(0) = 0 = \Theta(\alpha) \ \lambda_n = n\pi/\alpha, \ n = 1, 2, \dots, \ \Theta_n(\theta) = \sin \lambda_n \theta$$

(II)
$$\Theta'(0) = 0 = \Theta'(\alpha), \ \lambda_n = n\pi/\alpha \ n = 0, 1, 2, ..., \ \Theta_n(\theta) \in \{1, \cos \lambda_n \theta\}$$

(III)
$$\Theta(0) = 0 = \Theta'(\alpha)$$
, $\lambda_n = (2n-1)\pi/2\alpha$ $n = 1, 2, \dots$, $\Theta_n(\theta) = \sin \lambda_n \theta$

(IV)
$$\Theta'(0) = 0 = \Theta(\alpha)$$
, $\lambda_n = (2n-1)\pi/2\alpha$, $n = 1, 2, \dots$, $\Theta_n(\theta) = \cos \lambda_n \theta$

(V)
$$\Theta(-\pi) = \Theta(\pi)$$

 $\Theta'(-\pi) = \Theta'(\pi)$ $\lambda_n = n, n = 0, 1, 2, ..., \Theta_n(\theta) \in \{1, \cos \lambda_n \theta, \sin \lambda_n \theta\}.$

The most general solution is thus of the form

$$u(r,\theta) = \{A_0 + \alpha_0 \ln r\} \cdot 1 + \sum_{n=1}^{\infty} \{A_n r^{\lambda_n} + \alpha_n r^{-\lambda_n}\} \cos \lambda_n \theta$$
 (26.4)

$$+\sum_{n=1}^{\infty} \left\{ B_n r^{\lambda_n} + \beta_n r^{-\lambda_n} \right\} \sin \lambda_n \theta. \tag{26.5}$$

Observations:

- For problems that include the origin, the condition $|u| < \infty$ as $r \to 0$ dictates that $\alpha_0 = 0$, $\alpha_n = 0$ and $\beta_n = 0$.
- For problems that involve infinite domains the condition $|u| < \infty$ as $r \to \infty$ dictates that $A_n = 0$ and $B_n = 0$.
- The values of λ_n and the corresponding eigenfunctions depend on the boundary conditions (I)–(V) that apply.

${\bf 26.3~Wedge~Problems}$

Example 26.1 Wedge with homogeneous BC on $\theta = 0$, $\theta = \alpha < 2\pi$

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 \qquad 0 < r < a, \quad 0 < \theta < \alpha$$
 (26.6)

$$u(r,0) = 0$$
 $u(r,\alpha) = 0$, $u(r,\theta)$ bounded as $r \to 0$, $u(a,\theta) = f(\theta)$ (26.7)

FIGURE 1. Homogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.7)

Let $u(r, \theta) = R(r) \cdot \Theta(\theta)$.

$$r^2 \frac{(R'' + \frac{1}{r}R')}{R} = -\frac{\Theta''(\theta)}{\Theta(\theta)} = \lambda^2 \Rightarrow \begin{array}{ccc} r^2 R'' + rR' - \lambda^2 R & = & 0 \text{ Euler Eq.} \\ \Theta'' + \lambda^2 \Theta & = & 0 \end{array}$$

$$u(r,0) = R(r)\Theta(0) = 0 \Rightarrow \Theta(0) = 0; \ u(r,\alpha) = R(r)\Theta(\alpha) = 0 \Rightarrow \Theta(\alpha) = 0$$

Eigenvalue
$$\begin{cases} \Theta'' + \lambda^2 \Theta = 0 & \Theta = A \cos \lambda \theta + B \sin(\lambda \theta) \\ \Theta(0) = 0 = \Theta(\alpha) & \Theta(0) = A = 0 & \Theta(\alpha) = B \sin(\lambda \alpha) = 0 \end{cases}$$
 (26.8)

Therefore

$$\lambda_n = (n\pi/\alpha) \quad n = 1, 2, \dots \quad \Theta_n = \sin\left(\frac{n\pi\theta}{\alpha}\right).$$
 (26.9)

To solve the Euler Eq. let $R(r)=r^{\gamma},\ R'=\gamma r^{\gamma-1},\ R''=\gamma(\gamma-1)r^{\gamma-2}.$ Therefore

$$\gamma(\gamma - 1) + \gamma - \lambda^2 = \gamma^2 - \lambda^2 = 0 \Rightarrow \gamma = \pm \lambda. \tag{26.10}$$

Therefore

$$R(r) = c_1 r^{\lambda} + c_2 r^{-\lambda}. (26.11)$$

Now since $u(r,\theta) < \infty$ as $r \to 0$ we require $c_2 = 0$. Therefore

$$u(r,\theta) = \sum_{n=1}^{\infty} c_n r^{\left(\frac{n\pi}{\alpha}\right)} \sin\left(\frac{n\pi\theta}{\alpha}\right)$$
 (26.12)

$$u(a,\theta) = f(\theta) = \sum_{n=1}^{\infty} \left\{ c_n a^{\left(\frac{n\pi}{\alpha}\right)} \right\} \sin\left(\frac{n\pi\theta}{\alpha}\right). \tag{26.13}$$

This is just a Fourier Sine Series for $f(\theta)$: Therefore

$$c_n a^{\left(\frac{n\pi}{\alpha}\right)} = \frac{2}{\alpha} \int_0^\alpha f(\theta) \sin\left(\frac{n\pi\theta}{\alpha}\right) d\theta \tag{26.14}$$

$$c_n = \frac{2}{\alpha} a^{-\left(\frac{n\pi}{\alpha}\right)} \int_0^\alpha f(\theta) \sin\left(\frac{n\pi\theta}{\alpha}\right) d\theta.$$
 (26.15)

Therefore

$$u(x,\theta) = \sum_{n=1}^{\infty} c_n r^{\left(\frac{n\pi}{\alpha}\right)} \sin\left(\frac{n\pi\theta}{\alpha}\right). \tag{26.16}$$

Example 26.2 A wedge with Inhomogeneous BC

FIGURE 2. Inhomogeneous Dirichlet Boundary conditions on a wedge shaped domain (26.18)

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 \qquad 0 < r < a, \quad 0 < \theta < \alpha$$
 (26.17)

$$u(r,0) = u_0, \quad u(r,\alpha) = u_1, \quad u(r,\theta) < \infty \text{ as } r \to 0, \quad u(a,\theta) = f(\theta)$$
 (26.18)

Let us look for the simplest function of θ only that satisfies the inhomogeneous BC of the from: $w(\theta) = (u_1 - u_0) \frac{\theta}{\alpha} + u_0$. Note that $w_{\theta\theta} = 0$ and that $w(0) = u_0$ and $w(\alpha) = u_1$. Then let $u(r, \theta) = w(\theta) + v(r, \theta)$.

$$u_{rr} + \frac{1}{r} u_r + \frac{1}{r^2} u_{\theta\theta} = v_{rr} + \frac{1}{r} v_r + \frac{1}{r^2} v_{\theta\theta} = 0$$

$$v(r,0) = 0 \quad v(r,\alpha) = 0$$

$$v(a,\theta) = f(\theta) - w(\theta)$$
Essentially the problem solved in Example 26.1

The solution is

$$u(r,\theta) = (u_1 - u_0)\frac{\theta}{\alpha} + u_0 + \sum_{n=1}^{\infty} c_n r^{\left(\frac{n\pi}{\alpha}\right)} \sin\left(\frac{n\pi\theta}{\alpha}\right)$$
 (26.20)

where

$$c_n = \frac{2}{\alpha} a^{-\left(\frac{n\pi}{\alpha}\right)} \int_0^\infty \left[f(\theta) - w(\theta) \right] \sin\left(\frac{n\pi\theta}{\alpha}\right) d\theta.$$
 (26.21)

Example 26.3 A wedge with insulating BC on $\theta = 0$ and $\theta = \alpha < 2\pi$.

$$u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0$$

$$u_{\theta}(r,0) = 0, \quad u_{\theta}(r,\alpha) = 0, \quad u(a,\theta) = f(\theta)$$
(26.22)

Let

$$u(r,\theta) = R(r)\Theta(\theta) \Rightarrow r^2 \left(R'' + \frac{1}{r}R'\right)/R(r) = -\Theta''/\Theta = \lambda^2$$
(26.23)

FIGURE 3. Mixed Boundary conditions on a wedge shaped domain (26.22)

 Θ equation

$$\left. \begin{array}{l} \Theta'' + \lambda^2 \Theta = 0 \\ \Theta'(0) = 0 = \Theta'(\alpha) \end{array} \right\} \quad \Theta(\theta) = A \cos \lambda \theta + B \sin(\lambda \theta) \\ \Theta'(0) = B \lambda = 0 \ \lambda = 0 \ \text{or} \ B = 0; \end{aligned}$$
(26.24)

$$\Theta'(\theta) = -A\lambda \sin(\lambda \theta) + B\lambda \cos(\lambda \theta)$$

$$\Theta'(\alpha) = -A\lambda \sin(\lambda \alpha) = 0 \ \lambda_n = \frac{n\pi}{\alpha}; \ n = 0, 1, \dots$$
(26.25)

R equation $r^2 R_n'' + r R_n' - \lambda_n^2 R_n = 0$.

 $\mathbf{n} = \mathbf{0}$: $rR_0'' + R_0' = (rR_0')' = 0 \Rightarrow rR_0' = d_0 \Rightarrow R_0(r) = c_0 + d_0 \ln r$.

$$\mathbf{n} \ge \mathbf{1}$$
: $r^2 R_n'' + r R_n' - \lambda^2 R_n = 0 \Rightarrow R_n = c_n r^{\lambda_n} + D_n r^{-\lambda_n}$.

Since $u(r,\theta) < \infty$ (i.e. must be bounded) as $r \to 0$ we require $d_0 = 0 = D_n$. Therefore

$$u(r,\theta) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n r^{\left(\frac{n\pi}{\alpha}\right)} \cos\left(\frac{n\pi\theta}{\alpha}\right)$$
 (26.26)

$$f(\theta) = u(a, \theta) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n a^{\left(\frac{n\pi}{\alpha}\right)} \cos\left(\frac{n\pi\theta}{\alpha}\right)$$
 (26.27)

$$c_0 = \frac{2}{\alpha} \int_0^{\alpha} f(\theta) d\theta \quad c_n = \frac{2}{\alpha} a^{-\left(\frac{n\pi}{\alpha}\right)} \int_0^{\alpha} f(\theta) \cos\left(\frac{n\pi\theta}{\alpha}\right) d\theta \tag{26.28}$$

$$u(r,\theta) = \frac{c_0}{2} + \sum_{n=1}^{\infty} c_n r^{\left(\frac{n\pi}{\alpha}\right)} \cos\left(\frac{n\pi\theta}{\alpha}\right). \tag{26.29}$$

Example 26.4 Mixed BC - a 'crack like' problem.

$$\Delta u = u_{rr} + \frac{1}{r}u_r + \frac{1}{r^2}u_{\theta\theta} = 0 \tag{26.30}$$

subject to

$$u(r,0) = 0 \quad \frac{\partial u}{\partial \theta}(r,\pi) = 0$$

$$u(a,\theta) = f(\theta).$$
(26.31)

FIGURE 4. Mixed crack-like boundary conditions on a circular domain as prescribed in (26.31)

Let $u(r, \theta) = R(r)\Theta(\theta)$.

$$r^{2} \frac{\left(R'' + \frac{1}{r}R'\right)}{R} = -\frac{\Theta''(\theta)}{\Theta(\theta)} = \lambda^{2}$$
 (26.32)

 Θ equation

$$\Theta'' + \lambda^2 \Theta = 0 \qquad \Theta = A \cos \lambda \theta + B \sin \lambda \theta \quad \Theta' = -A\lambda \sin \lambda \theta + B\lambda \cos \lambda \theta$$

$$\Theta(0) = 0 \quad \Theta'(\pi) = 0 \qquad \Theta(0) = A = 0 \quad \Theta'(\pi) = B\lambda \cos(\lambda \pi) = 0 \Rightarrow \pi \lambda_1 = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$
(26.33)

or $\lambda_n=(2n+1)\frac{1}{2}$ $n=0,1,\ldots$ $\lambda\neq 0$ as this would be trivial. **R** equation $r^2R''+rR'-\lambda^2R=0$ $R(r)=r^\gamma\Rightarrow\gamma^2-\lambda^2=0$ $\gamma=\pm\lambda$. Therefore

$$u_n(r,\theta) = \left(c_n r^{\lambda_n} + d_n r^{-\lambda_n}\right) \sin \lambda_n \theta. \tag{26.34}$$

Since u should be bounded as $r \to 0$ we conclude that $d_n = 0$. The general solution is thus

$$u(r,\theta) = \sum_{n=0}^{\infty} c_n r^{(2n+1)/2} \sin\left(\frac{(2n+1)}{2}\theta\right)$$
 (26.35)

$$f(\theta) = u(a, \theta) = \sum_{n=0}^{\infty} c_n a^{(2n+1)/2} \sin\left(\left(\frac{2n+1}{2}\right)\theta\right).$$
 (26.36)

Check orthogonality

$$\int_{0}^{\pi} \sin\left(\left(\frac{2m+1}{2}\right)\theta\right) \sin\left(\left(\frac{2n+1}{2}\right)\theta\right) d\theta = \begin{cases} 0 & m \neq n \\ \pi/2 & m = n \end{cases}$$
 (26.37)

Therefore

$$c_n = \frac{2a^{-\left(n + \frac{1}{2}\right)}}{\pi} \int_0^{\pi} f(\theta) \sin\left(\left(n + \frac{1}{2}\right)\theta\right) d\theta \tag{26.38}$$

$$u(r,\theta) = \sum_{n=0}^{\infty} c_n r^{\left(n + \frac{1}{2}\right)} \sin\left(\left(n + \frac{1}{2}\right)\theta\right)$$
(26.39)