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Lecture 29: The heat equation with Robin BC

(Compiled 4 August 2017)

In this lecture we demonstrate the use of the Sturm-Liouville eigenfunctions in the solution of the heat equation. We first
discuss the expansion of an arbitrary function f(z) in terms of the eigenfunctions {¢n(x)} associated with the Robins
boundary conditions. This is a generalization of the Fourier Series approach and entails establishing the appropriate
normalizing factors for these eigenfunctions. We then uses the new generalized Fourier Series to determine a solution to
the heat equation when subject to Robins boundary conditions.

Key Concepts: Eigenvalue Problems, Sturm-Liouville Boundary Value Problems; Robin Boundary conditions.

Reference Section: Boyce and Di Prima Section 11.1 and 11.2

29 Solving the heat equation with Robin BC
29.1 Expansion in Robin Eigenfunctions

In this subsection we consider a Robin problem in which ¢ = 1, h; — oo, and hy = 1, which is a Case III problem

as considered in lecture 30. In particular:
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Assume that we can expand f(z) in terms of ¢, (z):
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If f(z) = = then
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29.2 Solving the Heat Equation with Robin BC
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(b) Solution profiles u(z,t) at various times
FIGURE 1. Left: Initial and boundary conditions; Right:Solution profiles u(x,t)
u = Uy, 0<az<l1 (29.8)
w(0,t) =1 ux(l,t) +u(l,t)=0 (29.9)
u(z,0) = f(z). (29.10)
Look for a steady state solution v(x)
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Therefore
v(z)=1-—2a/2.
Now let u(z,t) = v(z) + w(z,t)
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Sturm-Liouville Two-Point Boundary Value problems
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