Chapter 3

Introduction to partial differential equations

3.1 Introduction

This chapter introduces some basic partial differential equations (PDEs). A partial differential equation
is a mathematical equation in which the unknown is a function of several variables and involves the
partial derivatives of this function with respect to those variables. For example, one might want to
determine the temperature at a specific point in space over time. In this case, the unknown function
represents the temperature, and the PDE involves its partial derivatives with respect to time and spatial
variables.

Partial differential equations appear in many models in physics, engineering, or biology, such as the
propagation of heat or sound, fluid flow, electrodynamics, and the spread of epidemics. They are also
used in weather forecasting models and climate models.

3.2 Classification of PDEs

In the previous chapters, we discussed linear ordinary differential equations (ODEs). We saw that
these are equations that define functions of a single independent variable by establishing a relationship
between the values of the function and its derivatives. Now, let us give an example of nonlinear ODE

Example 3.2.1 (Examples of nonlinear ODEs). Some ezamples of nonlinear ODEs are given by:

1. (22 +y)y(z) + 2xy(x) = y*(x) (first order);

2. y"(z) + e¥@® =0 (second order).

PDEs involve multivariable functions w(z,t), u(x,y) that are determined by prescribing a relation-
ship between the function value and its partial derivatives.

Definition 3.2.1 (Order of a PDE). The order of a PDE is defined as the order of the highest
partial derivative occurring in the equation.

A PDE is said to be linear if the dependent variable and its partial derivatives occur only in the
first degree and are not multiplied. Otherwise it is said to be non-linear
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26 CHAPTER 3. INTRODUCTION TO PARTIAL DIFFERENTIAL EQUATIONS

In the remainder of the chapter, we will occasionally use u, to denote g—z, Uz, to denote %, and
Uz, to denote ggy =2 (g—Z).
Example 3.2.2
Example 3.2.2. Let u be an unknown function dependent on x andy.
1. Linear first order PDE:
a(z, y)u, + b(x, y)uy, + c(z,y)u = d(z,y), (3.1)
where , a and b are not identically 0.
2. Second order linear PDE:
Augy + Bugy + Cuyy + Duy + Euy + Fu =G, (3.2)
where A, B,C, D, E, F,G are constants or functions of x,y and A, B,C" are not identically
0.
If G = 0 the PDE is said to be homogeneous, if G # 0 the PDE is said to be non homoge-
neous.

Analogous to characterizing quadratic equations
AX?+ BXY +CY? + DX + EY =k, (3.3)

as hyperbolic, parabolic, or elliptic, determined by the sign of the discriminant: A = B% —4AC, we do
the same for partial differential equations (PDEs). This brings us to the following classification.

A Type of PDE | Quadric (Analogous) | Example of PDE PDE Nature
A > 0| Hyperbolic T? —*X? =k Uy = CUgy Wave equation
A=0 Parabolic T=X"? Up = Ugy Heat equation/ diffusion equation
.. Laplace’s equation if f =0
2 2 _ _
A<0 Elliptic XT+Y =k Uz + Uy = f Poisson equation if f # 0

All linear and second-order PDEs can be transformed into one of these types.

3.3 A one dimensional conservation law

Assume we are looking at the traffic flow at a length Ax of a highway as shown in Figure 3.1. We
denote by u(x,t) the density of cars at position x at time t.

[u] = number of cars /unit length.

Let g(z,t) be the flux of cars at position x at time ¢.
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u(z,t) u(x + Az, t)
z,t x+ Azt

i . ) > number of cars: u(z,t)Az q( )

flux in flux out
X x4+ Ax
D S il ey -A-l’- ------------------------- >

Figure 3.1:

Traffic flow along the z axis with density u(x,t) and flux ¢(x,t) at x and time t.

[¢) = number of cars / unit time.

The conservation law tells us that the change in the number of cars over [¢,t + At] is equal to:

number of cars in - number of cars out.
That is

u(z,t + At)Azx — u(z, t) Az = q(x, t) At — q(x + Az, t)At.

(3.4)
Check dimensions:
#cars #cars
L= T
L T
Divide (3.4) by At - Ax :
u(e,t+ A —u(e,t)  qle,t) — ala + Az,

At B Ax
Now let At — 0, Az — 0 :

ou dqg Ou Oq

Ef—%ora—i—a—x—() (35)

Remark 3.3.1. Equation (3.5) describes a PDE of conservation laws. In this equation, u(x,t)
and q(z,t) are both unknowns. To solve this PDE we need to know how q is related to u.

This information comes from the nature of the problem. For instance it can be: an equation of
state (thermodynamics) or a constitutive relation (continuum mechanics).

3.3.1 Linear flux density relationship

Assume that the flux of cars ¢ increases linearly with the density of cars u, i.e., ¢ = cu, ¢ > 0, then it
follows that

ou ou

Since the PDE (3.6) has constant coefficients and is a linear combination of time and spatial partial
derivatives, we might expect to find a solution of the form of an exponential of a linear function of z
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and t, since either derivative of such a function is in the form of a constant times the exponential. We
therefore consider the trial solution of the form:

u(z,t) = ekrot (3.7)
Substituting (3.7) into (3.6), we obtain

8 a ikz+ot : ikz+ot
(a + c%> e = (o +ikc)e

which is a solution of (3.6) provided o and k satisfy the following "dispersion relation"

o= —ikc

So, the solution of (3.6) is

U(I', t) _ eik‘(:l;—(:t)

Remark 3.3.2. [t can be shown that any differentiable function f with the functional form f(x —
ct) is a solution to (3.6) : To see this, let u(x,t) = f(x — ct), then uy = —cf'(x — ct) and
uz = f'(x—ct) and uy+cu, = —cf' +cf' = 0. The PDE (3.6) with the solution u(x,t) = f(z—ct)
can be interpreted as a right moving wave using the Galilean transformation (see Figure 3.2). The
wave propagates in time to the right:

e observer in blue, stationary, sees x;

e observer in red, moving with the wave, sees ¥’ = x — ct.

N

ct

~

\
4
O X 104 2

Figure 3.2: The Galilean transformation of coordinates from x to 2’ =z — ¢t .
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Assume that the flux of cars ¢ decreases linearly with the density of cars u, ¢ = —cu, ¢ > 0, i.e. the
wave is moving to the left. Then it follows that

— —c—=0 (3.8)

and the solution is u(z,t) = f(x + ct).

3.3.2 The second order wave equation:

. . . . . ) ) . b b
Herg, we consider a wave moving in both dlrfectlons. If we apply the left 5 — c5- and right £ + co-
moving wave operators in succession, we obtain

o oN[(0 0 Pu 0%
(5‘*—0%) (&—C%) u(:v,t)—ﬁ—c @—0 (39)

which is the second order wave equation that has both left and right moving wave solutions.

3.3.3 The convection-diffusion equation

Consider the traffic lowing down the highway as shown in Figure 3.1 and assume that the flux ¢ increases
linearly with the car density u. Now what happens if drivers slow down after seeing an increase in car
density ahead of them? This situation can be represented by a flux function of the form;

q = cu — Duy,
#cars L #Cars D] #Cars (3.10)
T T L L2
so, D should have dimensions: [D] = %2 Combining (3.6) and (3.10) we obtain the convection-
diffusion equation

Uy + cuy = Dy, (3.11)

—— ——

Convection Diffusion

So, now in addition to moving at speed c to the right, the wave diffuses too, with a diffusion coefficient
D. Now, if you make a change of variable: z = x — ct, i.e., you move with the center of the wave, and
find the PDE for U(z) :

U, = DU., (3.12)

This means the observer that travels with the wave only sees the diffusion.

Finding the dispersion relation for the Convection-diffusion equation

Consider a solution: u(x,t) = e***+7! Substitute in:

to obtain

(o +ick)e™ ot = (—k2) Deikatat

Hence,
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o=— ik — kD (the dispersion relation).
~~~ ~~
due to convection due to diffusion
Therefore,
'LL(.I',t) _ ezk:r iket—k*Dt _ ezk(x ct) . e kDt
— S

right moving wave decay in time due to diffusion D>0

3.4 The heat/diffusion equation

Consider the heat conduction in a length Ax of a conducting bar as shown in Figure 3.3:

q(z,t) /\> \q(:HAx,t)\

x+ Az |
< Az "

u(z,t) u(x + Az, t)

Figure 3.3: Heat conduction along the x axis.

u(z,t) : The temperature at location x, time ¢, and has units degrees Kelvin, [u] = K;

J .
m2.g°

q(z,t) : The heat flux, or the flux of heat energy per unit area, [q] =

C : The specific heat capacity. The amount of energy needed to increase the temperature of one

kilogram of the material by one degree Kelvin: [C] = kg‘{ % (a material property);
e p: Density of the material, [p] = %;

e A : The cross sectional area of the bar [A] = m?.

Now, let us write down the conservation of energy:
The increase in the thermal energy of the bar with length Ax = thermal energy in thermal
energy out. That is

C - [u(z,t + At) —u(x,t)] - p- Az - A =[q(x,t) — q(x + Ax,t)]A - At. (3.13)
Check the dimensions in equation above:
J kg s 9
kg K 5w T e g™ o
J=J

Divide (3.13) by A- Az - At :

[u(z,t + At) —u(xz,t)]  [q(x,t) — q(z + Aw,1)]
pe At - Az
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Let At — 0 and Az — 0, we obtain pC’% = —% ie.,
0 0
pC 8_1; + a—q =0 (the energy conservation PDE) (3.14)
x

Now, we need to find a constitutive relation between u and q.

1. Fourier’s law: Experimental evidence suggests that the flux of heat is proportional to the neg-
ative of the spatial gradient of the temperature. This means that heat always flows from higher
temperature to lower temperature regions. In this case:

ou

where k is the thermal conductivity having dimensions [k] = == = 1.

u(z,t)
ou ou
2. >0 2. <0
u(x — Aw,t) u(x + Az, t)
) qg<0 qg>0 .

Figure 3.4: Fourier’s Law of heat Conduction .

Substituting (3.15) into (3.14) and dividing by pC' we obtain the heat equation

ou 0%u
T (3.16)
where o = —= 1s the diffusion coe ment, willcC as dlimensions |&”| = 5.
here 0? = £ is the diffusi ffici hich has dimensi 2] = m”

2. Fick’s law: The heat flux is from regions of high Concentration of energy to regions of low
concentration of energy.

A(pCu
q=—a’ (895 ) (3.17)
: : . _ k J _J
Here, pCu is the concentration of thermal energy, and has units: [pCu] = -5 - e K K= —.

Substituting(3.17) into (3.14), we obtain
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ou 0*u

where o? is the diffusion coefficient. A similar line of reasoning for the heat flow in a conduction
plate leads to the two dimensional Heat Equation:

ou (0% N 0*u

— ===+ .

ot ox?  0y?
Another nice way of arriving at the diffusion equation is by random walk. See lecture 7 of Prof.
Peirce’s lectures.

3.5 The Wave Equation:

Consider an elastic rod having a density p and cross-sectional area A, and let o(x,t) be the pressure in
the rod at = at time ¢ and wu(x,t) the displacement of the rod from its equilibrium position as shown in
Figure 3.5.

u(z,t) u(x + Az, t)

Figure 3.5: Displacement of a metal rod

e u(x,t) : displacement from equilibrium, [u] = m;

e o(x,t) : the normal stress [o] = m%'s;
e p : density, [p] = r%;

e A : The cross sectional area of the bar [A] = m?.

Now, let us write down Newton second law (F' = Ma) :

2
la(x+Aa:,t)—0(w,t)]-/}z\p-Az-/&- % (3.19)
N~ NV

net force mass ]
acceleration

Divide (3.19) by A - Az :

o(x + Az, t) —o(z,t) 0*u

Az ~ P
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Let Az — 0, we obtain

oo 0%u

e + P = 0  (balance of linear momentum) (3.20)
Remark 3.5.1. To solve the PDE (3.20), we need a constitutive law that gives a relation between

o and u. In order to have sufficient information to solve for the unknowns we need an additional
equation, which is provided by a constitutive relation known as Hooke’s Law (see Figure 3.06).
FExperimental data characterizes the "stiffness” of the material by the parameter E known as
the Young’s Modulus, which provides a linear relationship between the stress to which the bar is
subjected and the relative displacement

Au  u(z + Az, t) —u(z,t) _Ou

N o =€,

Ar Az ox

or strain €.

~

Figure 3.6: The stress on the bar ¢ is related to the strain ¢ by Hooke’s Law Prof. Peirce’s lectures.

Substituting the stress strain relationship ¢ = E % into (3.20), we obtain the second order wave

equation
Pu 0% E
5z = ppz; Where ¢ p (3.21)

A general form of the solution of (3.21)to this equation is

u(z,t) = f(x —ct) + f(z + ct)

3.6 Laplace’s equation: Flow in porous media

Consider the steady-state 2D flow in porous media aas shown in Figure 3.7.
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yd\
Tv(x, Y+ Ay)
Y+AY |
u(z,y) u(z + Az, y)
—_— Ay )
Az
Y frememmeeenanes , !
: v(z,y)
x r+ Ax T

Figure 3.7: Steady state flow in a porous media.

e u : x component of velocity, [u] = m/S
e v :y component of velocity, [V] = m/S
e p: density, [p] = kg/m?

e ¢ : mass flux, [¢] = kg/S

The Conservation of mass tells us that the sum of fluxes through all boundaries should be zero: We
denote by [ is a unit length in the y direction. The equation is:

plu(z + Az,y) — u(z,y)]Ay - 1+ plv(z,y + Ay) — v(z,y)]Az - 1 = 0. (3.22)

Check the dimensions of each term:

kg m kg

ﬁ.g.m-ng (3.23)
This ensures that the unit of mass flux is correct.
Next, divide Equation (3.22) by pAz - Ay -1 :

u(z + Az,y) —u(z,y) | v(z,y+ Ay) —v(z,y)
+
Ax Ay

Let Az — 0 and Ay — 0. This leads to the continuity equation:

=0

ou Ov
— 4+ — = 3.24
ox + oy 0 ( )
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Remark 3.6.1. Now, we need to find a constitutive relation between u and v. For flow in porous
media, you use Darcy’s law as a constitutive law:

RP o 2 (3.25)

where:

o k : hydraulic conductivity, [k] = %

e h : hydraulic head, [h] = m

So, Darcy’s law states that the flow direction is from regions with higher hydraulic head to regions
with lower hydraulic head.

Darcy’s law is sometimes stated as:

—,  where

where:

e z : permeability, [v] = m?

o 1 : wviscosity of fluid, [u] = Pa- S

e P : pore pressure, [P] = Pa

Su'bstituting u = —k:g—: and v = —kg—z into the continuity equation (3.24) gives the 2D Laplace’s
equation:

9*h  0%h





