
Chapter 4

Introduction to numerical methods for partial
differential equations

4.1 Introduction

Numerical methods involve transforming continuous analytical problems into discrete numerical ones,
and there exists a number of discretization techniques for any given equation. In this chapter, we intro-
duce the finite difference method, which is widely used for approximating partial differential equations
(PDEs) using a computer. The finite difference method is a common technique for finding approximate
solutions to partial differential equations. It involves solving a system of relations (numerical scheme)
that connects the values of unknown functions at points that are sufficiently close to each other. At
first glance, this method seems to be the simplest to implement, as it proceeds in two steps: first, the
discretization of the differentiation operators using finite differences, and second, the convergence of the
resulting numerical scheme as the distance between the points decreases.

4.2 Approximating the derivatives of a function by finite differ-
ences

In previous courses, you were introduced to the notion of the derivative for a differentiable function and
the Taylor’s formula.

Definition 4.2.1 (Derivative of a function and Taylor’s formula). Assume that the function
f : R → R is differentiable, then

f ′(x) = lim
∆x→0

f(x+∆x)− f(x)

∆x
(4.1)

If we assume that the function can be differentiated many times then Taylor’s formula is given by:

f(x+∆x) = f(x) + ∆xf ′(x) +
∆x2

2!
f ′′(x) +

∆x3

3!
f (3)(x) + . . . (4.2)

or, with −∆x instead of +∆x :

f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2!
f ′′(x)− ∆x3

3!
f (3)(x) + . . . (4.3)

67

68CHAPTER 4. INTRODUCTION TO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

Three basic types of finite difference methods are commonly considered: forward, backward, and
central finite differences.

Definition 4.2.2 (Forward difference). On a computer, derivatives are approximated by finite
difference expressions; rearranging (4.2) gives the forward difference approximation

f(x+∆x)− f(x)

∆x
= f ′(x) +O(∆x), (4.4)

where O(∆x) means ’terms of order ∆x ’, i.e. terms which have size similar to or smaller than
∆x when ∆x is small. Technically, a term or function E(∆x) is O(∆x) if

lim
∆x→0

E(∆x)

∆x
= constant.

So the expression on the left approximates the derivative of f at x, and has an error of size ∆x;
the approximation is said to be ’first order accurate’.

Definition 4.2.3 (Backward difference). Rearranging (4.3) similarly gives the backward dif-
ference approximation

f(x)− f(x−∆x)

∆x
= f ′(x) +O(∆x) (4.5)

which is also first order accurate, since the error is of order ∆x.

Definition 4.2.4 (Central difference). Combining (4.2) and (4.3) gives the central difference
approximation

f(x+∆x)− f(x−∆x)

2∆x
= f ′(x) +O

(
∆x2

)
(4.6)

which is ’second order accurate’, because the error this time is of order ∆x2.

Definition 4.2.5 (Second derivative, central difference). Adding (4.2) and (4.3) gives

f(x+∆x) + f(x−∆x) = 2f(x) + ∆x2f ′′(x) +
∆x4

12
f (4)(x) + . . . (4.7)

Rearranging this therefore gives the central difference approximation to the second derivative:

f(x+∆x)− 2f(x) + f(x−∆x)

∆x2
= f ′′(x) +O

(
∆x2

)
(4.8)

which is second order accurate.

How many boundary conditions are needed to solve a PDE?

Typically, for a PDE, to obtain a unique solution, we need one condition (either boundary or initial)
for each derivative in each variable. For instance:

• The heat equation:

4.3. SOLVING THE HEAT EQUATION USING THE METHOD OF FINITE DIFFERENCES 69

ut = uxx,

involves one time derivative and two spatial derivatives, meaning we require:

– One initial condition (IC)

– Two boundary conditions (BCs)

• The wave equation:

utt = uxx

involves two time derivatives and two spatial derivatives, meaning we require:

– Two initial conditions (ICs)

– Two boundary conditions (BCs)

• Laplace’s equation:

uxx + uyy = 0

involves two spatial derivatives in both the x and y directions, meaning we require:

– Four boundary conditions (BCs)

4.3 Solving the heat equation using the method of finite differ-
ences

4.3.1 Dirichlet boundary conditions

Methodology 4.3.1 (Dirichlet boundary conditions). To find a numerical solution to the
heat equation:

PDE :
∂u

∂t
= α2∂

2u

∂x2
, 0 < x < L, t > 0 (4.9a)

BC : u(0, t) = A, u(L, t) = B (4.9b)
IC : u(x, 0) = f(x) (4.9c)

we approximate the time derivative using forward differences, and the spatial derivative using
central differences;

u(x, t+∆t)− u(x, t)

∆t
= α2u(x+∆x, t)− 2u(x, t) + u(x−∆x, t)

∆x2
+O

(
∆t,∆x2

)
. (4.10)

This approximation is second order accurate in space and first order accurate in time. The use
of the forward difference means the method is explicit, because it gives an explicit formula for
u(x, t+∆t) depending only on the values of u at time t.

70CHAPTER 4. INTRODUCTION TO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

Divide the interval 0 < x < L into N + 1 evenly spaced points, with spacing ∆x; ie. xn = n∆x,
for n = 0, 1, . . . , N , and divide the time interval [0, T] into M + 1 equal time levels tk = k∆t for
k = 0, 1, . . . ,M . Then seek the solution by finding the discrete values

uk
n = u (xn, tk)

From (4.10), these satisfy the equations

uk+1
n − uk

n

∆t
= α2u

k
n+1 − 2uk

n + uk
n−1

∆x2

or, rearranging,

uk+1
n = uk

n +
α2∆t

∆x2

(
uk
n+1 − 2uk

n + uk
n−1

)
(4.11)

If the values of un at time step k are known, this formula gives all the values at time step k + 1,
and it can then be iterated again and again. The initial condition gives

u0
n = f (xn) , (4.12)

for all n ∈ {0, . . . , N}, and the boundary conditions require

uk
0 = A, uk

N = B (4.13)

for all k ∈ {0, . . . ,M} (Equation (4.11) only has to be solved for 1 ≤ n ≤ N − 1).

t

∆t

∆x

u00

u10

u20

uk0

uk+1
0

ukN

uk+1
N

u1−1

u2−1

u1N+1

u2N+1

u01 u02 u0N

u1N

u2N

x0 x1 x2 xN
x = 0 x = L

uk+1
n

ukn−1 ukn ukn+1

Figure 4.1: Mesh points and finite difference stencil for the heat equation. Blue points are prescribed
by the initial condition, red points by the boundary conditions.

4.3. SOLVING THE HEAT EQUATION USING THE METHOD OF FINITE DIFFERENCES 71

Remark 4.3.1. In Figure 4.1, in order to use Neumann boundary conditions, fictional points
(ghost nodes) at x = −∆x and x = L+∆x can be used to facilitate the method.

4.3.2 Neumann boundary conditions

Methodology 4.3.2 (Neumann boundary conditions). To apply the boundary condition

∂u

∂x
(0, t) = C (4.14)

instead of u(0, t) = A in (4.9b), notice that the central difference version of this boundary condition
would be

u(0 + ∆x, t)− u(0−∆x, t)

2∆x
= C (4.15)

and therefore

u(−∆x, t) = u(∆x, t)− 2∆xC
(

i.e, uk
−1 = uk

1 − 2∆xC
)

(4.16)

x = −∆x is outside the domain of interest, but knowing the value of u(−∆x, t) there allows the
discretised Equation (4.11) to be used also for x = 0 (n = 0), and it becomes

uk+1
0 = uk

0 +
α2∆t

∆x2

(
2uk

1 − 2uk
0 − 2∆xC

)
(4.17)

So, in this case we must solve (4.11) for 1 ≤ n ≤ N−1, and (4.17) for n = 0 at each time step. If
there is a derivative condition at x = L the same procedure is followed and an equation similar to
(4.17) must be solved for n = N too. A handy way to implement this type of boundary condition,
which enables the same formula (4.11) to be used for all points, is to introduce ’fictional’ mesh
points for n = −1 and n = N+1, and to prescribe the value uk

−1 given by (4.16) (or the equivalent
for uk

N+1) at those points.

Stability

Theorem 4.3.1 (Stability condition). Note that, this method will only be stable, provided the
condition

α2∆t

∆x2
≤ 1

2
(4.18)

is satisfied; otherwise it will not work.

72CHAPTER 4. INTRODUCTION TO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

4.4 4.4 Solving the Wave equation using the method of finite
differences

4.4.1 Dirichlet boundary conditions

Methodology 4.4.1 (Dirichlet boundary conditions). For the wave equation,

PDE:
∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < L, t > 0 (4.19a)

BC: u(0, t) = 0, u(L, t) = 0 (4.19b)

IC: u(x, 0) = f(x),
∂u

∂t
(x, 0) = g(x) (4.19c)

discretise x into N + 1 evenly spaced mesh points xn = n∆x, discretise the time interval [0, T]
into M + 1 equal time levels tk = k∆t for k = 0, 1, . . . ,M , and seek the solution at these mesh
points; uk

n = u (xn, tk). Using central difference approximations to the two second derivatives, the
discrete equation is

uk+1
n − 2uk

n + uk−1
n

∆t2
= c2

uk
n+1 − 2uk

n + nk
n−1

∆x2
+O

(
∆x2,∆t2

)
. (4.20)

This can be rearranged to give

uk+1
n = 2uk

n − uk−1
n +

c2∆t2

∆x2

(
uk
n+1 − 2uk

n + nk
n−1

)
(4.21)

which gives an explicit method to calculate uk+1
n in terms of the values at the previous two time

steps k and k − 1. This method is second order accurate in space and time - it is sometimes
referred to as the ’leap-frog’ method.
To apply Dirichlet boundary conditions given in (4.19b), the values of uk+1

0 and uk+1
N are simply

prescribed to be 0 ; there is no need to solve an equation for these end points.

4.4.2 Neumann Boundary conditions

Methodology 4.4.2 (Neumann boundary conditions). If the boundary conditions are Neu-
mann, on the other hand:

∂u

∂x
(0, t) = 0,

∂u

∂x
(L, t) = 0 (4.22)

then (4.21) can still be solved for n = 0 and n = N if we use the central difference approximations
to the boundary conditions in order to determine the ’fictional’ values uk

−1 and uk
N+1 respectively.

At x = 0, for instance, the discretised condition (4.22) is

uk
−1 − uk

1

2∆x
= 0 (4.23)

and therefore uk
−1 = uk

1. Similarly uk
N+1 = uk

N−1.

4.4. 4.4 SOLVING THE WAVE EQUATION USING THE METHOD OF FINITE DIFFERENCES73

t

∆t

∆x

u00

u10

u20

uk0

uk+1
0

ukN

uk+1
N

u1−1

u2−1

u1N+1

u2N+1

u01 u02 u0N

u1N

u2N

x0 x1 x2 xN
x = 0 x = L

uk+1
n

ukn−1 ukn ukn+1

uk−1
n

Figure 4.2: Mesh points and finite difference stencil for the wave equation.

4.4.3 Initial conditions

Methodology 4.4.3 (nitial conditions). To apply the initial conditions, note that to use (4.21)
for the first time step k = 1, we need to know the values of u0

n and also u−1
n . The values of u0

n

follow from the initial condition on u(x, 0);

u0
n = f (xn) (4.24)

The values of u−1
n come from considering the central difference approximation to the derivative

condition given in (4.19c);

u(x, 0 + ∆t)− u(x, 0−∆t)

2∆t
= g(x),

from which we deduce that

u−1
n = u1

n − 2∆tg (xn)

Substituting this into the discrete equation (4.21), and rearranging, gives the formula

u1
n = u0

n +
1

2

c2∆t2

∆x2

(
u0
n+1 − 2u0

n + n0
n−1

)
+∆tg (xn) (4.25)

for the first time step. Once the solution has been initialised in this way, all subsequent time steps
can be made using (4.21).

74CHAPTER 4. INTRODUCTION TO NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS

Stability

Theorem 4.4.1 (Stability condition). This method is stable provided

c∆t

∆x
≤ 1 (4.26)

which is often called the Courant-Friedrichs-Levy (or CFL) condition.

4.5 Solving the Laplace’s equation using the method of finite
differences

4.5.1 Dirichlet boundary conditions

Methodology 4.5.1 (Dirichlet boundary conditions). Laplace’s equation on a square domain
is

∂2u

∂x2
+

∂2u

∂y2
= 0, 0 < x < L, 0 < y < L (4.27)

with boundary conditions,

u(0, y) = 0, u(L, y) = 0, u(x, 0) = f(x), u(x, L) = 0 (4.28)

Choose a mesh with spacing ∆x in the x direction, ∆y in the y direction (often it is sensible
to choose ∆x = ∆y), so grid points are xn = n∆x for n = 0, 1, . . . N , and ym = m∆y for
m = 0, 1, . . .M . Then seek solution values unm = u (xn, ym). Using second order accurate central
differences for the two derivatives, the discrete equation is

un+1m − 2unm + un−1m

∆x2
+

unm+1 − 2unm + unm−1

∆y2
= O

(
∆x2,∆y2

)
(4.29)

and if ∆x = ∆y this simplifies to

unm =
1

4
(un+1m + un−1m + unm+1 + unm−1) (4.30)

Note this equation shows that the solution has the property that the value at each point (xn, ym)
is the average of the values at its four neighbouring points. This is an important property of
Laplace’s equation.
The boundary conditions (4.28) determine the values unm on each of the four boundaries, so (4.30)
does not have to be solved at these mesh points:

u0m = 0, uNm = 0, un0 = f (xn) , unM = 0 (4.31)

Neumann boundary conditions

Neumann boundary conditions can be incorporated by calculating values for u−1m (for instance),
as for the heat equation.

4.5. SOLVING THE LAPLACE’S EQUATION USING THE METHOD OF FINITE DIFFERENCES75

∆t

∆x

u0,0

u0,1

u0,M uN,M

y1

u1,0 u2,0
uN,0

x0
y0y = 0

yMy = L

x1 x2 xN
x = 0 x = L

un,m+1

un−1,m

un,m

un+1,m

un,m−1

Figure 4.3: Mesh points and finite difference stencil for Laplace’s equation

Jacobi Iteration
Note that (4.30) is not an explicit formula, since the solution at each point depends on the unknown
values at other points, and it is therefore harder to solve than the previous explicit methods. One way
to do it, however, is to take a guess at the solution (eg. unm = 0 everywhere), and then go through each
of the mesh points updating the solution according to (4.30) by taking the values of the previous guess
on the right hand side. Iterating this process many times, the successive approximations will hopefully
change by less and less, and the values they converge to provide the solution. Given an initial guess
u
(0)
nm, the successive iterations u

(1)
nm, . . . , u

(k)
nm, u

(k+1)
nm , . . ., are given by

u(k+1)
nm =

1

4

(
u
(k)
n+1m + u

(k)
n−1m + u

(k)
nm+1 + u

(k)
nm−1

)
Here the superscript (k) denotes the values for the kth iteration. The process is continued until the

change between successive iterations is less than some desired tolerance.

IMPLEMENTATION!

We will look at some matlab implementations of the above schemes.

