
Chapter 5

Fourier series and separation of variables

5.1 Introduction
In the previous chapter, we introduced the finite difference method as a numerical approach for solving
a specific class of linear partial differential equations (PDEs). In this chapter, our goal is to solve these
same PDEs analytically. We recall that a PDE is said to be linear if the dependent variable and its
derivatives appear at most to the first power and in no functions.

To achieve this, we will employ the method of separation of variables, which involves transforming
the PDE into a system of ordinary differential equations (ODEs).

General idea of the separation of variables
The idea of separation of variables is quite simple. Assume that you have a linear PDE along with some
boundary and/or initial conditions. For clarity, let us assume that the PDE is linear and homogeneous,
and that the boundary conditions are also linear and homogeneous. Assume also that the equation
involves two variables: the first, referred to as time t, and the second, referred to as space x.

Methodology 5.1.1 (Idea of the separation of variables). The method of separation of
variables can be broken down into three steps:

Step 1: Find nonzero solutions of the PDE which have a product form

u(x, t) = X(x)T (t).

Step 2: Select from among the solutions found in Step 1 those solutions which satisfy the BC.
There will typically be an infinite sequence of these:

un(x, t) = Xn(x)Tn(t), n = 1, 2, . . .

Step 3: Observe that, because the PDE and BC are linear and homogeneous, any linear com-
bination of solutions of these will again be a solution. Thus for any choice of coefficients
b1, b2, . . . the linear combination

u(x, t) =
∞∑
n=1

bnun(x, t)

77
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will again be a solution of the PDE and BC (assuming the series converges). Choose the
constants bn so that u(x, t) satisfies the initial condition.

5.2 Solution to the heat equation by separation of variables

Now, let us apply the previous method to the heat (diffusion) equation. We recall that the equation is
given by:

ut(x, t) = α2uxx(x, t), 0 < x < L, t > 0 (5.1)

We consider the heat equation (5.1)subject to the following initial condition:

u(x, 0) = f(x) (5.2)

5.2.1 Dirichlet boundary conditions: Fourier sine series

Consider the heat conduction in an insulated rod whose endpoints are held at zero degrees for all time
and within which the initial temperature is given by f(x) as shown in Figure 5.1.

ICE ICE

Insulation

Insulation

x

t

u(0, t) = 0 u(L, t) = 0

u(x, 0) = f(x)

ut = α2uxx

Figure 5.1: Consider a conducting bar with thermal conductivity α2 that has an initial temperature
distribution u(x, 0) = f(x) and whose endpoints are maintained at 0◦C, i.e. embedded in ice. See Prof.
Peirce’s lectures.

The system of equations is given by:

https://personal.math.ubc.ca/~peirce/math257_316e14.htm
https://personal.math.ubc.ca/~peirce/math257_316e14.htm
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ut = α2uxx, 0 < x < L, t > 0 (5.3a)
BC : u(0, t) = 0, u(L, t) = 0, (5.3b)
IC : u(x, 0) = f(x), (5.3c)

We assume a solution of the form:

u(x, t) = X(x)T (t). (5.4)

Differentiating both sides:

ut = X(x) · Ṫ (t)
uxx = X ′′(x) · T (t)

Substituting these into the heat equation (5.3):

X(x) · Ṫ (t) = α2X ′′(x) · T (t). (5.5)

Dividing by α2X(x)T (t):

Ṫ (t)

α2T (t)
=

X ′′(x)

X(x)
= λ (5.6)

Since both sides depend on different variables, they must equal a constant, denoted as λ. This gives
two ordinary differential equations (ODEs):

Time equation:

Ṫ (t) = λα2T (t)

Solving this gives:

T (t) = Ceλα
2t (5.7)

Space equation: an eigenvalue problem
X ′′(x) = λX(x), X(0) = 0 = X(L) (5.8)

An obvious solution of (5.8) is X = 0. This is a trivial solution. Can we find nontrivial solutions?
The nature of X(x) depends on λ.

Case 1; λ > 0: Let λ = µ2, then:

X ′′ − µ2X = 0

The general solution is (we have chosen this form for simplifications, it is also fine to use the
exponential form):

X(x) = A sinh(µx) +B cosh(µx) (5.9)

Applying boundary conditions:
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X(0) = 0 ⇒ B = 0, X(L) = 0 ⇒ A sinh(µL) = 0 (5.10)

Since sinh(µL) ̸= 0, we must have A = 0, leading to the trivial solution.

Case 2: λ = 0: The equation simplifies to:

X ′′(x) = 0 ⇒ X(x) = Ax+B

Applying boundary conditions:

X(0) = 0 ⇒ B = 0, X(L) = 0 ⇒ AL = 0 ⇒ A = 0 (5.11)

Again, we get the trivial solution.

Case 3: λ < 0: Let λ = −µ2, then:

X ′′ + µ2X = 0

The general solution is:

X(x) = A sin(µx) +B cos(µx). (5.12)

Applying boundary conditions:

X(0) = 0 ⇒ B = 0, X(L) = 0 ⇒ A sin(µL) = 0

For a nontrivial solution ( A ̸= 0 ), we require:

sin(µL) = 0 ⇒ µL = nπ, n = 1, 2, 3, . . . (5.13)

Thus,

µn =
nπ

L
, λn = −

(nπ
L

)2
(5.14)

λn are eigenvalues. The corresponding eigenfunctions are:

Xn(x) = sin
(nπ
L

x
)

(5.15)

So, the solution will have the form

un(x, t) = e−α2(nπ
L )

2
t sin

(nπx
L

)
, n = 1, 2, . . . (5.16)

Since the Equation (5.3) is linear, a linear combination of solutions is again a solution. Thus the
most general solution is:

u(x, t) =
∞∑
n=1

bne
−α2(nπ

L )
2
t sin

(nπx
L

)
, bn, n = 1, 2, . . . . (5.17)
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How can we find those coefficients?

Using the initial condition u(x, 0) = f(x) :

f(x) =
∞∑
n=1

bn sin
(nπx

L

)
(5.18)

This is the Fourier sin series of f(x). We have the following question in mind:

Note!

Given a function f(x) defined on [0, L], do there exist constants b1, b2, . . . such that (5.18) holds? If
the answer is "yes" then (5.17) is the solution to the heat equation problem (5.3).

We want to write the function f(x) in terms of the sum of an infinite number of basis functions
sin
(
nπx
L

)
. This is similar to projecting a vector on a set of basis vectors. The sine function is periodic

on the interval [0, 2L] or [−L,L] :

sin

(
nπ(x+ 2L)

L

)
= sin

(nπx
L

+ 2nπ
)
= sin

(nπx
L

)
sin

(
nπ(x− L)

L

)
= sin

(nπx
L

− nπ + 2nπ
)
= sin

(
nπ(x+ L)

L

)
Now, we use an important property of trigonometric functions:

Theorem 5.2.1 (Orthogonality of trigonometric functions). The trigonometric functions
sin
(
nπx
L

)
and cos

(
nπx
L

)
(for n = 1, 2, 3, . . .) are orthogonal over the interval [0, L] in the following

sense:

∫ L

0

sin
(nπx

L

)
sin
(mπx

L

)
dx =

{
0, if n ̸= m
L
2
, if n = m

(5.19a)

∫ L

0

cos
(nπx

L

)
cos
(mπx

L

)
dx =


0, if n ̸= m
L
2
, if n = m ̸= 0

L, if n = m = 0

(5.19b)

∫ L

0

cos
(nπx

L

)
sin
(mπx

L

)
dx = 0, ∀n,m (5.19c)

The concept of orthogonality means that the inner product of two functions (or two vectors) is
zero over an interval.

⟨f(x), g(x)⟩ =
∫ L

0

f(x)g(x)dx. (Inner product of two functions)

Proof of Theorem 5.2.1. To prove the first property (5.19a), we use the trigonometric identities:
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cos(A+B) = cosA cosB − sinA sinB

cos(A−B) = cosA cosB + sinA sinB

Using these, we rewrite the product of two sine functions:

sinA sinB =
1

2
(cos(A−B)− cos(A+B))

For m ̸= n :

∫ L

0

sin
(nπx

L

)
sin
(mπx

L

)
dx =

∫ L

0

1

2

[
cos

(
πx(n−m)

L

)
− cos

(
πx(n+m)

L

)]
dx

=
1

2

[
L

(n−m)π
sin

(
πx(n−m)

L

)∣∣∣∣L
0

− L

(n+m)π
sin

(
πx(n+m)

L

)∣∣∣∣L
0

]
= 0

For m = n, we use:

sin2A =
1

2
(1− cos 2A)

Thus: ∫ L

0

sin2
(nπx

L

)
dx =

∫ L

0

1

2

(
1− cos

(
2nπx

L

))
dx

=
1

2

[
x|L0 − L

2nπ
sin

(
2nπx

L

)∣∣∣∣L
0

]
=

L

2

The case of (5.19b) and (5.19c) follow with similar arguments.

Finding Fourier coefficients bn

Going back to our Fourier series representation:

f(x) =
∞∑
n=1

bn sin
(nπx

L

)
To find bn, multiply both sides by sin

(
mπx
L

)
and integrate over [0, L] :∫ L

0

f(x) sin
(mπx

L

)
dx =

∞∑
n=1

bn

∫ L

0

sin
(nπx

L

)
sin
(mπx

L

)
dx

So: ∫ L

0

f(x) sin
(mπx

L

)
dx = 0 + 0 + · · ·+ bm

∫ L

0

sin2
(mπx

L

)
dx+ 0 + 0 + . . .

all terms in the sum, except the mth term are zero. Hence,
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∫ L

0

f(x) sin
(mπx

L

)
dx = bm · L

2

Thus, the Fourier sine coefficients are:

bm =
2

L

∫ L

0

f(x) sin
(mπx

L

)
dx, m = 1, 2, 3, . . .

Finally, the most general solution to (5.3) is given by

u(x, t) =
∞∑
n=1

(
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx

)
e−α2(nπ

L )
2
t sin

(nπx
L

)
(5.20)

Example 5.2.1 (Fourier sine expansion). Let us solve (5.3) with f(x) = x, 0 < x < 1, L = 1. We
have using the integration by part formula,

bn = 2

∫ 1

0

x sin(nπx)dx = 2
(−1)n+1

nπ

Hence,

u(x, t) =
2

π

∞∑
n=1

(−1)n+1

n
e−α2(nπ)2t sin(nπx)

We can use the latter expression to compute some series: for example, if t = 0 and x = 1
2
, then

we have

u(1/2, 0) = f(1/2) = 1/2 =
2

π

∞∑
n=1

(−1)n+1

n
sin(nπ/2)

k n sin(nπ/2)
0 1 1

2 0
1 3 -1

4 0
2 5 1

Therefore,

∞∑
k=0

(−1)k

(2k + 1)
=

π

4

Example 5.2.2. We want to solve the following PDE problem:

ut = 0.003uxx, 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0

u(x, 0) = 50x(1− x) for 0 < x < 1
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Figure 5.2: Representation of the terms of the Fourier series of f(x) = x.

As previously, we need to write f(x) = 50x(1 − x) for 0 < x < 1 as a sine series. That is,
f(x) =

∑∞
n=1 bn sin(nπx), where

bn = 2

∫ 1

0

50x(1− x) sin(nπx)dx =
200

π3n3
− 200(−1)n

π3n3
=

{
0 if n even
400
π3n3 if n odd

Hence the solution u(x, t), is given by:

u(x, t) =
400

π3

∞∑
k=0

1

(2k + 1)3
sin((2k + 1)πx)e−(2k+1)2π20.003t

5.2.2 Neumann boundary conditions: Fourier cosine series

Consider the heat conduction in an insulated rod whose endpoints are insulated and within which the
initial temperature is given by f(x) as shown in Figure 5.3

The system of equations is given by:

PDE : ut = α2uxx, 0 < x < L, t > 0 (5.21a)
BC : ux(0, t) = 0, ux(L, t) = 0, (5.21b)
IC : u(x, 0) = f(x), (5.21c)

We assume a solution of the form:

u(x, t) = X(x)T (t) (5.22)

Differentiating both sides:

ut = X(x) · Ṫ (t)
uxx = X ′′(x) · T (t)

Substituting these into the heat Equation (5.21):

X(x) · Ṫ (t) = α2X ′′(x) · T (t) (5.23)
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Insulator Insulator

Insulation

Insulation

x

t

ux(0, t) = 0 ux(L, t) = 0

u(x, 0) = f(x)

ut = α2uxx

Figure 5.3: Consider a conducting bar with thermal conductivity α2x that has an initial temperature
distribution u(x, 0) = f(x) and whose endpoints are insulated, Prof. Peirce’s lectures.

Dividing by α2X(x)T (t) :

Ṫ (t)

α2T (t)
=

X ′′(x)

X(x)
= λ (5.24)

Since both sides depend on different variables, they must equal a constant, denoted as λ. This gives
two ordinary differential equations (ODEs):

Time equation:

Ṫ (t) = λα2T (t)

Solving this gives:

T (t) = Ceλα
2t (5.25)

Space equation: an eigenvalue problem

X ′′(x) = λX(x), X ′(0) = 0 = X ′(L) (5.26)

The nature of X(x) depends on λ.

Case 1: λ > 0: Let λ = µ2, then:

X ′′ − µ2X = 0

The general solution is (we have chosen this form for simplifications, it is also fine to use the
exponential form):

https://personal.math.ubc.ca/~peirce/math257_316e14.htm
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X(x) = A sinh(µx) +B cosh(µx). (5.27)

We note that
X ′(x) = Aµ cosh(µx) +Bµ sinh(µx)

Applying boundary conditions:

X ′(0) = 0 ⇒ A = 0, X ′(L) = 0 ⇒ Bµ sinh(µL) = 0 (5.28)

Since sinh(µL) ̸= 0, we must have B = 0, leading to the trivial solution.

Case 2: λ = 0: The equation simplifies to:

X ′′(x) = 0 ⇒ X(x) = Bx+ A

Applying boundary conditions:

X ′(0) = 0 ⇒ B = 0, X ′(L) = 0 ⇒ B = 0 (5.29)

So, X(x) = A is a non-trivial solution. The eigenvalue λ0 = 0 and the corresponding eigenfunction
is X0(x) = 1.

Case 3: λ < 0: Let λ = −µ2, then:

X ′′ + µ2X = 0

The general solution is:

X(x) = A sin(µx) +B cos(µx) (5.30)

We have

X ′(x) = µA cos(µx)− µB sin(µx) (5.31)

Applying boundary conditions:

X ′(0) = 0 ⇒ A = 0, X ′(L) = 0 ⇒ −µB sin(µL) = 0

For a nontrivial solution (B ̸= 0), we require:

sin(µL) = 0 ⇒ µL = nπ, n = 1, 2, 3, . . . (5.32)

Thus,

µn =
nπ

L
, λn = −

(nπ
L

)2
(5.33)

λn are eigenvalues. The corresponding eigenfunctions are:
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Xn(x) = cos
(nπx

L

)
, n = 1, 2, 3, . . . (5.34)

So, the solution will have the form

un(x, t) = e−α2(nπ
L )

2
t cos

(nπx
L

)
, n = 1, 2, . . . (5.35)

We also had another eigenvalue/function from λ = 0, u0(x, t) = A0 · e0·t = A0. Since the equation
(5.21) is linear, a linear combination of solutions is again a solution. Thus the most general solution is
of the form:

u(x, t) = A0 +
∞∑
n=1

Ane
−α2(nπ

L )
2
t cos

(nπx
L

)
, An, n = 0, 1, 2, . . . are constants (5.36)

Using the initial condition u(x, 0) = f(x) :

f(x) = A0 +
∞∑
n=1

An cos
(nπx

L

)
(5.37)

As previously, we use the inner product ⟨·, ·⟩ to project f(x) onto the basis functions in the series:
We multiply both sides of (5.37) by X0(x) = 1 and integrate over [0, L]:∫ L

0

f(x)dx = A0

∫ L

0

1dx+
∞∑
n=1

An

∫ L

0

cos
(nπx

L

)
dx

i.e ∫ L

0

f(x)dx = A0 · x|L0 +
∞∑
n=1

An
L

nπ
sin
(nπx

L

)∣∣∣∣∣
L

0

= A0L+ 0

Hence,

A0 =
1

L

∫ L

0

f(x)dx

Now, if we multiply both sides of (5.37) by cos
(
mπx
L

)
and integrate over [0, L]:∫ L

0

f(x) cos
(mπx

L

)
dx = A0

∫ L

0

cos
(mπx

L

)
dx+

∞∑
n=1

An

∫ L

0

cos
(nπx

L

)
cos
(mπx

L

)
dx

i.e. ∫ L

0

f(x) cos
(mπx

L

)
dx = A0

L

nπ
sin
(nπx

L

)∣∣∣∣L
0

+ Am · L
2

So,

Am =
2

L

∫ L

0

f(x) cos
(mπx

L

)
dx

Thus, the Fourier cosine coefficients are:

A0 =
1

L

∫ L

0

f(x)dx, Am =
2

L

∫ L

0

f(x) cos
(mπx

L

)
dx, m = 1, 2, 3, . . . (5.38)
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The final solution is:

u(x, t) =
1

L

∫ L

0

f(x)dx+
∞∑
n=1

(
2

L

∫ L

0

f(x) cos
(nπ
L

x
)
dx

)
cos
(nπ
L

x
)
e−α2 n2π2

L2 t (5.39)

We observe that as t → ∞ it follows that u(x, t) → A0 = 1
L

∫ L

0
f(x)dx, which is just the average

value of the initial heat f(x) distributed in the bar. This is consistent with physical intuition. It is
sometimes convenient to re-define the Fourier coefficients as follows:

a0 = 2A0

ak = Ak, k = 1, 2, . . .

so that the ak can be rewritten on a unified form

ak =
2

L

∫ L

0

f(x) cos

(
kπx

L

)
dx k = 0, 1, 2, . . .

In terms of the new coefficients ak defined, the Fourier expansion for the initial condition function
f(x) is of the form

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
(5.40)

while the solution of the heat equation (5.23) is of the form

u(x, t) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
e−α2(nπ

L )
2
t (5.41)

Example 5.2.3 (Fourier cosine expansion). Determine the Fourier coefficients ak for the function

f(x) = x, 0 < x < 1 = L

and use the resulting Fourier cosine expansion to prove the identity

∞∑
k=0

1

(2k + 1)2
=

π2

8

We have,

a0 = 2

∫ 1

0

xdx = 2

[
x2

2

]1
0

= 1 and

an = 2

∫ 1

0

x cos(nπx)dx = 2
(−1)n − 1

n2π2
=

{
− 4

n2π2 , n odd
0, n even

Therefore,

f(x) =
1

2
− 4

π2

∞∑
k=0

1

(2k + 1)2
cos((2k + 1)πx) (5.42)

To obtain the required identity we set x = 1 in and rearrange terms. We can also deduce that the
solution of (5.23) with the initial condition u(x, 0) = x is given by
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u(x, t) =
1

2
− 4

π2

∞∑
k=0

1

(2k + 1)2
cos((2k + 1)πx)e−α2((2k+1)π)2t (5.43)

The partial sums are shown in Figure 5.4

Figure 5.4: Partial sums of the Fourier Cosine Series of the function f(x) = x.

Example 5.2.4. Let us solve now the following PDE problem

ut = 0.003uxx, 0 < x < 1, t > 0

ux(0, t) = ux(1, t) = 0,

u(x, 0) = 50x(1− x) for 0 < x < 1.

We must find the cosine series of u(x, 0). For 0 < x < 1 we have

50x(1− x) =
25

3
− 50

π2

∞∑
k=1

1

k2
cos(2kπx)

Hence, the solution to the PDE problem, is given by:

u(x, t) =
25

3
− 50

π2

∞∑
k=1

1

k2
cos(2kπx)e−k2π20.012t

5.2.3 Heat equation on a circular ring - Full range Fourier series

Consider a thin circular wire in which there is no radial temperature dependence as shown in Figiure
5.5, i.e., u(r, θ) = u(θ) so that ∂u

∂r
= 0. In this case the polar Laplacian reduces to

∆u =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2
∂2u

∂θ2

=
∂2u

∂(rθ)2

and if we let x = rθ then ∂2u
∂(rθ)2

= uxx. In this case the heat distribution in the ring is determined by
the following initial value problem with periodic boundary conditions:
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x = 0
x = L

x = −L

Figure 5.5: Consider a thin conducting ring with thermal conductivity α2 that has a given initial
temperature distribution.

PDE : ut = α2uxx, 0 < x < 2L, t > 0 (5.44a)
BC : u(−L, t) = u(L, t), ux(−L, t) = ux(L, t), (5.44b)
IC : u(x, 0) = f(x), (5.44c)

We assume a solution of the form:

u(x, t) = X(x)T (t) (5.45)

Differentiating both sides:

ut = X(x) · Ṫ (t)
uxx = X ′′(x) · T (t)

Substituting these into the heat equation (5.44):

X(x) · Ṫ (t) = α2X ′′(x) · T (t) (5.46)

Dividing by α2X(x)T (t) :

Ṫ (t)

α2T (t)
=

X ′′(x)

X(x)
= λ. (5.47)

Since both sides depend on different variables, they must equal a constant, denoted as λ. This gives
two ordinary differential equations (ODEs):

Time equation:

Ṫ (t) = λα2T (t)
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Solving this gives:

T (t) = Ceλα
2t. (5.48)

Space equation: an eigenvalue problem

X ′′(x) = λX(x), X(−L) = X(L), X ′(−L) = X ′(L) (5.49)

The nature of X(x) depends on λ.

Case 1: λ > 0: Let λ = µ2, then:

X ′′ − µ2X = 0

The general solution is (we have chosen this form for simplifications, it is also fine to use the
exponential form):

X(x) = A cosh(µx) +B sinh(µx) (5.50)

We note that

X ′(x) = Aµ sinh(µx) +Bµ cosh(µx)

Applying boundary conditions:

X(−L) = X(L) ⇒ 2B sinh(µL) = 0 ⇒ B = 0 (5.51)

and

X ′(−L) = X ′(L) ⇒ 2Aµ sinh(µL) = 0 ⇒ A = 0 (5.52)

leading to the trivial solution.

Case 2: λ = 0 The equation simplifies to:

X ′′(x) = 0 ⇒ X(x) = Ax+B

We also have

X ′(x) = A

Applying boundary conditions:

X(−L) = X(L) ⇒ 2AL = 0 ⇒ A = 0

and

X ′(−L) = A = 0 = X ′(L)

So, X(x) = B is a non trivial solution. For this case, the eigenvalue λ0 = 0 and the corresponding
eigenfunction is X0 = 1.
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Case 3: λ < 0: Let λ = −µ2, then:

X ′′ + µ2X = 0

The general solution is:

X(x) = A cos(µx) +B sin(µx) (5.53)
We have

X ′(x) = −µA sin(µx) + µB cos(µx) (5.54)
Applying boundary conditions:

X(−L) = X(L) ⇒ 2B sin(µL) = 0

and

X ′(−L) = X ′(L) ⇒ 2Aµ sin(µL) = 0

For a nontrivial solution (A,B, µ ̸= 0), we require:

sin(µL) = 0 ⇒ µL = nπ, n = 1, 2, 3, . . . (5.55)

Thus,

µn =
nπ

L
, λn = −

(nπ
L

)2
(5.56)

λn are eigenvalues. The corresponding eigenfunctions are:

Xn(x) ∈
{
cos
(nπx

L

)
, sin

(nπx
L

)}
, n = 1, 2, 3, . . . (5.57)

So, the solution will have the form

un(x, t) = e−α2(nπ
L )

2
t
[
An cos

(nπx
L

)
+Bn sin

(nπx
L

)]
, n = 1, 2, . . . (5.58)

We also had another eigenvalue/function from λ = 0, u0(x, t) = A0 · e0·t = A0.
Since the equation (5.44) is linear, a linear combination of solutions is again a solution. Thus the most
general solution is of the form:

u(x, t) = A0 +
∞∑
n=1

e−α2(nπ
L )

2
t
[
An cos

(nπx
L

)
+Bn sin

(nπx
L

)]
(5.59)

for some coefficients A0, An, Bn, n = 1, 2, . . ..
Using the initial condition u(x, 0) = f(x) :

f(x) = A0 +
∞∑
n=1

[
An cos

(nπx
L

)
+Bn sin

(nπx
L

)]
(5.60)

As previously, we use the inner product ⟨·, ·⟩ to project f(x) onto the basis functions in the series.
We state the following important result:
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Theorem 5.2.2 (Orthogonality of trigonometric functions). The trigonometric functions
sin
(
nπx
L

)
and cos

(
nπx
L

)
(for n = 1, 2, 3, . . . ) are orthogonal over the interval [−L,L] in the fol-

lowing sense:

∫ L

−L

sin
(nπx

L

)
sin
(mπx

L

)
dx =

{
0, if n ̸= m

L, if n = m
(5.61a)

∫ L

−L

cos
(nπx

L

)
cos
(mπx

L

)
dx =


0, if n ̸= m

L, if n = m ̸= 0

2L, if n = m = 0

(5.61b)

∫ L

−L

cos
(nπx

L

)
sin
(mπx

L

)
dx = 0, for all n,m (5.61c)

The concept of orthogonality means that the inner product of two functions (or two vectors) is
zero over an interval.

⟨f(x), g(x)⟩ =
∫ L

−L

f(x)g(x)dx. (Inner product of two functions)

We multiply both sides of (5.60) by X0(x) = 1 and integrate over [−L,L] :∫ L

−L

f(x)dx = A0

∫ L

−L

1dx+
∞∑
n=1

An

∫ L

−L

cos
(nπx

L

)
dx+

∞∑
n=1

Bn

∫ L

−L

sin
(nπx

L

)
dx

i.e

∫ L

−L

f(x)dx = A0 · x|L−L +
∞∑
n=1

An
L

nπ
sin
(nπx

L

)∣∣∣∣∣
L

−L

−
∞∑
n=1

Bn
L

nπ
cos
(nπx

L

)∣∣∣∣∣
L

−L

= 2A0L+ 0 + 0

Hence,

A0 =
1

2L

∫ L

−L

f(x)dx (5.62)

Now, if we multiply both sides of (5.60) by cos
(
mπx
L

)
and integrate over [−L,L] :

∫ L

−L

f(x) cos
(mπx

L

)
dx = A0

∫ L

−L

cos
(mπx

L

)
dx+

∞∑
n=1

An

∫ L

−L

cos
(nπx

L

)
cos
(mπx

L

)
dx

+
∞∑
n=1

Bn

∫ L

−L

sin
(nπx

L

)
cos
(mπx

L

)
dx

i.e. (using (5.61a) and (5.61c))∫ L

−L

f(x) cos
(mπx

L

)
dx = A0

L

nπ
sin
(nπx

L

)∣∣∣∣L
−L

+ AmL+ 0

So,
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Am =
1

L

∫ L

−L

f(x) cos
(mπx

L

)
dx (5.63)

Now, if we multiply both sides of (5.60) by sin
(
mπx
L

)
and integrate over [−L,L] :∫ L

−L

f(x) sin
(mπx

L

)
dx = A0

∫ L

−L

sin
(mπx

L

)
dx+

∞∑
n=1

An

∫ L

−L

cos
(nπx

L

)
sin
(mπx

L

)
dx

+
∞∑
n=1

Bn

∫ L

−L

sin
(nπx

L

)
sin
(mπx

L

)
dx

i.e. (using (5.61b) and (5.61c))∫ L

−L

f(x) sin
(mπx

L

)
dx = − A0

L

nπ
cos
(nπx

L

)∣∣∣∣L
−L

+ 0 +BmL

So,

Bm =
1

L

∫ L

−L

f(x) sin
(mπx

L

)
dx (5.64)

So, in summary, the full Fourier series of f(x) is:

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
where

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx, n = 0, 1, 2, 3, . . . (5.65)

and

bn =
1

L

∫ L

−L

f(x) sin
(mπx

L

)
dx, n = 1, 2, 3, . . . (5.66)

The final solution is:

u(x, t) =
a0
2

+
∞∑
n=1

e−α2(nπ
L )

2
t
[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
(5.67)

We observe that as t → ∞ it follows that u(x, t) → a0
2
= 1

2L

∫ L

−L
f(x)dx, which is just the average

value of the initial heat f(x).

Example 5.2.5 (Full Fourier expansion). Let us solve the equation (5.44) with the initial condition
u(x, 0) = f(x), where

f(x) =

{
0, −π < x < 0

x, 0 ≤ x ≤ π

In this case, L = π. We need to write the full Fourier expansion of u(x, 0). We have,
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a0 =
1

π

∫ π

−π

f(x)dx =
1

π

∫ π

0

x dx =
π

2

an =
1

π

∫ π

−π

f(x) cos(nx)dx

=
1

π

∫ π

0

x cos(nx)dx

=
1

π

{
x
sin(nx)

n

∣∣∣∣π
0

− 1

n

∫ π

0

sin(nx)dx

}
=

1

π

{
π sin(nπ)

n
+

1

n2
cos(nx)

∣∣∣∣π
0

}
=

1

πn2
[(−1)n − 1] (5.68)

For even indices, a2m = 0 for m = 0, 1, . . .. For odd indices:

a2m+1 = − 2

π(2m+ 1)2
, m = 0, 1, 2, . . .

Now, we compute bn

bn =
1

π

∫ π

−π

f(x) sin(nx)dx

=
1

π

∫ π

0

x sin(nx)dx

=
1

π

{
− x

cos(nx)

n

∣∣∣∣π
0

+
1

n

∫ π

0

cos(nx)dx

}
=

1

π

{
−π

cos(nπ)

n
+

1

n2
sin(nx)

∣∣∣∣π
0

}
Therefore, the Fourier series representation of f(x) is given by

f(x) =
a0
2

+
∞∑
n=1

an cos(nx) + bn sin(nx)

=
π

4
− 2

π

∞∑
m=0

cos[(2m+ 1)x]

(2m+ 1)2
+

∞∑
n=1

(−1)n+1 sin(nx)

n
(5.69)

Finally, the solution takes the form:

u(x, t) =
π

4
− 2

π

∞∑
m=0

e−α2(2m+1)2t cos[(2m+ 1)x]

(2m+ 1)2
+

∞∑
m=1

(−1)m+1 e
−α2m2t sin(mx)

m
(5.70)
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Important summary!

I: The Dirichlet Problem (Ice on Both Sides)

{
X ′′ + λ2X = 0

X(0) = 0 = X(L)
=⇒

{
λn = nπ

L
, n = 1, 2, . . .

Xn(x) = sin nπx
L

II: The Neumann Problem (Insulation on Both Sides)

{
X ′′ + λ2X = 0

X ′(0) = 0 = X0(L)
=⇒

{
λn = nπ

L
, n = 0, 1, 2, . . .

Xn(x) = cos nπx
L

III: The Periodic Boundary Value Problem (The Closed Ring)


X ′′ + λ2X = 0

X(−L) = X(L)

X ′(−L) = X ′(L)

=⇒

{
λn = nπ

L
, n = 0, 1, 2, . . .

Xn(x) ∈ {1, cos nπx
L
, sin nπx

L
}

IV: Mixed Boundary Value Problem A (Ice Left and Insulation Right)
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{
X00 + λ2X = 0

X(0) = 0 = X0(L)
=⇒

{
λk =

(2k+1)π
2L

, k = 0, 1, 2, . . .

Xn(x) = sin (2k+1)πx
2L

V: Mixed Boundary Value Problem B (Insulation Left and Ice Right)

{
X00 + λ2X = 0

X0(0) = 0 = X(L)
=⇒

{
λk =

(2k+1)π
2L

, k = 0, 1, 2, . . .

Xn(x) = cos (2k+1)πx
2L

5.3 Fourier Series

In the previous sections, we solved the heat equation under various boundary conditions, including
periodic, Dirichlet, and Neumann conditions. In each case, a key step in the solution was expressing
the initial condition u(x, 0) as a sum of sine and/or cosine functions. This type of expansion known as
a Fourier series. The fundamental idea behind Fourier series is that any "reasonable" function can be
represented as an infinite sum of trigonometric terms. In the following section, we explore Fourier series
in more detail, developing the formalism that allows us to decompose functions into their fundamental
frequency components.

We consider the expansion of the function f(x) of the form

f(x) ≈ a0
2

+
∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
= S(x), (5.71)

where

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx,

a0
2

=
1

2L

∫ L

−L

f(x)dx = average value of f (5.72)

and

bn =
1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx. (5.73)

We recall that a function f(x) defined for all x is periodic with period T if f(x + T ) = f(x) for all
x.
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We observe that cos
(
nπ
L
(x+ T )

)
= cos

(
nπx
L

)
provided nπT

L
= 2π, T = 2L

n
and similarly sin

(
nπ
L
(x+ 2L)

)
=

sin
(
nπx
L

)
. Thus each of the terms of the Fourier Series S(x) on the RHS of (5.71) is a periodic function

with a maximal period 2L (a constant function is periodic with any period). As a result the function
S(x) is also periodic.

But the question is: How does this relate to f(x) which may not be periodic?
The function S(x) represented by the series is known as the periodic extension of f on [−L,L].

Definition 5.3.1 (Periodic extension). If f is defined on the interval [a, b] then the periodic
extension fper of f , which has period T = b − a, is defined simply by "repeating" f in all the
intervals [a+ nT, b+ nT ] for n = 0,±1, . . ., so that for all x,

fper (x) = f(x− nT ) whenever a+ nT < x ≤ b+ nT, n = 0,±1,±2, . . . (5.74)

In Figure 5.6, we show a picture for a = −1, b = 1, and functions f(x) = x2 and f(x) = x.

Figure 5.6: Periodic extension fper (x) of the function f(x) = x2 (blue curve) and the function f(x) = x
(red curve) with a = −1 and b = 1.

Note that fper may be discontinuous at a, b, etc., even if f is continuous. A related fact is that in
defining fper we have taken fper (a) = f(b) and not fper (a) = f(a); some choice must be made but this
has no effect in practice.

Note: t can be useful to shift the interval of integration

Since the periodic extension fper is periodic with period 2L (as are the basis functions cos
(
nπx
L

)
and sin

(
nπx
L

)
), the interval [−L,L] over which the integration is carried out may be replaced by

any other interval of the same length: that is for any X,
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a0 =
1

2L

∫ X+2L

X

fper (x)dx, an =
1

L

∫ X+2L

X

fper (x) cos
nπx

L
dx, n ≥ 1

bn =
1

L

∫ X+2L

X

fper (x) sin
nπx

L
dx, n ≥ 1

Example 5.3.1. Consider the example given in Example 5.2.5. Then, we have

f(x) =

{
0 −π < x < 0
x 0 ≤ x ≤ π

On [π, 3π],

fper (x) =

{
0 π < x < 2π

x− 2π 2π ≤ x ≤ 3π

an =
1

π

∫ 3π

π

fper (x) cos(nx)dx, change of variables: t = x− 2π dx = dt, x = t+ 2π

=
1

π

∫ 3π

2π

(x− 2π) cos(nx)dx

=
1

π

∫ 2π

0

t cos(nt)dt since cosn(t+ 2π) = cosnt

5.3.1 Half range Fourier Series: even and odd functions

We consider the Fourier Expansions for Even and Odd functions, which give rise to cosine and sine
half range Fourier Expansions. If we are only given values of a function f(x) over half of the range
[0, L], we can define two different extensions of f to the full range [−L,L], which yield distinct Fourier
Expansions. The even extension gives rise to a half range cosine series, while the odd extension gives
rise to a half range sine series.

We first recall the elementary definitions of even, odd, and periodic functions.

Definition 5.3.2 (Even and odd functions). A function f(x) is said to be even if it is defined
for all x (or possibly in some interval symmetric about x = 0, that is, of the form ( −L,L ) or
[−L,L] ) and satisfies f(x) = f(−x); it is odd if it is similarly defined and satisfies f(−x) =
−f(x). We will frequently use the observation that if f(x) is defined for −L ≤ x ≤ L then,∫ L

−L

f(x)dx =

{
0, if f is odd
2
∫ L

0
f(x)dx, if f is even

(5.75)

This formula is easily be derived by writing
∫ L

−L
f(x)dx =

∫ 0

−L
f(x)dx+

∫ L

0
f(x)dx and making the

change of variable y = −x in the first integral.

Note

Let E(x) represent an even function and O(x) an odd function. Then,
(a) If f(x) = E(x) ·O(x) then f(−x) = E(−x)O(−x) = −E(x)O(x) = −f(x) ⇒ f is odd.
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(b) E1(x) · E2(x) → even.
(c) O1(x) ·O2(x) → even.
(d) Any function can be expressed as a sum of an even part and an odd part:

f(x) =
1

2
[f(x) + f(−x)]︸ ︷︷ ︸

even part

+
1

2
[f(x)− f(−x)]︸ ︷︷ ︸

odd part

Check: Let E(x) = 1
2
[f(x) + f(−x)]. Then E(−x) = 1

2
[f(−x) + f(x)] = E(x) (even.)

Similarly let O(x) = 1
2
[f(x)− f(−x)]. Then, O(−x) = 1

2
[f(−x)− f(x)] = −O(x) ( odd.)

Important!: Consequences of the Even/Odd property for Fourier Series

One may use (5.75) to considerably simplify the formulas (5.72)-(5.73) when f is even or odd.

• If f is even then f(x) cos(nπx/L) is even and f(x) sin(nπx/L) is odd, so that from (5.75),

a0 =
1

L

∫ L

0

f(x)dx, an =
2

L

∫ L

0

f(x) cos
nπx

L
dx, bn = 0, n ≥ 1 (5.76)

• If f is odd one has f(x) cos(nπx/L) is odd and f(x) sin(nπx/L) is even

a0 = 0, an = 0, bn =
2

L

∫ L

0

f(x) sin
nπx

L
dx, n ≥ 1 (5.77)

• Since any function can be written as the sum of an even and an odd part, we can interpret
the cosine and sine series as corresponding to even and odd functions:

f(x) =
1

2
[f(x) + f(−x)] +

1

2
[f(x)− f(−x)]

where the first term represents the even part of f(x) and the second term represents the odd part.
Thus, the Fourier series expansion can be expressed as:

f(x) =

{
a0
2

+
∞∑
n=1

an cos
(nπx

L

)}
+

{
∞∑
n=1

bn sin
(nπx

L

)}
,

where the cosine terms correspond to the even part and the sine terms correspond to the odd part
of the function. In addition,

an =
2

L

∫ L

0

1

2
[f(x) + f(−x)] cos

(nπx
L

)
dx =

1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx

bn =
2

L

∫ L

0

1

2
[f(x)− f(−x)] sin

(nπx
L

)
dx =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx

Let us emphasize that in (5.76)-(5.77) we are considering the Fourier series of a function defined on
the interval [−L,L].
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5.3.2 Half-range expansions

If we are given a function f(x) on an interval [0, L] and we want to represent f by a Fourier series, we
have two choices: a cosine series or a sine series.

Cosine series:
If f(x) is extended as an even function on [−L,L], it can be represented by a Fourier cosine series:

f(x) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
where the Fourier coefficients are given by

an =
2

L

∫ L

0

f(x) cos
(nπx

L

)
dx

We note that the even periodic extension is obtained by simply computing the Fourier series repre-
sentation for the even function

fe(x) ≡
{

f(x), 0 < x < L
f(−x) −L < x < 0

Since fe(x) is an even function on a symmetric interval [−L,L], we expect that the resulting Fourier
series will not contain sine terms.
We can simplify this by noting that the integrand is even and the interval of integration can be
replaced by [0, L]. On this interval fe(x) = f(x). So, we have the Cosine Series representation of
f(x) for x ∈ [0, L] given as above.

Sine series:
If f(x) is extended as an odd function on [−L,L], it can be represented by a Fourier sine series:

f(x) =
∞∑
n=1

bn sin
(nπx

L

)
where the Fourier coefficients are given by

bn =
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx

Similarly as the case of the cosine series, given f(x) defined on [0, L], the odd periodic extension is
obtained by simply computing the Fourier series representation for the odd function

fo(x) ≡
{

f(x), 0 < x < L
−f(−x) −L < x < 0

The resulting series expansion leads to defining the Sine Series representation of f(x) for x ∈ [0, L]
as described above.

Example 5.3.2 (Half-Range Expansion of f(x) = x). Expand f(x) = x on 0 < x < 2 in a
half-range (a) sine series, (b) cosine series.
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(a) Sine Series (L = 2).

bn =
2

L

∫ L

0

x sin
(nπ
L

x
)
dx =

∫ 2

0

x sin
(

nπ
2
x
)
dx

= −
x cos

(
nπ
2
x
)

nπ
2

∣∣∣∣∣
2

0

+
2

nπ

∫ 2

0

cos
(

nπ
2
x
)
dx

= − 4

nπ
cos(nπ) +

2

nπ
sin
(
nπ
2
x
)∣∣∣∣2

0

= − 4

nπ
(−1)n.

Hence

f(x) =
4

π

∞∑
n=1

(−1)n+1

n
sin
(

nπ
2
x
)
,

and at x = 1:

1 =
4

π

∞∑
n=1

(−1)n+1

n
sin
(

nπ
2

)
=⇒ π

4
= 1− 1

3
+ 1

5
− 1

7
+ · · · .

(b) Cosine Series (L = 2).

a0 =
2

2

∫ 2

0

x dx =
x2

2

∣∣∣∣2
0

= 2,

an =

∫ 2

0

x cos
(

nπ
2
x
)
dx =

2

nπ
x sin

(
nπ
2
x
)∣∣∣∣2

0

− 2

nπ

∫ 2

0

sin
(

nπ
2
x
)
dx+

(
2
nπ

)2
cos
(

nπ
2
x
)∣∣∣∣2

0

=
4

n2π2

[
cos(nπ)− 1

]
.

Thus

f(x) = 1 +
4

π2

∞∑
n=1

(−1)n − 1

n2
cos
(

nπ
2
x
)
= 1− 8

π2

∞∑
k=0

cos
( (2k+1)π

2
x
)

(2k + 1)2
.

At x = 2:

2 = 1 +
8

π2

∞∑
k=0

1

(2k + 1)2
=⇒ π2

8
= 1 + 1

32
+ 1

52
+ · · · .

Example 5.3.3 (Cosine Series of sinx on 0 ≤ x ≤ π ). Find the Fourier cosine series of
f(x) = sin x on [0, π].

a0 =
2

π

∫ π

0

sinx dx =
4

π
, a1 =

2

π

∫ π

0

sinx cosx dx =
1

π

∫ π

0

sin 2x dx = 0.

For n ≥ 2, use 2 sinx cos(nx) = sin((n+ 1)x)− sin((n− 1)x):

an =
2

π

∫ π

0

sinx cos(nx) dx =
1

π

∫ π

0

[sin((n+ 1)x)− sin((n− 1)x)] dx

=
1

π

[
cos((n−1)x)

n−1
− cos((n+1)x)

n+1

]π
0
=

2
(
(−1)n−1 − 1

)
π(n2 − 1)

.
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Hence

sinx =
2

π
+

2

π

∞∑
n=2

(−1)n−1 − 1

n2 − 1
cos(nx) =

2

π
− 4

π

∞∑
j=1

cos(2jx)

(2j)2 − 1
.

Example 5.3.4 (Periodic Extension of f(x) = x). Assume f(x) = x on 0 < x < 2 with period 2
so that L = 1. Compute its full Fourier series.

a0 =
1

L

∫ L

−L

x dx =

∫ 1

−1

x dx = 0? (equivalently compute
∫ 2

0

x dx = 2 for even part.)

For n ≥ 1:

an =
1

L

∫ 1

−1

x cos(nπx) dx =

∫ 2

0

x cos(nπx) dx

=
[
x sin(nπx)

nπ

]2
0
− 1

nπ

∫ 2

0

sin(nπx) dx = 0,

bn =
1

L

∫ 1

−1

x sin(nπx) dx =

∫ 2

0

x sin(nπx) dx

=
[
−x cos(nπx)

nπ

]2
0
+

1

nπ

∫ 2

0

cos(nπx) dx = − 2

nπ
.

Therefore

f(x) = 1− 2

π

∞∑
n=1

sin(nπx)

n
.

Why??

In the previous example, if we compute f(0) using the original definition of f , we obtain 0 . However,
if we use the Fourier expansion of f , we obtain f(0) = 1. What is wrong?

5.3.3 Convergence of Fourier Series

In this section, we state the fundamental convergence theorem for Fourier Series, which assumes that
the function f(x) is piecewise continuous. At points of discontinuity of f(x), the Fourier approximation
SN(x) takes on the average value:

1

2

(
f
(
x+
)
+ f

(
x−))

where f (x+)and f (x−) represent the right-hand and left-hand limits of f(x) at the discontinuity,
respectively. Before stating the main result of this section, we introduce the following notion.

Definition 5.3.3 (Piecewise continuous). A function f : [a, b] → R is piecewise continuous if
there are numbers t0, t1, . . . , tn with a = t0 < t1 < · · · < tn = b, such that f is continuous on each
of the intervals (ti, ti+1), and tends to a finite value at each endpoint of these intervals. That is,
the limits
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f
(
t+i
)
= lim

t↘ti
f(t) and

f
(
t−i+1

)
= lim

t↗ti+1

f(t)

exist (and are finite). A function f : [a, b] → R is piecewise continuous if, roughly speaking, it is
made up of a finite number of continuous pieces. A function f : R → R is piecewise continuous
if it is piecewise continuous on every closed interval [a, b]. Thus it can have infinitely many
discontinuities, but only finitely many on any finite interval.

Example 5.3.5.

• For the square wave function

f(t) =

{
0 if −π < t ≤ 0
π if 0 < t ≤ π

we have f (0−) = 0 and f (0+) = π and f is continuous on ( −π, 0 ), ( 0, π ). Therefore, f is
piecewise continuous on [−π, π].

• The function f : R → R given by f(t) = tan t (and f(t) = 0 if t is an odd multiple of π/2 )
is not piecewise continuous. Although it has only finitely many discontinuities on any finite
interval, the function "blows up" at these discontinuities, so that (for example) the limits
f
(
π
2
−)and f

(
π
2
+
)
do not exist.

Theorem 5.3.1 (Convergence of Fourier Series). Let f and f ′ be piecewise continuous func-
tions on [−L,L] (i.e. f is piecewise continuously differentiable or piecewise C1 ) and periodic
with period 2L, then f has a Fourier Series

f(x)] ≈ a0
2

+
∞∑
n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)
= S(x)

where

an =
1

L

∫ L

−L

f(x) cos
(nπx

L

)
dx and bn =

1

L

∫ L

−L

f(x) sin
(nπx

L

)
dx

The Fourier Series converges to f(x) at all points at which f is continuous and to 1
2
[f (x+)+

f (x−)]at all points at which f is discontinuous. Thus a Fourier Series converges to the average
value of the left and right limits at a point of discontinuity of the function f(x).

Important!

Under the hypothesis of Theorem 5.3.1, ≈ can be replaced by = and

S(x) =

{
f(x), if f is continuous at x
f(x+)+f(x−)

2
, if f is discontinuous at the point x.
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Remark 5.3.1. A way to look at the connection of Fourier series on an interval with the Fourier
series of periodic functions is to start with a piecewise continuous function g defined only on the
interval [−L,L]. Then gper , a periodic extension of g of period 2L, can play the role of f above;
in particular, the Fourier series of g converges to gper everywhere, in our usual sense:

S(x) =

{
gper(x), if gper is continuous at x
gper(x+)+gper(x−)

2
, if gper is discontinuous at the point x

Remark 5.3.2 (Gibbs phenomenon). The Fourier series has a difficult time converging at the
point of discontinuity and these graphs of the Fourier series show a distinct overshoot which does
not go away. This is called the Gibbs phenomenon and the amount of overshoot can be computed.
We refer to the Lectures notes of Prof. Peirce for more on this phenomenon.

Theorem 5.3.2 (Uniform convergence of Fourier Series). Let f be a continuous functions
on [−L,L] and periodic with period 2L. If f ′ is piecewise continuous on [−L,L], then the Fourier
series for f converges uniformly to f on [−L,L] and hence on any interval. That is, for each
ε > 0, there exists an integer N0 (that depends on ε ) such that

sup
x∈[−L,L]

|f(x)− SN(x)| < ε

for all N > N0, where

SN(x) =
a0
2

+
N∑

n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]

5.3.4 Complex form of Fourier Series

Finally, everything said above applies also to the complex form of the Fourier series: a function g(x),
periodic with period 2L, has a complex Fourier series

g(x) ≈
∞∑

n=−∞

cne
i(nπx

L )

with

cn =
1

2L

∫ L

−L

g(x)e−i(nπx
L )dx
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Example 5.3.6.

f(x) =

{
−1 −π ≤ x < 0
1 0 < x < π

L = π

cn =
1

2π

{
−
∫ 0

−π

e−inxdx+

∫ π

0

e−inxdx

}
=

1

2π

{
−
e−inx|0−π

(−in)
+

e−inx|π0
(−in)

}

=
i

2πn

{
−2 + e+inπ + e−inπ

}
=

{
0 n even

2
iπn

n odd

Therefore,

f(x) =
∞∑

n=−∞

2

πi(2n+ 1)
ei((2n+1)x)

5.4 Bessel’s inequality and Parseval Identity

Bessel’s inequality and Parseval’s identity are fundamental results in functional analysis and Fourier
analysis, particularly in the study of Hilbert spaces. These results provide insights into the decomposi-
tion of functions into orthonormal bases and the convergence of series representations. We will explore
an analogue of Pythagoras’ Theorem for functions that are square-integrable. Such functions are sig-
nificant in mathematical physics, as they correspond to systems with finite energy. Additionally, we
show some applications of the Parseval’s identity into summation formulas involving series of reciprocal
powers of n.

Definition 5.4.1 (Square integrable function). A function f is said to be square-integrable
if it satisfies the condition: ∫ L

−L

[f(x)]2dx < ∞

in which case we write f ∈ L2([−L,L]).

Consider the Fourier series associated with f(x) :

f(x) ∼ a0
2

+
∞∑
n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
= S∞

Define the partial sum:

SN(x) =
a0
2

+
N∑

n=1

[
an cos

(nπx
L

)
+ bn sin

(nπx
L

)]
Then, we have the following results.
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Theorem 5.4.1 (Bessel’s Inequality). Let f ∈ L2[−L,L]. Then

a20
2

+
∞∑
n=1

a2n + b2n ≤ 1

L

∫ L

−L

f 2(x)dx

in particular the series a20
2
+
∑∞

n=1 a
2
n + b2n is convergent.

Proof of Theorem 5.4.1. We have that

[f(x)− SN(x)]
2 = f 2(x)− 2f(x)SN(x) + S2

N(x)

Consider the least-square error defined as:

E2 [f, SN ] =
1

L

∫ L

−L

[f(x)− SN(x)]
2 dx

=
1

L

{∫ L

−L

f 2(x)dx− 2

∫ L

−L

f(x)SN(x)dx+

∫ L

−L

S2
N(x)dx

}
=

1

L
{⟨f, f⟩ − 2 ⟨f, SN⟩+ ⟨SN , SN⟩}

Now, we compute:

⟨SN , SN⟩ =
∫ L

−L

[
a0
2

+
N∑

n=1

an cos
(nπx

L

)
+ bn sin

(nπx
L

)]2
dx

=
a20
2
L+

N∑
n=1

(
a2n

∫ L

−L

cos2
(nπx

L

)
dx+ b2n

∫ L

−L

sin2
(nπx

L

)
dx

)

= L

[
a20
2

+
N∑

n=1

(
a2n + b2n

)]
In addition,

⟨f, SN⟩ =
∫ L

−L

f(x)SN(x)dx

=
a0
2

∫ L

−L

f(x)dx+
N∑

n=1

(
an

∫ L

−L

f(x) cos
(nπx

L

)
dx+ bn

∫ L

−L

f(x) sin
(nπx

L

)
dx

)
Therefore,

E2 [f, SN ] =
1

L

∫ L

−L

[f(x)− SN(x)]
2 dx =

1

L
⟨f, f⟩ −

{
a20
2

+
N∑

n=1

(
a2n + b2n

)}
Since we know that

E2 [f, SN ] =

∫ L

−L

[f(x)− SN(x)]
2 dx ≥ 0

it follows that
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a20
2

+
N∑

n=1

a2n + b2n ≤ 1

L

∫ L

−L

f 2(x)dx =
1

L
⟨f, f⟩ = E[f ]

where E[f ] is known as the energy of the 2L-periodic function f .

Theorem 5.4.2 (Parseval’s Identity). Let f ∈ L2[−L,L]. Then the Fourier coefficients an
and bn satisfy Parseval’s Formula

a20
2

+
∞∑
n=1

(
a2n + b2n

)
=

1

L

∫ L

−L

f 2(x)dx = E[f ] (5.78)

if and only if

lim
N→∞

∫ L

−L

[f(x)− SN(x)]
2 dx = 0 (5.79)

Remark 5.4.1. The convergence in (5.79) should be understood in the L2-sense (mean square
sense). This is a convergence in an average sense. When {SN} tends to f uniformly, {SN} must
tend to f in L2-sense. The converse is not always true. Hence convergence in L2-sense is weaker
than uniform convergence.

Important!: In practice...

• The Fourier series of every L2-integrable function converges to the function in L2-sense.

• Let f be a piecewise continuous function on [−L,L]. Then SN converges to f in the mean
square sense.

• If f is piecewise continuous on [−L,L], then Parseval’s identity (5.78) holds.

Example 5.4.1. Consider the Fourier cosine series of f(x) = x, 0 < x < 2:

x ≈ 1 +
∞∑
n=1

4

π2n2
[cos(nπ)− 1] cos

nπx

2

a) Write Parseval’s identity corresponding to the above Fourier series.
b) Determine from a) the sum of the series

1

14
+

1

24
+

1

34
+ . . .

Solution 5.4.1 (Solution to Example 5.4.1). a) We first find the Fourier coefficient and the
period of the Fourier series just by comparing the given series with the standard Fourier series

a0 = 2, an =
4

π2n2
[cos(nπ)− 1], n = 1, 2, . . . , bn = 0,

period: L = 2.
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We note that ∫ 2

−2

x2 dx =
16

3
< ∞,

so that f ∈ L2(−2, 2). Thus, the conditions for Parseval’s identity are satisfied, and we can write

a20
2

+
∞∑
n=1

(
a2n + b2n

)
=

1

2

∫ 2

−2

f 2(x) dx =

∫ 2

0

f 2(x) dx.

This implies ∫ 2

0

x2 dx =
4

2
+

∞∑
n=1

16

π4n4
(cos(nπ)− 1)2.

This can be simplified to give

8

3
= 2 +

64

π4

[ 1
14

+
1

34
+

1

54
+ · · ·

]
,

and hence
1

14
+

1

34
+

1

54
+ · · · = π4

96
.

b) Let

S =
1

14
+

1

24
+

1

34
+ · · · .

Split the series as
S =

(
1
14

+ 1
34

+ 1
54

+ · · ·
)
+
(

1
24

+ 1
44

+ 1
64

+ · · ·
)

=
π4

96
+

1

24
S.

Solving for S gives

S =
π4

90
.

Example 5.4.2. Find the Fourier series of x2,−π < x < π and use it along with Parseval’s
theorem to show that

∞∑
n=1

1

(2n− 1)4
=

π4

96
.

Solution 5.4.2 (Solution to Example 5.4.2). Since f(x) = x2 is an even function, bn = 0. For
n ≥ 1,

an =
2

π

∫ π

0

x2 cos(nx) dx =
2

π

[
0− 2

n

∫ π

0

x sin(nx) dx
]
=

4

n2
(−1)n.

The constant term is
a0 =

2

π

∫ π

0

x2 dx =
2π2

3
.
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Thus

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx).

Since
∫ π

−π
x4 dx = 2π5

5
< ∞, by Parseval’s theorem,

1

π

∫ π

−π

f 2(x) dx =
a20
2

+
∞∑
n=1

(
a2n + b2n

)
.

Using 1
π

∫ π

−π
x4 dx = 2π4

5
leads to

4π4

18
+

∞∑
n=1

16

n4
=

2π4

5
,

so
∑∞

n=1
1
n4 = π4

90
. Finally,

∞∑
n=1

1

(2n− 1)4
=

∞∑
n=1

1

n4
− 1

16

∞∑
n=1

1

n4
=

15

16

π4

90
=

π4

96
.

5.5 Heat conduction problems with time-independent inhomo-
geneous boundary conditions

In this section, we consider heat conduction problems with inhomogeneous boundary conditions. To
determine a solution, we exploit the linearity of the problem, which ensures that linear combinations of
solutions remain solutions. In particular, we first determine a well-chosen particular solution, known as
the steady-state solution, which can be used to eliminate the inhomogeneous boundary conditions.
This reduces the problem to solving the same boundary value problem but with homogeneous boundary
conditions and an adjusted initial condition.

Selection of particular solution is not unique !!

Although the steady-state solution is a natural choice in this case, the selection of a particular
solution, as always, is not unique. We will introduce two methods: The separation of variables and
a more generally applicable method of eigenfunction expansions.

5.5.1 Steady state

We convert an inhomogeneous heat equation to a homogeneous problem when the inhomogeneous terms
are all time-independent.

Dirichlet nonhomogeneous BC

Consider the Boundary Value Problem (BVP) modelling heat propagation in a rod where the end points
are kept at constant temperatures u0 and u1 :
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ut = α2uxx, 0 < x < L, t > 0 (5.80a)
BC : u(0, t) = u0, u(L, t) = u1 (5.80b)
IC : u(x, 0) = f(x) (5.80c)

Since u0 and u1 are not necessarily zero, we cannot apply directly the method of separation of
variables. To solve such a problem, we can proceed as follows.

Methodology 5.5.1.

(a) Find the steady-state solution (i.e., when ut = 0) which we denote by u∞(x). (5.80) gives

u′′
∞(x) = 0 ⇒ u∞(x) = Ax+B

Using the boundary conditions, we obtain u∞(0) = B = u0 and u∞(L) = AL + B = u1 ⇒
A = u1−u0

L
. Therefore,

u∞(x) =

(
u1 − u0

L

)
x+ u0, (Steady-state solution). (5.81)

(b) Let v(x, t) = u(x, t) − u∞(x). We verify that if u(x, t) solves the given BVP (5.80), then
v(x, t) solves the following homogeneous problem

vt = α2vxx, 0 < x < L, t > 0 (5.82a)
BC : v(0, t) = 0, v(L, t) = 0 (5.82b)
IC : v(x, 0) = f(x)− u∞(x) (5.82c)

Indeed, we have:
vt = ut = α2uxx = α2vxx.

Hence, vt = α2vxx. Moreover, v(0, t) = u(0, t) − u∞(0) = u0 − u0 = 0 and v(L, t) = u(L, t) −
u∞(L) = u1 − u1 = 0. So, v solves (5.82).
Now, (5.82), has homogeneous BC and can be solved using the separation of method. Proceeding
as in Section 5.2.1, we deduce that

v(x, t) =
∞∑
n=1

bne
−α2(nπ

L )
2
t sin

(nπx
L

)
(5.83)

where

bn =
2

L

∫ L

0

(f(x)− u∞(x)) sin
(nπx

L

)
dx, n = 1, 2, 3, . . . (5.84)

Finally, the most general solution to (5.80) is given by

u(x, t) = v(x, t) + u∞(x) = u0 +

(
u1 − u0

L

)
x+

∞∑
n=1

bne
−α2(nπ

L )
2
t sin

(nπx
L

)
, (5.85)

with bn given by(5.84).
Here, we also show a more general method known as the eigenfunction expansions.
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Eigenfunction expansions

In order to solve the boundary value problem (5.82), we could recognize that
{
sin
(
nπx
L

)}∞
n=1

are
eigenfunctions of the spatial operator:

− ∂2

∂x2

along with the homogeneous Dirichlet BC v(0, t) = 0 = v(L, t). We therefore assume an eigen-
function expansion of the form:

v(x, t) =
∞∑
n=1

v̂n(t) sin
(nπx

L

)
vt =

∞∑
n=1

˙̂vn(t) sin
(nπx

L

)
and

vxx = −
∞∑
n−1

v̂n(t)
(nπ
L

)2
sin
(nπx

L

)
vt = α2vxx ⇒ vt − α2vxx = 0

⇒
∞∑
n=1

{
˙̂vn(t) + α2

(nπ
L

)2
v̂n(t)

}
sin
(nπx

L

)
= 0

The sine functions sin
(
nπx
L

)
form an orthogonal set over the interval x ∈ [0, L]. Therefore, the

above equation holds if and only if each term in the summation is zero:

˙̂vn(t) + α2
(nπ
L

)2
v̂n(t) = 0

This is a first-order linear ordinary differential equation for v̂n(t). The equation is separable and
can be solved as follows:

˙̂vn(t) = −α2
(nπ
L

)2
v̂n(t)

This has the general solution:

v̂n(t) = v̂n(0)e
−α2(nπ

L )
2
t

where v̂n(0) is the initial condition for v̂n(t). Therefore,

v(x, t) =
∞∑
n=1

v̂n(0)e
−α2(nπ

L )
2
t sin

(nπx
L

)
.

We have

v(x, 0) =
∞∑
n=1

v̂n(0) sin
(nπx

L

)
= f(x)− u∞(x)

Hence by projection,

v̂n(0) =
2

L

∫ L

0

{f(x)− u∞(x)} sin
(nπx

L

)
dx

which is the same solution as above.
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Example 5.5.1. We aim to solve the heat conduction problem:
ut = uxx, 0 < x < 2, t > 0

u(0, t) = 100, u(2, t) = 100, t > 0

u(x, 0) = 0, 0 < x < 2

(5.86)

The steady state function u∞(x) satisfies the equation:

u′′
∞(x) = 0, u∞(0) = 100, u∞(2) = 100

Solving this, we obtain:

u∞(x) = 100

Define v(x, t) = u(x, t)− u∞(x). Then v satisfies the following boundary value problem:
vt = vxx, 0 < x < 2, t > 0

v(0, t) = 0, v(2, t) = 0, t > 0

v(x, 0) = −100, 0 < x < 2

The solutions of the homogeneous part, using separation of variables, are given by:

v(x, t) =
∞∑
n=1

Cne
−π2n2

4
t sin

nπx

2

The initial condition implies:

v(x, 0) = −100 =
∞∑
n=1

Cn sin
nπx

2

The Fourier coefficients are computed as:

Cn =

∫ 2

0

(−100) sin
nπx

2
dx =

200 [(−1)n − 1]

nπ

Thus, we obtain:

v(x, t) =
200

π

∞∑
n=1

[(−1)n − 1]

n
e−

π2n2

4
t sin

nπx

2

Rewriting in terms of odd indices:

v(x, t) = −400

π

∞∑
k=0

1

2k + 1
e−

π2(2k+1)2

4
t sin

(2k + 1)πx

2

Finally, the solution to the original problem is:

u(x, t) = 100− 400

π

∞∑
k=0

1

2k + 1
e−

π2(2k+1)2

4
t sin

(2k + 1)πx

2
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Mixed Dirichlet-Neumann nonhomogeneous BC
We consider the initial-boundary value problem

ut = α2uxx, 0 < x < L, t > 0 (5.87a)
BC : u(0, t) = u0, ux(L, t) = q1 (5.87b)
IC : u(x, 0) = g(x) (5.87c)

Methodology 5.5.2.

(a) Steady-State Solution. For the steady state we set ut = 0, so that

u′′
∞(x) = 0

Integrating twice, we obtain

u∞(x) = Ax+B.

The steady state must satisfy the boundary conditions. Since

u∞(0) = B = u0

and, because the boundary condition at x = L is on the derivative,

u′
∞(L) = A = q1

we deduce that

u∞(x) = u0 + q1x. ( Steady-state solution ) (5.88)

(b) Reduction to a Homogeneous Problem. Define

v(x, t) = u(x, t)− u∞(x)

Since u∞(x) is independent of t, we have

vt = ut and vxx = uxx

Thus, v(x, t) satisfies

vt = α2vxx, 0 < x < L, t > 0

Moreover, the boundary conditions transform as follows:

v(0, t) = u(0, t)− u∞(0) = u0 − u0 = 0

vx(L, t) = ux(L, t)− u′
∞(L) = q1 − q1 = 0

And the initial condition becomes
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v(x, 0) = g(x)− u∞(x) = g(x)− (u0 + u1x)

Thus, v(x, t) satisfies the homogeneous problem

vt = α2vxx, 0 < x < L, t > 0 (5.89a)
v(0, t) = 0, vx(L, t) = 0 (5.89b)
v(x, 0) = g(x)− (u0 + u1x) (5.89c)

(c) Separation of Variables. Assume a solution of the form

v(x, t) = X(x)T (t).

Substitute into the PDE in (5.89):

X(x)T ′(t) = α2X ′′(x)T (t)

Dividing by α2X(x)T (t), we obtain

T ′(t)

α2T (t)
=

X ′′(x)

X(x)
= λ,

where λ is the separation constant.

In order to have a decaying solution in time we set

λ = −µ2, µ > 0.

Then the spatial ODE becomes

X ′′(x) + µ2X(x) = 0 (5.90)

with the boundary conditions

X(0) = 0, X ′(L) = 0

The general solution of (5.90) is

X(x) = A cos(µx) +B sin(µx).

The condition X(0) = 0 forces A = 0, hence

X(x) = B sin(µx)

Enforcing the Neumann condition at x = L,

X ′(x) = Bµ cos(µx), X ′(L) = Bµ cos(µL) = 0
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we require (for nontrivial B )

cos(µL) = 0

This implies

µL =
(2n+ 1)π

2
, n = 0, 1, 2, . . .

so that

µn =
(2n+ 1)π

2L
and λn = −µ2

n = −
(
(2n+ 1)π

2L

)2

.

Thus, the eigenfunctions are

Xn(x) = sin

(
(2n+ 1)πx

2L

)
The time-dependent ODE becomes

T ′(t) = α2λnT (t) = −α2µ2
nT (t),

which has the solution

Tn(t) = e−α2µ2
nt

(d) Series Solution. By superposition, the solution to (5.89) is given by

v(x, t) =
∞∑
n=0

bn sin

(
(2n+ 1)πx

2L

)
e−α2( (2n+1)π

2L )
2
t (5.91)

where the Fourier coefficients are determined from the initial condition:

bn =
2

L

∫ L

0

[g(x)− (u0 + u1x)] sin

(
(2n+ 1)πx

2L

)
dx. (5.92)

(e) Final Solution. Returning to the original variable, we have

u(x, t) = v(x, t) + u∞(x).

That is,

u(x, t) = u0 + u1x+
∞∑
n=0

bn sin

(
(2n+ 1)πx

2L

)
e−α2( (2n+1)π

2L )
2
t

with the coefficients bn given in (5.92).
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5.5.2 Heat conduction with some heat loss and inhomogeneous boundary
conditions

We consider the initial-boundary value problem

ut = α2uxx − u, 0 < x < L, t > 0 (5.93a)
BC : u(0, t) = 0, u(L, t) = u1 (5.93b)
IC : u(x, 0) = g(x) (5.93c)

Methodology 5.5.3.

(a) Steady-State Solution. To find the steady-state solution u∞(x), we set ut = 0 in (5.93) so
that

α2u′′
∞(x)− u∞(x) = 0.

This ODE can be rewritten as

u′′
∞(x)− 1

α2
u∞(x) = 0.

Its characteristic equation is

r2 − 1

α2
= 0,

with roots

r = ± 1

α
.

Hence, the general solution is

u∞(x) = C1e
x/α + C2e

−x/α

Applying the boundary condition at x = 0 :

u∞(0) = C1 + C2 = 0 =⇒ C2 = −C1

so that

u∞(x) = C1

(
ex/α − e−x/α

)
= 2C1 sinh

(x
α

)
Next, using the condition at x = L :

u∞(L) = 2C1 sinh

(
L

α

)
= u1

we find
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C1 =
u1

2 sinh(L/α)

Thus, the steady-state solution is

u∞(x) =
u1 sinh

(
x
α

)
sinh

(
L
α

) (5.94)

(b) Reduction to a Homogeneous Problem. Define the transient variable

v(x, t) = u(x, t)− u∞(x)

Since u∞(x) is independent of t, we have

vt = ut and vxx = uxx − u′′
∞(x)

Substituting u(x, t) = v(x, t) + u∞(x) into the PDE (5.93) yields

vt = α2 (vxx + u′′
∞(x))− (v + u∞(x)) .

But u∞(x) satisfies

α2u′′
∞(x)− u∞(x) = 0

so that the transient variable satisfies

vt = α2vxx − v

The boundary conditions become

v(0, t) = u(0, t)− u∞(0) = 0− 0 = 0

v(L, t) = u(L, t)− u∞(L) = u1 − u1 = 0

and the initial condition is

v(x, 0) = g(x)− u∞(x) = g(x)−
u1 sinh

(
x
α

)
sinh

(
L
α

)
Therefore, v(x, t) satisfies

vt = α2vxx − v, 0 < x < L, t > 0, (5.95a)
v(0, t) = 0, v(L, t) = 0, (5.95b)

v(x, 0) = g(x)−
u1 sinh

(
x
α

)
sinh

(
L
α

) . (5.95c)
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(c) Separation of Variables. Rewrite the PDE for v(x, t) as

vt + v = α2vxx

Assume a solution of the form

v(x, t) = X(x)T (t).

Substituting into the equation gives

X(x)T ′(t) +X(x)T (t) = α2X ′′(x)T (t)

Dividing by α2X(x)T (t) (assuming nonzero factors) leads to

T ′(t)

α2T (t)
+

1

α2
=

X ′′(x)

X(x)

Since the left side depends only on t and the right only on x, we set them equal to a constant
−µ2 :

T ′(t)

α2T (t)
+

1

α2
= −µ2

Multiplying by α2 yields

T ′(t)

T (t)
+ 1 = −α2µ2

Hence, the timedependent equation is

T ′(t) =
(
−α2µ2 − 1

)
T (t) =⇒ T (t) = e(−α2µ2−1)t

The spatial part satisfies

X ′′(x)

X(x)
= −µ2 =⇒ X ′′(x) + µ2X(x) = 0

With the boundary conditions X(0) = 0 and X(L) = 0 the eigenfunctions are

Xn(x) = sin
(nπx

L

)
, µ =

nπ

L
, n = 1, 2, 3, . . .

Thus, for each n we have

Tn(t) = e−t−α2(nπ
L )

2
t
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(d) Series Representation and Final Solution. By superposition, the solution to the homo-
geneous problem for v(x, t) is given by

v(x, t) =
∞∑
n=1

bn sin
(nπx

L

)
e−t−α2(nπ

L )
2
t

where the Fourier sine coefficients are determined from the initial condition:

bn =
2

L

∫ L

0

[
g(x)−

u1 sinh
(
x
α

)
sinh

(
L
α

) ] sin(nπx
L

)
dx

Returning to the original variable, the full solution is

u(x, t) = u∞(x) + v(x, t) =
u1 sinh

(
x
α

)
sinh

(
L
α

) +
∞∑
n=1

bn sin
(nπx

L

)
e−t−α2(nπ

L )
2
t

where bn are given above.

5.5.3 Heat Conduction problems with distributed time-independent sources

We consider the initial-boundary value problem

ut = α2uxx + x, 0 < x < L, t > 0, (5.96a)
BC : u(0, t) = 0, u(L, t) = B, (5.96b)
IC : u(x, 0) = g(x). (5.96c)

Methodology 5.5.4.

(a) Steady-State Solution. To find the steady-state solution u∞(x), we set ut = 0 in (5.96),
leading to the ODE

α2u′′
∞(x) + x = 0.

Integrating twice, we obtain

α2u′
∞(x) = −x2

2
+ C1,

u∞(x) = − x3

6α2
+ C1x+ C2.

Applying the boundary conditions u∞(0) = 0 and u∞(L) = B, we get

C2 = 0

− L3

6α2
+ C1L = B

Solving for C1, we find
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C1 =
B + L3/6α2

L

Thus, the steady-state solution is

u∞(x) = − x3

6α2
+

(
B + L3/6α2

L

)
x

(b) Reduction to a Homogeneous Problem. Define the transient variable

v(x, t) = u(x, t)− u∞(x)

Since u∞(x) is independent of t, we have

vt = ut, vxx = uxx − u′′
∞(x)

Substituting u(x, t) = v(x, t) + u∞(x) into (5.96) gives

vt = α2 (vxx + u′′
∞(x)) + x

But we know that u′′
∞(x) = −x/α2, so

vt = α2vxx + x− x = α2vxx

The boundary conditions remain homogeneous:

v(0, t) = u(0, t)− u∞(0) = 0, v(L, t) = u(L, t)− u∞(L) = 0

The initial condition is

v(x, 0) = g(x)− u∞(x)

(c) Separation of Variables. Assume a solution of the form

v(x, t) = X(x)T (t)

Substituting into the homogeneous equation vt = α2vxx gives

X(x)T ′(t) = α2X ′′(x)T (t)

Dividing by X(x)T (t) leads to

T ′(t)

α2T (t)
=

X ′′(x)

X(x)

Since the left-hand side depends only on t and the right-hand side only on x, both must equal
a constant λ :
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T ′(t)

α2T (t)
= λ, T ′(t) = α2λT (t)

Solving for T (t), we get

T (t) = eα
2λt

The spatial equation becomes

X ′′(x) = λX(x)

For nontrivial solutions under homogeneous Dirichlet conditions X(0) = X(L) = 0, we set

λ = −k2, k =
nπ

L
, n = 1, 2, 3, . . .

The eigenfunctions are

Xn(x) = sin
(nπx

L

)
and the separation constants are

λn = −
(nπ
L

)2
Hence, the time-dependent part is

Tn(t) = e−α2(nπ
L )

2
t

(d) Series Representation and Final Solution. By superposition, the solution to the homo-
geneous problem for v(x, t) is given by

v(x, t) =
∞∑
n=1

bn sin
(nπx

L

)
e−α2(nπ

L )
2
t

where the Fourier sine coefficients are determined from the initial condition:

bn =
2

L

∫ L

0

[g(x)− u∞(x)] sin
(nπx

L

)
dx

Finally, recalling that

u(x, t) = v(x, t) + u∞(x)

we obtain the full solution:

u(x, t) = − x3

6α2
+

(
B + L3/6α2

L

)
x+

∞∑
n=1

bn sin
(nπx

L

)
e−α2(nπ

L )
2
t
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where bn are given as above. We remark that

lim
t→∞

u(x, t) = x

{
B

L
+

1

6α2

(
L2 − x2

)}
More generally, if we consider the problem:

ut = α2uxx + h(x), 0 < x < L, t > 0, (5.97a)
BC : u(0, t) = A, u(L, t) = B, (5.97b)
IC : u(x, 0) = f(x), (5.97c)

which represents heat flow with a time-independent source and/or ends fixed at some temperature. The
expectation is that over time, the heat will approach a steady state (equilibrium): ū(x) = limt→∞ u(x, t).

Formally, we can obtain this equilibrium shape as follows: if ū(x) is a steady-state, then it solves
the PDE but does not depend on time. Thus it must satisfy

0 = α2ūxx + h(x), ū(0) = A, ū(L) = B

The important point is that the difference between the PDE solution and steady state,

v = u− ū

solves the homogeneous problem

vt = α2vxx, 0 < x < L, t > 0 (5.98a)
BC : v(0, t) = 0, v(L, t) = 0 (5.98b)
IC : u(x, 0) = f(x)− ū(x) (5.98c)

Note

So to solve (5.97) we can find the steady state (formally), subtract it out and then solve (5.98) for
the "homogeneous" part.

Particular solution
In some cases, the previous method may fail. This trick works when there is a steady state and only
when the source term and boundary conditions do not depend on time. For instance,

ut = tuxx + sinx

cannot be solved using this method. Assuming ut = 0 is not enough since we also need to take t → ∞
and we cannot find a u = ū(x) that solves

tuxx + sinx = 0.

We can, however, guess a particular solution of the equation or more generally solve the full problem
using the eigenfunction method.
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5.5.4 Neumann nonhomogeneous BC

We wish to solve

ut = α2uxx, 0 < x < L, t > 0 (5.99a)
BC : ux(0, t) = A, ux(L, t) = B (5.99b)
IC : u(x, 0) = g(x) (5.99c)

Methodology 5.5.5.

(a) Finding a Particular Solution. Try for a steady solution: u′′
∞(x) = 0, u∞(x) = ax +

b, ux = a but then we cannot match both BC unless A = B = a. This means that if we are
pumping and removing heat from the rod at different rates then the temperature does not
reach a steady state.

Since the boundary conditions are given on the spatial derivative, we first look for a function
ϕ(x, t) that satisfies both the PDE and the nonhomogeneous Neumann conditions.

We assume a solution of the form

ϕ(x, t) = ax2 + bx+ c+ dt,

where a, b, c, d are constants (possibly depending on the data). We have

ϕt = d and ϕxx = 2a

Substituting into the PDE ϕt = α2ϕxx gives

d = α2(2a) =⇒ a =
d

2α2

Next, we require that ϕ satisfies the boundary conditions on the derivative. Since

ϕx(x, t) = 2ax+ b

we impose
ϕx(0, t) = b = A

and at x = L
ϕx(L, t) = 2aL+ b = B

Thus,

2aL = B − A =⇒ a =
B − A

2L
.

Then, from a = d
2α2 we deduce

d = α2B − A

L
.

We may choose c = 0 for simplicity. Hence, a particular solution is given by

ϕ(x, t) =
B − A

2L
x2 + Ax+

α2(B − A)

L
t (5.100)
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(b) Reduction to a Homogeneous Problem. Define

v(x, t) = u(x, t)− ϕ(x, t)

Since both u and ϕ satisfy the heat equation, it follows that

vt = ut − ϕt = α2uxx − α2ϕxx = α2vxx

The boundary conditions for v become

vx(0, t) = ux(0, t)− ϕx(0, t) = A− A = 0,

vx(L, t) = ux(L, t)− ϕx(L, t) = B −B = 0.

The initial condition is

v(x, 0) = u(x, 0)− ϕ(x, 0) = g(x)−
[
B − A

2L
x2 + Ax

]
Thus, v(x, t) satisfies the homogeneous problem

vt = α2vxx, 0 < x < L, t > 0 (5.101a)
vx(0, t) = 0, vx(L, t) = 0 (5.101b)

v(x, 0) = g(x)−
[
B − A

2L
x2 + Ax

]
(5.101c)

(c) Recall that the solution to (5.101) can be written as

v(x, t) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
e−α2(nπ

L )
2
t,

where the Fourier coefficients are determined from

an =
2

L

∫ L

0

[
g(x)−

(
B − A

2L
x2 + Ax

)]
cos
(nπx

L

)
dx, n = 0, 1, . . .

(d) Final Solution. Recalling that

u(x, t) = v(x, t) + ϕ(x, t)

with ϕ(x, t) given in (5.100), we obtain the full solution

u(x, t) =
B − A

2L
x2 + Ax+

α2(B − A)

L
t+

a0
2

+
∞∑
n=1

an cos
(nπx

L

)
e−α2(nπ

L )
2
t,

where the coefficients an are given above.
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5.5.5 Solving the non-homgeneous heat equation with homogeneous BC

The aim of this section is to solve the following non-homogeneous heat equation:

ut = α2uxx + F (x, t) for 0 < x < L, t > 0
u(0, t) = 0 and u(L, t) = 0 for t > 0

u(x, 0) = f(x) for 0 ≤ x ≤ L
(5.102)

where F (x, t) represents a source of heat energy in the medium.

Methodology 5.5.6. We know that the eigenvalues and eigenfunctions associated with Dirichlet
homogeneous BC are

λn =
(nπ
L

)2
n = 1, 2, . . . Xn(x) = sin

(nπx
L

)
For the non-homogeneous problem, we will take a cue from that case and attempt a solution

u(x, t) =
∞∑
n=1

Tn(t) sin
(nπx

L

)
(5.103)

The problem is to determine each Tn(t). We observe that, for a given t, equation (5.103) can
be interpreted as the Fourier sine expansion of u(x, t), considered as a function of x, with Tn(t)
being the nth Fourier coefficient in this expansion, carefully establish the expression for Tn(t).
Therefore, by projecting u(x, t) on the basis

{
sin
(
nπx
L

)}
and using orthogonality relations, we can

deduce that

Tn(t) =
2

L

∫ L

0

u(ξ, t) sin

(
nπξ

L

)
dξ (5.104)

Next, we assume that for each t ≥ 0, F (x, t), as a function of x, can also be expanded in a Fourier
sine series:

F (x, t) =
∞∑
n=1

Bn(t) sin
(nπx

L

)
dx

where

Bn(t) =
2

L

∫ L

0

F (ξ, t) sin

(
nπξ

L

)
dξ (5.105)

is the coefficient in this expansion, and may depend on t. We differentiate equation (5.104) to
obtain

T ′
n(t) =

2

L

∫ L

0

ut(ξ, t) sin

(
nπξ

L

)
dξ

Since ut = α2uxx + F (x, t), the previous equation becomes

T ′
n(t) =

2α2

L

∫ L

0

uxx(ξ, t) sin

(
nπξ

L

)
dξ +

2

L

∫ L

0

F (ξ, t) sin

(
nπξ

L

)
dξ

In view of equation (5.105),
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T ′
n(t) =

2α2

L

∫ L

0

uxx(ξ, t) sin

(
nπξ

L

)
dξ +Bn(t) (5.106)

Apply integration by parts twice to the integral in equation (5.106), using the boundary conditions
and, at the last step, we obtain:

∫ L

0

uxx(ξ, t) sin

(
nπξ

L

)
dξ =

[
sin

(
nπξ

L

)
ux(ξ, t)

]L
0

−
∫ L

0

ux(ξ, t)
nπ

L
cos

(
nπξ

L

)
dξ

= −
∫ L

0

nπ

L
ux(ξ, t) cos

(
nπξ

L

)
dξ

=

[
−nπ

L
u(ξ, t) cos

(
nπξ

L

)]L
0

+
nπ

L

∫ L

0

u(ξ, t)
(
−nπ

L

)
sin

(
nπξ

L

)
dξ

= −n2π2

L2

∫ L

0

u(ξ, t) sin

(
nπξ

L

)
dξ

= −n2π2

L2
· L
2
Tn(t)

= −n2π2

2L
Tn(t)

Substituting this into equation (5.106) yields

T ′
n(t) = −α2n

2π2

L2
Tn(t) +Bn(t)

For n = 1, 2, · · ·, we now have an ordinary differential equation for Tn(t) :

T ′
n + α2n

2π2

L2
Tn = Bn(t)

Next, use equation (5.104) to obtain the condition,

Tn(0) =
2

L

∫ L

0

u(ξ, 0) sin

(
nπξ

L

)
dξ

=
2

L

∫ L

0

f(ξ) sin

(
nπξ

L

)
dξ = bn

the nth coefficient in the Fourier sine expansion of f on [0, L]. We solve the ordinary differential
equation subject to the condition Tn(0) = bn to obtain the unique solution

Tn(t) =

∫ t

0

e−α2n2π2(t−τ)/L2

Bn(τ)dτ + bne
−α2n2π2t/L2

Finally, substitute this into equation (5.103) to obtain

u(x, t) =
∞∑
n=1

(∫ t

0

e−α2n2π2(t−τ)/L2

Bn(τ)dτ

)
sin
(nπx

L

)
+

∞∑
n=1

bn sin
(nπx

L

)
e−α2n2π2t/L2

(5.107)

where bn = 2
L

∫ L

0
f(ξ) sin

(
nπξ
L

)
dξ and Bn is given.
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Example 5.5.2. Solve the following partial differential equation:
ut = 4uxx + t2 cos(x/2), 0 < x < π, t > 0

u(0, t) = u(π, t) = 0, t ≥ 0

u(x, 0) =

{
0, 0 ≤ x ≤ π/2,

25, π/2 < x < π.

(5.108)

We let F (x, t) = t2 cos(x/2) and L = π. Following the methodology given above, we compute

Bn(t) =
2

π

∫ π

0

t2 cos(ξ/2) sin(nξ)dξ =
8

π

2n

4n2 − 1
t2

Now we can evaluate the integral occurring in the first summation of equation (5.107):∫ t

0

8

π

2n

4n2 − 1
τ 2e−4n2(t−τ)dτ =

1

2

−4n2t+ 8n4t2 + 1− e−4n2t

n5π (4n2 − 1)

Finally, compute

bn =
2

π

∫ π

0

f(ξ) sin(nξ)dξ

=
2

π

∫ π

π/2

25 sin(nξ)dξ =
50

nπ
(cos(nπ/2)− (−1)n)

The solution is

u(x, t) =
∞∑
n=1

(
1

2

−4n2t+ 8n4t2 + 1− e−4n2t

n5π (4n2 − 1)

)
sin(nx)

+
∞∑
n=1

50

nπ
(cos(nπ/2)− (−1)n) sin(nx)e−4n2t

Remark 5.5.1. We note that the second summation in u(x, t) is the solution of the initial-
boundary value problem if the source term t2 cos(x/2) is omitted. If we denote this solution
as uh(x, t) (the subscript h is for the fact that the heat equation without F (x, t) is homoge-
neous), then

uh(x, t) =
∞∑
n=1

50

nπ
(cos(nπ/2)− (−1)n) sin(nx)e−4n2t

and

u(x, t) = uh(x, t) +
∞∑
n=1

(
1

2

−4n2t+ 8n4t2 + 1− e−4n2t

n5π (4n2 − 1)

)
sin(nx)

This way of writing the solution clarifies which terms in the solution arise from the
t2 cos(x/2) term in the partial differential equation.
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5.6 Solving the non-homgeneous heat equation with nonhomo-
geneous time dependent BC

Now, we aim to solve the following non-homogeneous heat equation:

ut = α2uxx + F (x, t) for 0 < x < L, t > 0
u(0, t) = ϕ0(t) and u(L, t) = ϕ1(t) for t > 0

u(x, 0) = f(x) for 0 ≤ x ≤ L.
(5.109)

Methodology 5.6.1. It is too much to try to find a simple function that satisfies the PDE and
the BCs simultaneously. However, we can instead compromise and find a function w that satisfies
the boundary conditions but not the PDE. There are many choices for such a function w. For
Dirichlet BCs, the easiest is just to construct a line that goes from (0, ϕ0(t)) to (L, ϕ1(t)) :

w(x, t) = ϕ0(t) + x

(
ϕ1(t)− ϕ0(t)

L

)
Now let u(x, t) = w(x, t) + v(x, t). Then, v(x, t) is the solution of the following:

vt = c2vxx + F (x, t)− ϕ̇0(t)− x
(

ϕ̇1(t)−ϕ̇0(t)
L

)
, t > 0, 0 < x < L

v(0, t) = 0, v(L, t) = 0, t > 0

v(x, 0) = f(x)− ϕ0(0)− x
(

ϕ1(0)−ϕ0(0)
L

) (5.110)

We can use the eigenfunction expansions method as before to solve the transformed system.

Example 5.6.1. Solve the following PDE with non-homogeneous BC

ut = α2uxx for 0 < x < L, t > 0
u(0, t) = At and u(L, t) = 0 for t > 0

u(x, 0) = 0 for 0 ≤ x ≤ L
(5.111)

In this case, w(x, t) = At+ x
L
(0− At) = At

(
1− x

L

)
. Next let u(x, t) = w(x, t) + v(x, t), then

vt = α2vxx − A
(
1− x

L

)
v(0, t) = 0 = v(L, t)

v(x, 0) = 0

We know that the eigenvalues and eigenfunctions associated with Dirichlet homogeneous BC are

λn =
(nπ
L

)2
n = 1, 2, . . . Xn(x) = sin

(nπx
L

)
So we let

v(x, t) =
∞∑
n=1

v̂n(t) sin
(nπx

L

)
vt =

∞∑
n=1

˙̂vn(t) sin
(nπx

L

)
, vxx = −

∞∑
n=1

v̂n(t)
(nπ
L

)2
sin
(nπx

L

)
Moreover, we write
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s(x, t) = −A
(
1− x

L

)
=

∞∑
n=1

ŝn(t) sin
(nπx

L

)
where

ŝn =
2

L

∫ L

0

A
(x
L
− 1
)
sin
(nπx

L

)
dx = −2A

nπ

In addition, the initial condition gives v̂n(0) = 0. Therefore,

0 = vt − α2vxx − s(x, t) =
∞∑
n=1

{
˙̂vn(t) + α2

(nπ
L

)2
v̂n +

2A

nπ

}
sin
(nπx

L

)
Since

{
sin
(
nπx
L

)}
form a basis, we deduce that

˙̂vn(t) + α2
(nπ
L

)2
v̂n(t) = −2A

nπ

This is a first-order linear ordinary differential equation. We can solve it using the integrating
factor method. The equation becomes:

d

dt

(
eα

2(nπ
L )

2
tv̂n(t)

)
= −2A

nπ
eα

2(nπ
L )

2
t

Now, integrating both sides:

eα
2(nπ

L )
2
tv̂n(t) = − 2AL2

α2(nπ)3
eα

2(nπ
L )

2
t +Bn

Here, Bn is the constant of integration. Solving for v̂n(t), we get:

v̂n(t) = − 2AL2

α2(nπ)3
+Bne

−α2(nπ
L )

2
t

To determine Bn, we use the initial condition v̂n(0) = 0 :

0 = v̂n(0) = − 2AL2

α2(nπ)3
+Bn

Solving for Bn, we find:

Bn =
2AL2

α2(nπ)3

Thus, the solution for v̂n(t) becomes:

v̂n(t) =
2AL2

α2(nπ)3

(
e−α2(nπ

L )
2
t − 1

)
Finally, the solution for u(x, t) is obtained by summing over all modes n :

u(x, t) = At
(
1− x

L

)
+

2AL2

π3α2

∞∑
n=1

(
e−α2(nπ

L )
2
t − 1

)
n3

sin
(nπx

L

)
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Category Dirichlet Neumann Periodic
Boundary Conditions ϕ(0) = 0, ϕ(L) = 0 ϕ′(0) = 0, ϕ′(L) = 0 ϕ(−L) = ϕ(L), ϕ′(−L) = ϕ′(L)

Eigenvalues λn =
(nπ
L

)2
, n = 1, 2, 3, . . . λn =

(nπ
L

)2
, n = 0, 1, 2, . . . λn =

(nπ
L

)2
, n = 0, 1, 2, . . .

Eigenfunctions ϕn(x) = sin
(
nπx
L

)
ϕn(x) = cos

(
nπx
L

)
Both ϕn(x) =

{
cos
(
nπx
L

)
,

sin
(
nπx
L

)
Series Expansion f(x) =

∞∑
n=1

bn sin
(
nπx
L

)
f(x) =

a0
2

+
∞∑
n=1

an cos
(
nπx
L

)
f(x) =

a0
2

+
∞∑
n=1

[
an cos

(
nπx
L

)
+ bn sin

(
nπx
L

)]

Coefficients bn =
2

L

∫ L

0

f(x) sin
(
nπx
L

)
dx an =

2

L

∫ L

0

f(x) cos
(
nπx
L

)
dx

an =
1

L

∫ L

−L

f(x) cos
(
nπx
L

)
dx,

bn =
1

L

∫ L

−L

f(x) sin
(
nπx
L

)
dx

Table 5.1: Boundary value problem for the equation d2ϕ
dx2 = −λϕ

Category Mixed (Dirichlet at x = 0, Neumann at x = L) Mixed (Neumann at x = 0, Dirichlet at x = L)
Boundary Conditions ϕ(0) = 0, ϕ′(L) = 0 ϕ′(0) = 0, ϕ(L) = 0

Eigenvalues λn =
(

(2n+1)π
2L

)2
, n = 0, 1, 2, 3, . . . λn =

(
(2n+1)π

2L

)2
, n = 0, 1, 2, 3, . . .

Eigenfunctions ϕn(x) = sin
(

(2n+1)π x
2L

)
ϕn(x) = cos

(
(2n+1)π x

2L

)
Series Expansion f(x) =

∞∑
n=1

bn sin
(

(2n+1)π x
2L

)
f(x) =

∞∑
n=1

an cos
(

(2n+1)π x
2L

)
Coefficients bn =

2

L

∫ L

0

f(x) sin
(

(2n+1)π x
2L

)
dx an =

2

L

∫ L

0

f(x) cos
(

(2n+1)π x
2L

)
dx

Table 5.2: Boundary value problem for d2ϕ
dx2 = −λϕ with mixed boundary conditions
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