
Chapter 7

The Laplace Equation

In this chapter, we begin our exploration of Laplace’s equation, which describes the steady-state behavior
of a field dependent on two or more independent variables, typically spatial. We illustrate how the
inhomogeneous Dirichlet boundary value problem for the Laplacian on a rectangular domain can be
decomposed into a series of four boundary value problems. Each of these problems features a single
boundary segment with inhomogeneous boundary conditions, while the remaining boundaries satisfy
homogeneous conditions. This approach allows us to solve each problem individually using the method
of separation of variables.

Laplace’s Equation arises as a steady state problem for the Heat or Wave Equations that do not
vary with time so that ∂u

∂t
= 0 = ∂2u

∂t2
. in 2 D , the equation reads;

∆u =
∂2u

∂x2
+

∂2u

∂y2
= 0.

This equation is Laplace’s equation in two dimensions. It is of the essential equations in applied
mathematics (and the most important for time-independent problems). Note that in general, the Lapla-
cian for a function u (x1, · · · , xn) in Rn → R is defined to be the sum of the second partial derivatives:

∆u =
n∑

j=1

∂2u

∂x2
j

The inhomogeneous case, i.e.
∆u = f,

the equation is called Poisson’s equation. Innumerable physical systems are described by Laplace’s
equation or Poisson’s equation, beyond steady states for the heat equation: inviscid fluid flow (e.g.
flow past an airfoil), stress in a solid, electric fields, wavefunctions (time independence) in quantum
mechanics, and more.

7.1 Rectangular domain

We can solve Laplace’s equation in a bounded domain by the same techniques used for the heat and
wave equation. In this section, we will solve Laplace’s equation on a rectangle in R2. First, we consider
the case of Dirichlet boundary conditions. That is, we consider the following boundary value problem.
Let Ω = {(x, y) ∈ R2 : 0 < x < a, 0 < y < b}.
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Dirichlet BCs

We want to look for a solution of the following,

uxx + uyy = 0, 0 < x < a, 0 < y < b,
BCs : u(0, y) = g1(y), u(a, y) = g2(y), 0 < y < b

u(x, 0) = f1(x), u(x, b) = f2(x), 0 < x < a.
(7.1)

x

y

a

b

u(x, 0) = f1(x)

u(x, b) = f2(x)

u(0, y) = g1(y) u(a, y) = g2(y)uxx + uyy = 0

Figure 7.1: Laplace equation with boundary conditions on a rectangular domain.

The functions f1(x), f2(x), g1(y), and g2(y) are given functions of x and y, respectively. The partial
differential equation is linear and homogeneous, but the boundary conditions, although linear, are not
homogeneous. We cannot apply the method of separation of variables to this problem in its present
form because, when we separate variables, the boundary value problem (which determines the separation
constant) must have homogeneous boundary conditions. In this case, all the boundary conditions are
nonhomogeneous.

Methodology 7.1.1. We can address this difficulty by recognizing that the original problem is
nonhomogeneous due to the four nonhomogeneous boundary conditions. The principle of super-
position can sometimes be used for nonhomogeneous problems. To solve this, we decompose the
problem into four subproblems, each having one nonhomogeneous condition. We define

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y),

where each ui(x, y) satisfies Laplace’s equation with one nonhomogeneous boundary condition and
the related three homogeneous boundary conditions, as illustrated in Figure 7.2 Instead of directly
solving for u, we will show how to solve for u1, u2, u3, and u4.

Methodology 7.1.2 (Solving for u1). Consider
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=
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=
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=
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=

g 2
(y
)

uxx + uyy = 0

x

y

a

b

u(x, 0) = f1(x)
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=
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=
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=
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=
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uxx + uyy = 0

Figure 7.2: Decomposition of Laplace’s equation with four subproblems, each having one nonhomoge-
neous boundary condition.

uxx + uyy = 0, 0 < x < a, 0 < y < b,
BCs : u(0, y) = g1(y) u(a, y) = 0, 0 < y < b

u(x, 0) = 0, u(x, b) = 0, 0 < x < a.
(7.2)

We use separation of variables. We look for a solution of the form

u(x, y) = X(x)Y (y).

Plugging this into our equation, we get

X ′′Y +XY ′′ = 0.

Now dividing by XY , we arrive at

X ′′

X
+

Y ′′

Y
= 0

which implies

Y ′′

Y
= −X ′′

X
= −λ

for some constant λ. By our boundary conditions, we want Y (0) = 0 = Y (b). Therefore, we begin
by solving the eigenvalue problem,
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{
Y ′′ = −λY 0 < y < b
Y (0) = 0 = Y (b)

As we know, the solutions of this eigenvalue problem are given by

Yn(y) = sin
(nπy

b

)
, λn =

(nπ
b

)2
We now turn to solving

X ′′ =
(nπ

b

)2
X

with the boundary condition X(a) = 0. The solutions of this ODE are given by

Xn(x) = An cosh
(nπx

b

)
+Bn sinh

(nπx
b

)
Now the boundary condition X(a) = 0 implies

An cosh
(nπa

b

)
+Bn sinh

(nπa
b

)
= 0

Therefore,

un(x, y) = Xn(x)Yn(y) =
[
An cosh

(nπx
b

)
+Bn sinh

(nπx
b

)]
sin
(nπy

b

)
where An, Bn satisfy the condition

An cosh
(nπa

b

)
+Bn sinh

(nπa
b

)
= 0

is a solution of Laplace’s equation on Ω which satisfies the boundary conditions u(x, 0) = 0,
u(x, b) = 0, and u(a, y) = 0. As we know, Laplace’s equation is linear. Therefore, we can take
any combination of solutions {un} and get a solution of Laplace’s equation which satisfies these
three boundary conditions. Therefore, we look for a solution of the form

u(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

[
An cosh

(nπx
b

)
+Bn sinh

(nπx
b

)]
sin
(nπy

b

)
where An, Bn satisfy

An cosh
(nπa

b

)
+Bn sinh

(nπa
b

)
= 0 (7.3)

To solve our boundary-value problem (7.2), it remains to find coefficients An, Bn which satisfy the
condition u(0, y) = g1(y). we need

u(0, y) =
∞∑
n=1

An sin
(nπy

b

)
= g1(y)

That is, we want to be able to express g1 in terms of its Fourier sine series on the interval [0, b].
We know that the coefficients An are given by

An =
2

b

∫ b

0

g1(y) sin
(nπy

b

)
dy
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Substituting this value of An into (7.3), we deduce that

Bn = −2

b
coth

(nπa
b

)∫ b

0

g1(y) sin
(nπy

b

)
dy

We have found a solution of (7.2) given by

u1(x, y) =
∞∑
n=1

un(x, y) =
∞∑
n=1

[
An cosh

(nπ
b
x
)
+Bn sinh

(nπ
b
x
)]

sin
(nπ

b
y
)

where An and Bn are given above.

Similarly, we find functions u2, u3 and u4 which vanish on three of the sides but satisfy the fourth
boundary condition.

Methodology 7.1.3 (Solving for u2). Consider

uxx + uyy = 0, 0 < x < a, 0 < y < b,
BCs : u(x, 0) = 0, u(x, b) = 0, 0 < x < a,

u(0, y) = 0, u(a, y) = f(y), 0 < y < b.
(7.4)

We use separation of variables. We look for a solution of the form

u(x, y) = X(x)Y (y).

Plugging this into our equation, we get

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Now dividing by X(x)Y (y) (assuming nonzero factors), we arrive at

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= 0

which implies

Y ′′(y)

Y (y)
= −X ′′(x)

X(x)
= −λ

for some constant λ. By our boundary conditions, we require Y (0) = 0 = Y (b). Therefore, we
begin by solving the eigenvalue problem{

Y ′′(y) = −λY (y), 0 < y < b
Y (0) = 0, Y (b) = 0

As we know, nontrivial solutions exist only if

λ = λn =
(nπ

b

)2
, n = 1, 2, . . . ,

with corresponding eigenfunctions

Yn(y) = sin
(nπy

b

)
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We now turn to solving

X ′′(x)−
(nπ

b

)2
X(x) = 0

with the boundary condition X(0) = 0 (since u(0, y) = 0 ). The solutions of this ODE are given
by

Xn(x) = An cosh
(nπx

b

)
+Bn sinh

(nπx
b

)
The condition X(0) = 0 forces

Xn(0) = An = 0

so that

Xn(x) = Bn sinh
(nπx

b

)
Therefore, a separated solution is given by

un(x, y) = sinh
(nπx

b

)
sin
(nπy

b

)
Since Laplace’s equation is linear, any linear combination of these solutions is also a solution.
Hence, we look for a solution of the form

u(x, y) =
∞∑
n=1

cnun(x, y) =
∞∑
n=1

cn sinh
(nπx

b

)
sin
(nπy

b

)
At x = a, we have

u(a, y) =
∞∑
n=1

cn sinh
(nπa

b

)
sin
(nπy

b

)
= f(y)

Thus, the coefficients cn are determined by expanding f(y) in a Fourier sine series on the interval
0 < y < b :

cn =
2

b sinh
(
nπa
b

) ∫ b

0

f(y) sin
(nπy

b

)
dy, n = 1, 2, . . .

This completes the solution of (7.4).

Neumann BCs

Let us consider an example with Neumann boundary conditions.

Example 7.1.1. Consider

uxx + uyy = 0, 0 < x < a, 0 < y < b,
BCs : uy(x, 0) = 0, uy(x, b) = 0, 0 < x < a,

ux(0, y) = 0, ux(a, y) = f(y), 0 < y < b.
(7.5)
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Assume a solution of the form
u(x, y) = X(x)Y (y)

Then,
uxx = X ′′(x)Y (y) and uyy = X(x)Y ′′(y)

Substituting into Laplace’s equation, we obtain

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Dividing by X(x)Y (y) (assuming both factors are nonzero) yields

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= 0

Since the left-hand side is a sum of a function of x and a function of y, we set

X ′′(x)

X(x)
= λ,

Y ′′(y)

Y (y)
= −λ

for some constant λ.
The Y equation becomes

Y ′′(y) + λY (y) = 0

with the boundary conditions (implied by uy(x, 0) = 0 and uy(x, b) = 0 ):

Y ′(0) = 0, Y ′(b) = 0

Nontrivial solutions exist only if

λ = λn =
(nπ

b

)2
, n = 0, 1, 2, . . .

with corresponding eigenfunctions

Yn(y) = cos
(nπy

b

)
With λ =

(
nπ
b

)2, the X equation is

X ′′(x)−
(nπ

b

)2
X(x) = 0

with the boundary condition (from ux(0, y) = 0 ):

X ′(0) = 0

The general solution of the ODE is

Xn(x) = An cosh
(nπx

b

)
+Bn sinh

(nπx
b

)
The condition X ′(0) = 0 forces

X ′
n(0) = An

nπ

b
sinh(0) +Bn

nπ

b
cosh(0) = Bn

nπ

b
= 0

so that
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Bn = 0

Thus,

Xn(x) = An cosh
(nπx

b

)
Therefore, a separated solution is given by

un(x, y) = Xn(x)Yn(y) = cosh
(nπx

b

)
cos
(nπy

b

)
Notice that for n = 0 the corresponding solution is constant in y.
Since Laplace’s equation is linear, the general solution is

u(x, y) =
c0
2
+

∞∑
n=1

cn cosh
(nπx

b

)
cos
(nπy

b

)
At x = a, differentiating with respect to x yields

ux(x, y) =
∞∑
n=1

cn
nπ

b
sinh

(nπx
b

)
cos
(nπy

b

)
so that

ux(a, y) =
∞∑
n=1

cn
nπ

b
sinh

(nπa
b

)
cos
(nπy

b

)
= f(y)

Therefore, we must choose the constants c1, c2, . . . such that

f(y) =
∞∑
n=1

nπ

b
cn sinh

(nπa
b

)
cos
(nπy

b

)
, 0 < y < b (7.6)

Now, we know that we can expand f(y) in the cosine series

f(y) =
1

b

∫ b

0

f(y)dy +
2

b

∞∑
n=1

[∫ b

0

f(y) cos
(nπy

b

)
dy

]
cos
(nπy

b

)
(7.7)

on the interval 0 ≤ y ≤ b. However, we cannot equate coefficients in (7.6) and (7.7) since the
series (7.6) has no constant term. Therefore, the condition∫ b

0

f(y)dy = 0

is necessary for this Neumann problem to have a solution. In that case,

cn =
2

nπ sinh
(
nπa
b

) ∫ b

0

f(y) cos
(nπy

b

)
dy, n ≥ 1

Note that the coefficient c0 remains arbitrary. In fact, the solution u(x, y) is determined only up
to an additive constant, which is a characteristic feature of Neumann problems.
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Mixed BCs
We now consider an example where we have a mixed boundary condition on one side.

Example 7.1.2. Consider

uxx + uyy = 0, (x, y) ∈ Ω, Ω = {(x, y) : 0 < x < a, 0 < y < b},
BCs : u(0, y) = 0, u(a, y) = 0, 0 < y < b,

u(x, 0)− uy(x, 0) = 0, u(x, b) = f(x), 0 < x < a.

We use separation of variables by seeking a solution of the form

u(x, y) = X(x)Y (y).

Substituting into Laplace’s equation, we have

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Dividing by X(x)Y (y) (assuming neither is zero) yields

X ′′(x)

X(x)
+

Y ′′(y)

Y (y)
= 0

so that
X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
= −λ

for some separation constant λ. We first solve the X-problem

X ′′(x) + λX(x) = 0, 0 < x < a, X(0) = 0, X(a) = 0.

It is well known that the eigenfunctions and eigenvalues are

Xn(x) = sin
(nπx

a

)
, λn =

(nπ
a

)2
, n = 1, 2, . . .

For each n with λ = λn, the Y -equation becomes

Y ′′(y) =
(nπ

a

)2
Y (y)

Its general solution is
Yn(y) = An cosh

(nπy
a

)
+Bn sinh

(nπy
a

)
The boundary condition at y = 0 is

u(x, 0)− uy(x, 0) = 0

Since u(x, y) = Xn(x)Yn(y) and Xn(x) ̸≡ 0, we require

Yn(0)− Y ′
n(0) = 0

Noting that

Yn(0) = An and Y ′
n(0) = Bn

nπ

a
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this condition yields

An −Bn
nπ

a
= 0, or An =

nπ

a
Bn

Thus, we may write

Yn(y) = Bn

[nπ
a

cosh
(nπy

a

)
+ sinh

(nπy
a

)]
The separated solution corresponding to the n-th term is therefore

un(x, y) = Xn(x)Yn(y) = Bn sin
(nπx

a

) [nπ
a

cosh
(nπy

a

)
+ sinh

(nπy
a

)]
Since Laplace’s equation is linear, we may superimpose these solutions and write

u(x, y) =
∞∑
n=1

Bn sin
(nπx

a

) [nπ
a

cosh
(nπy

a

)
+ sinh

(nπy
a

)]
To satisfy the boundary condition u(x, b) = f(x), we substitute y = b into the series:

∞∑
n=1

Bn sin
(nπx

a

)[nπ
a

cosh

(
nπb

a

)
+ sinh

(
nπb

a

)]
= f(x)

Express f(x) in its Fourier sine series on (0, a):

f(x) ∼
∞∑
n=1

An sin
(nπx

a

)
with coefficients

An =
2

a

∫ a

0

f(x) sin
(nπx

a

)
dx

Thus, equating the coefficients of like sine functions, we require

Bn

[
nπ

a
cosh

(
nπb

a

)
+ sinh

(
nπb

a

)]
= An

That is,

Bn =
2

a

[
nπ

a
cosh

(
nπb

a

)
+ sinh

(
nπb

a

)]−1 ∫ a

0

f(x) sin
(nπx

a

)
dx

In summary, the solution of the boundary value problem is

u(x, y) =
∞∑
n=1

Bn sin
(nπx

a

) [nπ
a

cosh
(nπy

a

)
+ sinh

(nπy
a

)]
where

Bn =
2

a

[
nπ

a
cosh

(
nπb

a

)
+ sinh

(
nπb

a

)]−1 ∫ a

0

f(x) sin
(nπx

a

)
dx
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7.2 Laplace’s Equation on a disk
In this section, we consider Laplace’s Equation on a disk in R2. That is, let Ω = {(x, y) ∈ R2 : x2 + y2 < a2}.
Consider {

uxx + uyy = 0 (x, y) ∈ Ω

u = h(θ) (x, y) ∈ ∂Ω

To solve, we write this equation in polar coordinates as follows. To transform our equation in to polar
coordinates, we will write the operators ∂x and ∂y in polar coordinates. We use the fact that

x2 + y2 = r2

y

x
= tan θ

Consider a function u such that u = u(r, θ), where r = r(x, y) and θ = θ(x, y). That is,

u = u(r(x, y), θ(x, y))

Then
∂

∂x
u(r(x, y), θ(x, y)) = urrx + uθθx

= ur
x

(x2 + y2)1/2
− uθ

y

x2 sec2 θ

= ur cos θ −
sin θ

r
uθ

Therefore, the operator ∂
∂x

can be written in polar coordinates as

∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ

Similarly, the operator ∂
∂y

can be written in polar coordinates as

∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

Now squaring these operators we have

∂2

∂x2
=

[
cos θ

∂

∂r
− sin θ

r

∂

∂θ

]2
= cos2 θ

∂2

∂r2
+ 2

sin θ cos θ

r2
∂

∂θ
− 2

sin θ cos θ

r

∂2

∂r∂θ
+

sin2 θ

r

∂

∂r
+

sin2 θ

r2
∂2

∂θ2

Similarly,

∂2

∂y2
=

[
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

]2
= sin2 θ

∂2

∂r2
− 2

sin θ cos θ

r2
∂

∂θ
+ 2

sin θ cos θ

r

∂2

∂r∂θ
+

cos2 θ

r

∂

∂r
+

cos2 θ

r2
∂2

∂θ2

Combining the above terms, we can write the operator ∂2
x + ∂2

y in polar coordinates as follows,

∂2

∂x2
+

∂2

∂y2
=

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2
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Methodology 7.2.1 (Solving Laplace’s equation in polar coordinates). Let the Laplace equation
in polar coordinates be

urr +
1

r
ur +

1

r2
uθθ = 0, 0 < r < a, 0 ≤ θ ≤ 2π

with the boundary condition
u(a, θ) = h(θ), 0 ≤ θ ≤ 2π

There are no explicit boundary conditions in θ; however, because θ is an angle there are implied
periodic boundary conditions

u(r, 0) = u(r, 2π), uθ(r, 0) = uθ(r, 2π)

We look for a solution by separation of variables, assuming

u(r, θ) = R(r)Θ(θ)

Substituting into the equation yields

R′′(r)Θ(θ) +
1

r
R′(r)Θ(θ) +

1

r2
R(r)Θ′′(θ) = 0

Dividing by R(r)Θ(θ) (with R,Θ ̸≡ 0 ) gives

R′′(r)

R(r)
+

1

r

R′(r)

R(r)
+

1

r2
Θ′′(θ)

Θ(θ)
= 0

Multiplying through by r2 leads to

r2
R′′(r)

R(r)
+ r

R′(r)

R(r)
+

Θ′′(θ)

Θ(θ)
= 0

Since the first two terms depend only on r and the last only on θ, we set

Θ′′(θ)

Θ(θ)
= −

(
r2
R′′(r)

R(r)
+ r

R′(r)

R(r)

)
= λ

where λ is a separation constant.
Thus, the Θ-equation becomes

Θ′′(θ)− λΘ(θ) = 0

with the periodic conditions Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π). These imply that

Θn(θ) = An cos(nθ) +Bn sin(nθ), λn = −n2, n = 0, 1, 2, . . .

For each n, the corresponding R-equation is

r2R′′
n(r) + rR′

n(r)− n2Rn(r) = 0

Assuming a solution of the form R(r) = rα leads to the indicial equation

α2 − n2 = 0
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Thus, we have two distinct solutions α = ±n when n is positive, and one double root α = 0 when
n is zero. Correspondingly, we get the general solution for the radial Euler’s equation

Rn(r) = Cnr
n +Dnr

−n for n = 1, 2, 3, . . . ,
R0(r) = C0 +D0 ln r for n = 0

Since the radial function R must be bounded at the origin, we are forced to set all values of D ’s
vanish, and the general solution becomes

Rn(r) = rn, n ≥ 0

Thus, the separated solutions are

un(r, θ) = rn [An cos(nθ) +Bn sin(nθ)]

By linearity, the general solution is given by

u(r, θ) =
∞∑
n=0

rn [An cos(nθ) +Bn sin(nθ)]

To satisfy the boundary condition u(a, θ) = h(θ), we require

∞∑
n=0

an [An cos(nθ) +Bn sin(nθ)] = h(θ)

Using the orthogonality of the trigonometric functions on [0, 2π], the Fourier coefficients are de-
termined by

A0 =
1

2π

∫ 2π

0

h(ϕ)dϕ, An =
1

πan

∫ 2π

0

h(ϕ) cos(nϕ)dϕ, n = 1, 2, . . .

Bn =
1

πan

∫ 2π

0

h(ϕ) sin(nϕ)dϕ, n = 1, 2, . . .

Hence, the solution in series form is

u(r, θ) =
1

2π

∫ 2π

0

h(ϕ)dϕ+
∞∑
n=1

rn
[

1

πan

∫ 2π

0

h(ϕ) cos(nϕ)dϕ cos(nθ)

+
1

πan

∫ 2π

0

h(ϕ) sin(nϕ)dϕ sin(nθ)

]
This series can be rewritten as a single integral by noting that

cos(n(θ − ϕ)) = cos(nθ) cos(nϕ) + sin(nθ) sin(nϕ)

Thus,

u(r, θ) =
1

2π

∫ 2π

0

h(ϕ)

{
1 + 2

∞∑
n=1

(r
a

)n
cos(n(θ − ϕ))

}
dϕ

Recognizing the sum as a geometric series, we have
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1 + 2
∞∑
n=1

(r
a

)n
cos(n(θ − ϕ)) =

a2 − r2

a2 − 2ar cos(θ − ϕ) + r2

Therefore, the solution is given in closed form by

u(r, θ) =
1

2π

∫ 2π

0

h(ϕ)
a2 − r2

a2 − 2ar cos(θ − ϕ) + r2
dϕ

Example 7.2.1. Consider the interior Dirichlet problem

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < 2, u(2, θ) = f(θ) ≡

{
1, if 0 ≤ θ ≤ π

cos2 θ, if π ≤ θ ≤ 2π

Its solution is known to be

u(r, θ) =
a0
2

+
∞∑
n=1

(r
2

)n
[an cos(nθ) + bn sin(nθ)] , 0 ≤ r ≤ 2, 0 ≤ θ ≤ 2π

To satisfy the boundary condition u(2, θ) = f(θ), we calculate the coefficients as usual

a0 =
1

π

∫ π

0

dϕ+
1

π

∫ π

0

cos2 ϕ dϕ =
3

2

an =
1

π

∫ π

0

cos(nϕ)dϕ+
1

π

∫ π

0

cos(nϕ) cos2 ϕ dϕ =

{
1
4
, if n = 2

0, if n ̸= 2

bn =
1

π

∫ π

0

sin(nϕ)dϕ+
1

π

∫ π

0

sin(nϕ) cos2 ϕ dϕ =

{
−4

n(n2−4)
, if n is odd

0, if n is even

Therefore, the required solution is

u(r, θ) =
3

4
+

r2

16
cos(2θ)− 4

π

∑
k≥0

1

(2k + 1) [(2k + 1)2 − 4]

(r
2

)2k+1

sin[(2k + 1)θ]

Example 7.2.2. Consider the interior Dirichlet problem

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < 3, u(3, θ) = 2 sin 4θ − 3 cos 7θ

Its solution is known to be

u(r, θ) =
a0
2

+
∞∑
n=1

(r
3

)n
[an cos(nθ) + bn sin(nθ)] , 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π

To satisfy the boundary condition u(2, θ) = f(θ), we have the expansion

u(3, θ) = f(θ) =
a0
2

+
∞∑
n=1

[an cos(nθ) + bn sin(nθ)] , 0 ≤ r ≤ 3, 0 ≤ θ ≤ 2π

where f is a combination of eigenfunctions. So we know that all coefficients in the above expansion
are zeroes except n = 4 and n = 7. Hence,
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b4 = 2 and a7 = −3

This yields

u(r, θ) = 2
(r
3

)4
sin(4θ)− 3

(r
3

)7
sin(7θ)

Methodology 7.2.2 (Solving Laplace’s equation with Neumann BCs inside the circle).
Consider the interior Neumann problem for a circle of radius a :

urr +
1

r
ur +

1

r2
uθθ = 0, 0 ≤ r < a,

∂u

∂r

∣∣∣∣
r=a

= g(θ),

∫ 2π

0

g(θ)dθ = 0

where g is a given function. The general solution of Laplace’s equation inside a circle of radius a
is

u(r, θ) =
a0
2

+
∞∑
n=1

(r
a

)n
[an cos(nθ) + bn sin(nθ)] , 0 ≤ r < a, 0 ≤ θ ≤ 2π

Its derivative with respect to r becomes (assuming uniform convergence of the above series)

∂u

∂r
=

∞∑
n=1

n

r

(r
a

)n
[an cos(nθ) + bn sin(nθ)] , 0 ≤ r < a, 0 ≤ θ ≤ 2π

Setting r equals to a yields

∂u

∂r

∣∣∣∣
r=a

= g(θ) =
∞∑
n=1

n

a
[an cos(nθ) + bn sin(nθ)] , 0 ≤ θ ≤ 2π

The coefficients of the Fourier series are obtained by:

a0 =
1

π

∫ 2π

0

g(ϕ)dϕ = 0

an =
a

nπ

∫ 2π

0

g(ϕ) cos(nϕ)dϕ, n = 1, 2, . . .

bn =
a

nπ

∫ 2π

0

g(ϕ) sin(nϕ)dϕ, n = 1, 2, . . .

Note that the coefficient a0 must be zero because the corresponding Fourier series for

∂u

∂r

∣∣∣∣
r=a

=
∞∑
n=1

n

a
[an cos(nθ) + bn sin(nθ)] , 0 ≤ θ ≤ 2π

does not contain a free term. Therefore, a Neumann problem has a solution if and only if the
integral over the boundary vanishes: ∫ 2π

0

g(ϕ)dϕ = 0

Then the general solution to a Neumann problem is not unique but up to an arbitrary additive
constant:
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u(r, θ) = C +
∞∑
n=1

(r
a

)n
[an cos(nθ) + bn sin(nθ)]

= C +
∞∑
n=1

(r
a

)n [ a

nπ

∫ 2π

0

g(ϕ) cos(nϕ)dϕ cos(nθ) +
a

nπ

∫ 2π

0

g(ϕ) sin(nϕ)dϕ sin(nθ)

]

7.3 Semi-infinite strip problems

Example 7.3.1 (Homogeneous Bcs). Consider the Laplace equation:

uxx + uyy = 0, 0 < x < a, 0 < y < ∞ (7.8)

with the boundary conditions:

u(0, y) = 0, u(a, y) = 0 (7.9a)
u(x, 0) = f(x), u(x, y) → 0 as y → ∞ (7.9b)

We use the method of separation of variables and assume a solution of the form:

u(x, y) = X(x)Y (y)

Substituting into (7.8), we obtain:

X ′′(x)Y (y) +X(x)Y ′′(y) = 0

Dividing by X(x)Y (y) (assuming nonzero factors), we separate the variables:

X ′′(x)

X(x)
= −Y ′′(y)

Y (y)
= λ

Therefore,
X ′′(x)

X(x)
= λ, −Y ′′(y)

Y (y)
= λ (7.10)

From (7.10), the equation for X(x) is:

X ′′(x)− λX(x) = 0

Using the boundary conditions (7.9a), we solve the eigenvalue problem with BC:

X(0) = 0, X(a) = 0

Nontrivial solutions exist only if

λn = −
(nπ

a

)2
, n = 1, 2, 3, . . .

with corresponding eigenfunctions:

Xn(x) = sin
(nπx

a

)
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The equation for Y (y) from (7.10) is:

Y ′′(y)−
(nπ

a

)2
Y (y) = 0

The general solution is:
Y (y) = Ane

−nπ
a
y +Bne

nπ
a
y

Since u(x, y) → 0 as y → ∞, we must set Bn = 0, giving:

Yn(y) = Ane
−nπ

a
y

The general solution is given by:

u(x, y) =
∞∑
n=1

cne
−nπ

a
y sin

(nπx
a

)
Using the boundary condition at y = 0 from (7.9b), we require:

∞∑
n=1

cn sin
(nπx

a

)
= f(x)

This represents the Fourier sine series of f(x) on 0 < x < a, giving:

cn =
2

a

∫ a

0

f(x) sin
(nπx

a

)
dx

Thus, the final solution is:

u(x, y) =
∞∑
n=1

2

a

[∫ a

0

f(x) sin
(nπx

a

)
dx

]
e−

nπ
a
y sin

(nπx
a

)

Example 7.3.2 (Nonhomogeneous BCs). Consider the Laplace equation:

uxx + uyy = 0, 0 < x < a, 0 < y < ∞.

with the boundary conditions:

u(0, y) = A, u(a, y) = B

u(x, 0) = f(x), u(x, y) → 0 as y → ∞

We seek a function v(x) such that v′′(x) = 0 and it satisfies the inhomogeneous boundary condi-
tions:

v(0) = A, v(a) = B.

The general solution for v(x) is:
v(x) = αx+ β.

Using the boundary conditions:
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A = v(0) = β

B = v(a) = αa+ A

we solve for α and β :

α =
B − A

a
, β = A.

Thus,

v(x) =

(
B − A

a

)
x+ A.

Define w(x, y) such that:
u(x, y) = v(x) + w(x, y).

Substituting into the PDE, we obtain:

wxx + wyy = 0.

The boundary conditions for w(x, y) are:

w(0, y) = 0, w(a, y) = 0

w(x, 0) = f(x)− v(x)

Since w satisfies the same boundary value problem as in the previous example, we directly obtain
the solution:

w(x, y) =
∞∑
n=1

dne
−(nπ

a )y sin
(nπx

a

)
,

where the coefficients dn are given by:

dn =
2

a

∫ a

0

[f(x)− v(x)] sin
(nπx

a

)
dx.

The general solution is therefore given by;

u(x, y) = (B − A)
x

a
+ A+

∞∑
n=1

dne
−(nπ

a )y sin
(nπx

a

)
.

Remark 7.3.1 (Inhomogeneous Laplace’s equation). Just as with the heat equation, if there
are more complicated inhomogeneous terms, e.g.

0 = uxx + uyy + f(x, y)

then the eigenfunction method is required unless you are lucky and there is a "particular" solution
you can subtract out to remove the inhomogeneous terms.
When applying the eigenfunction method, one must pick a direction for the eigenfunctions, either

u =
∑
n

cn(x)ϕn(y) or u =
∑
n

cn(y)ϕn(x)
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The correct choice is one where the boundary conditions are homogeneous (if both work, then it
does not matter which you choose). The details are somewhat involved but straightforward in
concept.

Note!
More examples of problems related to the Laplace equation can be found in Lecture Notes 27 by
Prof. Peirce at Prof. Peirce’s lectures

https://personal.math.ubc.ca/~peirce/math257_316e14.htm

