
Chapter 8

Sturm-Liouville boundary value problems

In this chapter, we consider a class of two-point boundary value problems. The so-called Sturm-Liouville
Problems. They are a class of eigenvalue problems, which include many of the previous problems as
special cases.

We let
Lϕ = − d

dx

[
p(x)

dϕ

dx

]
+ q(x)ϕ

Suppose we have some Sturm-Liouville problem with differential equation

Lϕ = λrϕ for 0 < x < l (8.1)

Here, the functions p, p′, q, and r are continuous on [0, ℓ] with

p(x) ≥ 0 and r(x) > 0, 0 ≤ x ≤ ℓ

We couple (8.1), with the following boundary conditions

α1y(0) + α2y
′(0) = 0, β1y(ℓ) + β2y

′(ℓ) = 0 (8.2)

We define the Sturm-Liouville eigenvalue problem (SL Problem) as:

Ly = λr(x)y
α1y(0) + α2y

′(0) = 0
β1y(ℓ) + β2y

′(ℓ) = 0
p(x) > 0, r(x) > 0

(8.3)

Remark 8.0.1.

• If in (8.3) we choose p(x) = 1, q(x) = 0, r(x) = 1, α1 = 1, α2 = 0, β1 = 1 and β2 = 0, then
we obtain the following problem

y′′ + λy = 0
y(0) = 0 = y(ℓ)

}
=⇒

{
λn =

(
nπ
ℓ

)2
, n = 1, 2, . . .

yn(x) = sin
(
nπx
ℓ

)
• If in (8.3) we choose p(x) = 1, q(x) = 0, r(x) = 1, α1 = 0, α2 = 1, β1 = 0 and β2 = 1, then

we obtain the following problem

y′′ + λy = 0
y′(0) = 0 = y′(ℓ)

}
=⇒

{
λn =

(
nπ
ℓ

)2
, n = 0, 1, 2, . . .

yn(x) = cos
(
nπx
ℓ

)
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• Notice that these boundary conditions are specified at separate endpoints and are called
separated boundary conditions. The periodic BC X(−ℓ) = X(ℓ) are not separated, so the
following problem is not technically an SL Problem.

y′′ + λy = 0

y(−ℓ) = y(ℓ)

y′(−ℓ) = y′(ℓ)

• If p > 0 and r > 0 on a finite interval [0, ℓ], then the SL problem is said to be regular. If
either p(x) or r(x) is zero for some x, or if the domain is unbounded (e.g., [0,∞) ), then
the problem is singular.

• If P0, P1, P2, and R are continuous and P0 and R are positive on a closed interval [a, b],
then the general equation

P0(x)y
′′ + P1(x)y

′ + P2(x)y + λR(x)y = 0

can be rewritten in the SL form. Indeed, if we divide the previous equation by P0(x), we obtain

y′′ +
P1(x)

P0(x)
y′ +

P2(x)

P0(x)
y + λ

R(x)

P0(x)
y = 0

We multiply the equation by the integrating factor p̃(x) = e
∫ P1(x)

P0(x)
dx, we get:

p̃(x)y′′ + p̃(x)(x)
P1(x)

P0(x)
y′ + p̃(x)

(
P2(x)

P0(x)
+ λ

R(x)

P0(x)

)
y = 0

The first two terms give:

d

dx

(
p̃(x)

dy

dx

)
Thus, the equation becomes:

d

dx

(
p̃(x)

dy

dx

)
+ p̃(x)

P2(x)

P0(x)
y = −λp̃(x)

R(x)

P0(x)
y

Define the following functions:

p(x) = −p̃(x) = −e
∫ P1(x)

P0(x)
dx

q(x) = p̃(x)
P2(x)

P0(x)

r(x) = −p̃(x)
R(x)

P0(x)

Therefore,

− d

dx

(
p(x)

dy

dx

)
+ q(x)y = λr(x)y
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Example 8.0.1.

1. Consider the boundary value problem

ϕ′′ + xϕ′ + λϕ = 0, 0 < x < 1

ϕ(0) = 0, ϕ(1) = 0

To write it into SL form, multiply by the integrating factor

µ(x) = e
∫
xdx = ex

2/2

Since P (x) = 1, Q(x) = x and R(x) = 1, we have:

ex
2/2ϕ′′ + ex

2/2xϕ′ + λex
2/2ϕ = 0

That is
−
(
ex

2/2ϕ′
)′

= λex
2/2ϕ

Thus, the SL form is obtained with

p(x) = ex
2/2 and r(x) = ex

2/2

2. Consider the boundary value problem

−y′′ + x4y′ = λy

To convert into the SL form, we rewrite the equation as:

y′′ − x4y′ = −λy

The integrating factor is
µ(x) = e−

∫
x4dx = e−x5/5

Multiplying the original equation by µ(x), we obtain:

−e−x5/5y′′ + e−x5/5x4y′ = λe−x5/5y

That is
−
(
e−x5/5y′

)′
= λe−x5/5y

Thus, the SL form is obtained with

p(x) = e−x5/5 and r(x) = e−x5/5

3. Consider the eigenvalue problem

y′′ + 3y′ + (2 + λ)y = 0, y(0) = 0, y(1) = 0

The integrating factor is
µ(x) = e

∫
3dx = e3x

Multiplying the equation by µ(x) yields

−
(
−e3xy′

)′
+ 2e3xy + λe3xy = 0

So that the eigenvalue problem can be written as

−
(
−e3xy′

)′
+ 2e3xy = −λe3xy, y(0) = 0, y(1) = 0

Thus the SL form is obtained with

p(x) = −e3x, q(x) = 2e3x, and r(x) = −e3x
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8.1 Properties of SL problems
Eigenvalues:

(a) The eigenvalues λ are all real.
(b) There are infinitely many eigenvalues λj satisfying

λ1 < λ2 < · · · < λj → ∞ as j → ∞

(c) Provided α1

α2
< 0, β1

β2
> 0, and q(x) > 0, then λj > 0.

Eigenfunctions:

For each eigenvalue λj, there exists an eigenfunction ϕj(x) (unique up to a multiplicative constant)
such that:
(a) The eigenfunctions ϕj(x) are real and can be normalized to satisfy∫ ℓ

0

r(x)ϕ2
j(x)dx = 1

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the weight
function r(x) :

⟨ϕj, ϕk⟩ :=
∫ ℓ

0

r(x)ϕj(x)ϕk(x)dx = 0, j ̸= k

(c) Each eigenfunction ϕj(x) has exactly j − 1 zeros in the interval (0, ℓ).

Expansion property: The eigenfunctions {ϕj(x)} form a complete set. Thus, if f(x) is piecewise
smooth, then we have

f(x) =
∞∑
n=1

cnϕn(x)

with cn =

∫ ℓ

0
r(x)f(x)ϕn(x)dx∫ ℓ

0
r(x)ϕ2

n(x)dx

Lagrange’s Identity For sufficiently differentiable functions u and v, Lagrange’s Identity states that

∫ ℓ

0

[vLu− uLv]dx = − p(x) (u′v − uv′)|ℓ0

Proof. Write ∫ ℓ

0

vLudx =

∫ ℓ

0

v
[
− (pu′)

′
+ qu

]
dx

= − vpu′|ℓ0 +
∫ ℓ

0

pu′v′dx+

∫ ℓ

0

quvdx

= − vpu′|ℓ0 + upv′|ℓ0 +
∫ ℓ

0

u
[
− (pv′)

′
+ qv

]
dx

= − vpu′|ℓ0 + upv′|ℓ0 +
∫ ℓ

0

uLvdx

Hence,
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∫ ℓ

0

vLudx−
∫ ℓ

0

uLvdx = − p(x) (u′v − uv′)|ℓ0

If u and v satisfy the SL boundary conditions

α1u(0) + α2u
′(0) = 0, β1u(ℓ) + β2u

′(ℓ) = 0
α1v(0) + α2v

′(0) = 0, β1v(ℓ) + β2v
′(ℓ) = 0

then the boundary terms cancel and ∫ ℓ

0

vLudx =

∫ ℓ

0

uLvdx

Example 8.1.1.

1. We want to solve the eigenvalue problem

(xy′)
′
+

2

x
y = −λ

1

x
y, x > 0

subject to the following boundary conditions

y′(1) = 0, y′(2) = 0

Note that r(x) = 1
x
. Expanding the derivative, we have

xy′′ + y′ +
2

x
y = −λ

1

x
y

Multiply through by x to obtain the Cauchy-Euler type equation:

x2y′′ + xy′ + (λ+ 2)y = 0

The characteristic equation is
r2 + λ+ 2 = 0

Case 1: λ+ 2 < 0.
We have two solutions r1,2 = ±

√
−(λ+ 2). The general solution is then,

y(x) = c1x
−
√

−(λ+2) + c2x
√

−(λ+2)

The boundary conditions y′(1) = y′(2) = 0 implies that c1 = c2 = 0. Trivial solution.
Case 2: λ+ 2 = 0.
We have a double solution r1 = r2 = 0. The general solution is then,

y(x) = c1 + c2 lnx

The boundary conditions y′(1) = 0 implies that c2 = 0 and so y(x) = c1 is a nontrivial solution.
Case 3: λ+ 2 > 0.
Thus, the general solution is

y(x) = c1 cos(
√
λ+ 2 lnx) + c2 sin(

√
λ+ 2 lnx)
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Next we apply the boundary conditions. y′(1) = 0 forces c2 = 0. This leaves

y(x) = c1 cos(
√
λ+ 2 lnx)

The second condition, y′(2) = 0, yields

sin(
√
λ+ 2 ln 2) = 0

This will give nontrivial solutions when
√
λ+ 2 ln 2 = nπ, n = 1, 2, 3 . . .

In summary, the eigenfunctions for this eigenvalue problem are

yn(x) = cos
( nπ

ln 2
lnx
)
, 1 ≤ x ≤ 2

and all (including λ = −2 ) the eigenvalues are λn =
(
nπ
ln 2

)2 − 2 for n = 0, 1, 2, . . .
We can check the orthogonality of eigenfunctions. We recall that

⟨yn, ym⟩ =
∫ 2

1

yn(x)ym(x)r(x)dx

Let y = π lnx
ln 2

. Then, we have:

⟨yn, ym⟩ =
∫ 2

1

cos
( nπ

ln 2
lnx
)
cos
(mπ

ln 2
lnx
) dx

x

=
ln 2

π

∫ π

0

cos(ny) cos(my)dy

=
ln 2

2
δn,m

where

δn,m =

{
1, if n = m

0, if n ̸= m

is the so called Kronecker delta.
Now let us consider expanding a function f(x) in terms of a "Fourier Series" of these new eigen-
functions in the following form

f(x) =
∞∑
n=0

cnϕn(x) =
∞∑
n=0

cn cos

(
nπ lnx

ln 2

)
In order to determine the coefficients cn we project the function f(x) onto the basis functions
ϕn(x) as follows:∫ 2

1

f(x) cos

(
mπ lnx

ln 2

)
dx

x
=

∞∑
n=0

cn

∫ 2

1

cos

(
mπ lnx

ln 2

)
cos

(
nπ lnx

ln 2

)
dx

x

= cm
ln 2

2

Hence,
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cn =
2

ln 2

∫ 2

1

f(x) cos

(
nπ lnx

ln 2

)
dx

x

Note

• If the operator L and the boundary conditions satisfy

∫ ℓ

0

vLudx =

∫ ℓ

0

uLvdx

then L is said to be self adjoint.

• With the notation ⟨f, g⟩ =
∫ ℓ

0
f(x)g(x)dx, the selfadjoint property can be written as

⟨v,Lu⟩ = ⟨u,Lv⟩

8.2 Application: Solving the heat equation with Robin bound-
ary conditions

We consider the function u(x, t), which models the temperature distribution in a heat-conductive rod
of length L that is perfectly insulated along its sides. The left end of the rod is also perfectly insulated,
meaning no heat escapes or enters at x = 0. Meanwhile, the right end at x = L loses thermal energy
at a rate proportional to its temperature at that point. The initial temperature distribution along the
rod is given by the function f(x).

Example 8.2.1. The problem is stated as follows:

ut = α2uxx, 0 < x < L, t > 0
ux(0, t) = 0, ux(L, t) + κu(L, t) = 0

u(x, 0) = f(x)
(8.4)

where κ > 0. We use the method of separation of variables to solve the problem (8.4). We first
seek separated solutions of the form u(x, t) = X(x)T (t) satisfying all of the homogeneous linear
requirements, i.e. the first three conditions. Substituting the separated solution into the PDE
yields

XT ′ = c2X ′′T ⇒ X ′′

X
=

T ′

c2T
= λ (constant)

since the two sides of the latter equation are functions of distinct independent variables. This
gives us the pair of separated ODEs

X ′′ − λX = 0, T ′ − λc2T = 0

From the first boundary condition we obtain

X ′(0)T (t) = 0 ⇒ X ′(0) = 0

since we do not want T ≡ 0. The second boundary condition requires that
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X ′(L)T (t) = −κX(L)T (t) ⇒ X ′(L) = −κX(L)

We have thus obtained an ODE boundary value problem in X that requires a case by case analysis
of the possible values of k for which there are nontrivial (nonzero) solutions.
Case 1: λ = µ2 > 0.
In this situation the ODE for X becomes

X ′′ − µ2X = 0

with characteristic equation
r2 − µ2 = 0

whose roots are r = ±µ. The solutions are then given by

X = c1e
µx + c2e

−µx

The boundary conditions require that

µ
(
c1e

µ·0 − c2e
−µ·0) = 0 ⇒ c1 − c2 = 0

µ
(
c1e

µL − c2e
−µL
)
= −κ

(
c1e

µL + c2e
−µL
)
⇒ c1(κ+ µ)eµL + c2(κ− µ)e−µL = 0

or in matrix form (
1 −1

(κ+ µ)eµL (κ− µ)e−µL

)(
c1
c2

)
=

(
0

0

)
.

The determinant of the coefficient matrix is

(κ− µ)e−µL + (κ+ µ)eµL = κ
(
eµL + e−µL

)
+ µ

(
eµL − e−µL

)
> 0

which means that the only possibility is that c1 = c2 = 0, or in other words X ≡ 0.
Case 2: λ = 0.
Now the ODE in X simplifies to X ′′ = 0 which means that X = ax + b. The first boundary
condition immediately implies a = 0 and the second then becomes

0 = −κb ⇒ b = 0

which once again tells us that X ≡ 0. So we move on.
Case 3: λ = −µ2 < 0.
Things finally get interesting. The ODE becomes X ′′+µ2X = 0 whose characteristic equation has
roots ±iµ, so that X(x) = c1 cos(µx) + c2 sin(µx). From the first boundary condition we find

−c1 sin 0 + c2 cos 0 = 0 ⇒ c2 = 0

The second boundary condition is then

−µc1 sin(µL) = −κc1 cos(µL) ⇒ tanµL =
κ

µ

since we do not want c1 = 0 at this point. This equation has an increasing sequence of positive
solutions (We have proved it using a graphic), which we label

0 < µ1 < µ2 < µ3 < · · ·
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Finally, we obtain the nontrivial solutions

Xn = cos (µnx) , n ∈ N

Since −µ2 = λ, for each n ∈ N the ODE for T becomes

T ′ + (cµn)
2 T = 0 ⇒ T ′ = − (cµn)

2 T ⇒ T = Tn = cne
−(cµn)

2t

We have finally obtained our separated solutions:

un(x, t) = cne
−(cµn)

2t cos (µnx) , n ∈ N

where µn is the nth positive solution to tanµL = κ/µ.
Hence,

u(x, t) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−(cµn)

2t cos (µnx)

Using the initial condition, we have

f(x) = u(x, 0) =
∞∑
n=1

un(x, t) =
∞∑
n=1

cne
−(cµn)

2·0 cos (µnx) =
∞∑
n=1

cn cos (µnx) (8.5)

Now, we want to show that the functions cosµnx are pairwise orthogonal on the interval [0, L].
Assume that for different eigenvalues µ2

n and µ2
m the corresponding eigenfunctions are given by

Xn(x) = cos (µnx) and Xm(x) = cos (µmx)

with µn ̸= µm.
Our goal is to show that these eigenfunctions are orthogonal:∫ L

0

Xn(x)Xm(x)dx = 0 for n ̸= m

We know that Xn(x) satisfies

X ′′
n(x) + µ2

nXn(x) = 0

If we multiply the latter identity by Xm(x) and integrate over [0, L] we obtain:∫ L

0

Xm(x)X
′′
n(x)dx+ µ2

n

∫ L

0

Xm(x)Xn(x)dx = 0

Let the first term in the above equation be:

I =

∫ L

0

Xm(x)X
′′
n(x)dx

An integration by parts gives:

I = [Xm(x)X
′
n(x)]

L
0 −

∫ L

0

X ′
m(x)X

′
n(x)dx

Using the boundary conditions, we get
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I = −κXm(L)Xn(L)−
∫ L

0

X ′
m(x)X

′
n(x)dx

Returning to Substituting back we now have:

−κXm(L)Xn(L)−
∫ L

0

X ′
m(x)X

′
n(x)dx+ µ2

n

∫ L

0

Xm(x)Xn(x)dx = 0

A second integration by parts along with the equation solved by Xm lead us to

(
µ2
n − µ2

m

) ∫ L

0

Xn(x)Xm(x)dx = 0

Since µ2
n ̸= µ2

m for n ̸= m, we must have∫ L

0

Xn(x)Xm(x)dx = 0

Finally, we multiply equation (8.5) by cos (µmx) and integrate over [0, L]. Thanks to the orthog-
onality relation, we obtain

cn =

∫ L

0
f(x) cos (µnx) dx∫ L

0
cos2 (µnx) dx
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