Chapter 8

Sturm-Liouville boundary value problems

In this chapter, we consider a class of two-point boundary value problems. The so-called Sturm-Liouville
Problems. They are a class of eigenvalue problems, which include many of the previous problems as

special cases.

We let p p
Lo=——" [p(w)d—ﬂ +q(r)9

Suppose we have some Sturm-Liouville problem with differential equation
LoO= g for O0<z<l (8.1)
Here, the functions p,p’, ¢, and r are continuous on [0, ¢] with
p(x) >0 and r(zx)>0, 0<z</

We couple (8.1), with the following boundary conditions

a1y(0) + azy'(0) =0, Bry(f) + Pay/(€) = 0 (8:2)
We define the Sturm-Liouville eigenvalue problem (SL Problem) as:
Ly = Ar(x)y
Qly(o) + Oégy,<0) = O (83)

Pry(€) + B2y (€) = 0
p(z) >0, r(x)>0

Remark 8.0.1.

o [fin (8.3) we choose p(x) =1, q(z) =0,r(z) =1, 01 =1, ay =0, 1 =1 and By = 0, then
we obtain the following problem

y'+ Ay =0 A= (=), n=1,2,...
y(0) = 0 = y(0) }i’{

o [fin (8.3) we choose p(x) =1, q(x) =0, r(x) =1, a1 =0, ag =1, 51 =0 and 5y =1, then
we obtain the following problem

¥+ Ay =0 } {MZ(M n
, / :> ¢
y'(0) =0=1y'(() y
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e Notice that these boundary conditions are specified at separate endpoints and are called
separated boundary conditions. The periodic BC X (—{) = X ({) are not separated, so the
following problem is not technically an SL Problem.

'+ Xy =0
y(=0) =y(¢)
y'(=0) =y'(0)

e [fp>0 andr > 0 on a finite interval [0, (], then the SL problem is said to be reqular. If
either p(x) or r(x) is zero for some x, or if the domain is unbounded (e.g., [0,00) ), then
the problem is singular.

o [f Py, P, P», and R are continuous and Py and R are positive on a closed interval [a, ],
then the general equation

Po(2)y" + Pi(2)y" + Pa(2)y + AR(z)y = 0
can be rewritten in the SL form. Indeed, if we divide the previous equation by Py(z), we obtain

" Pl(x) / PQ(*T) R(.I‘) o
VTR0 T R@Y T R@Y T

Pi@) o
We multiply the equation by the integrating factor p(x) = el o , we get:

e + p) @) Dy + i(z) (P b(@) | B ) y=0

Py(x) Py(x) Py(x)

L (5)%
dx Pz dx
Thus, the equation becomes:

L (P0)5) + o) 3y = Al 5

The first two terms give:

dzr
Define the following functions:

Therefore,
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Example 8.0.1.

1. Consider the boundary value problem
O +xd +Xp=0, 0<zx<l1

$(0) =0, ¢(1)=0
To write it into SL form, multiply by the integrating factor

w(z) = ol wdw _ 2?2
Since P(x) =1, Q(z) =z and R(z) = 1, we have:
e 2" + e Pug/ + N2 =0
That 1s .
_ <6x2/2¢/> _ )\ex2/2¢
Thus, the SL form is obtained with
p(z) = "2 and 7(a5)) = ™’/
2. Consider the boundary value problem
—y' + a2ty =y
To convert into the SL form, we rewrite the equation as:
y' —aty = =Xy

The integrating factor is
,LL(.%) _ e—fm4da: _ 6—25/5
Multiplying the original equation by pu(x), we obtain:
_e—:c5/5y/l + e_x5/5a:4y' _ )\e—z5/5y
That is ,
i (6—z5/5yl> _ )\e—x5/5y
Thus, the SL form is obtained with

x®/5 —x5/5

p(z) =€ and r(z)=e

3. Consider the eigenvalue problem
Y +3y +(2+Ny=0, y(0)=0, y1)=0

The integrating factor is
H(x) — 6f3dac — 63:0

Multiplying the equation by p(x) yields
— (—e3xy')l + 2e3%y 4+ A3y = 0
So that the eigenvalue problem can be written as
— (—63’”3/), + 2%y = —Ae*y, y(0)=0, y(1)=0
Thus the SL form is obtained with

p(z) = =¥, q(x) =2, and r(x)=—e*
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8.1 Properties of SL problems

Eigenvalues:

(a) The eigenvalues A are all real.
(b) There are infinitely many eigenvalues \; satisfying

A <A <--<A\j—00 asj— o0
(c) Provided 2t <0,g—; > 0, and ¢(z) > 0, then \; > 0.

Eigenfunctions:

For each eigenvalue )\;, there exists an eigenfunction ¢;(z) (unique up to a multiplicative constant)
such that:

(a) The eigenfunctions ¢;(z) are real and can be normalized to satisfy

/Ozr(x)gb?(x)dx 1

(b) Eigenfunctions corresponding to distinct eigenvalues are orthogonal with respect to the weight
function r(z) :

¢
(@nin)i= [ 1(a)o(@onla)dn =0, 2k
0
(c) Each eigenfunction ¢;(z) has exactly j — 1 zeros in the interval (0, ¢).

Expansion property: The eigenfunctions {¢;(z)} form a complete set. Thus, if f(x) is piecewise
smooth, then we have

fl@) =" cun(z)
¢
with ¢, = Jo Tgx)f(x)éﬁn(l‘)dx
fo r(x)¢?(x)dx

Lagrange’s Identity For sufficiently differentiable functions u and v, Lagrange’s Identity states that

¢
/ AV
/0 [vLu — ulv|de = — p(z) (v'v —w')],
Proof. Write , ,
/ vLudr = / v [—(p) + qu] dz
0 0

¢ ¢
= — vpu’|€+/ pu'v'd:c—i—/ quudx
0 0
L ¢ ¢ /
= — opu’|, + upv'|, +/ ul[—(pv') + qu] da
0
¢ ¢ ‘
= — opu|, + upv'|, +/ ulvdz
0

Hence,
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¢ ¢
/ vLudx — / ulvdr = — p(x) (u'v — uv')|€
0 0

If v and v satisfy the SL boundary conditions

a1u(0) + au’(0) =0, Biu(l) + Bou'(£) =0
a1v(0) + v’ (0) =0, Brv(l) + P2’ (£) =0

then the boundary terms cancel and

¢ ¢
/ vLudxr = / ulvdx
0 0

Example 8.1.1.

1. We want to solve the eigenvalue problem

2 1
() +Zy=-X=y, >0
45 a5

subject to the following boundary conditions

y(1)=0, y(2)=0
Note that r(z) = L. Ezpanding the derivative, we have

2 1
2y’ Ty oy = Ay

Multiply through by x to obtain the Cauchy-FEuler type equation:

2y +ay' + (A +2)y =0

The characteristic equation is
P+ A+2=0

Case 1: A +2 < 0.
We have two solutions r1 o = £1/—(A+2). The general solution is then,

y(z) = 1z~ V O 4 yqV/ 05D

The boundary conditions y'(1) = y/'(2) = 0 implies that ¢; = co = 0. Trivial solution.
Case 2: A +2=0.
We have a double solution ry = ro = 0. The general solution is then,

y(x) =1 +colnx

The boundary conditions y'(1) = 0 implies that ca = 0 and so y(x) = ¢1 is a nontrivial solution.
Case 3: A +2> 0.

Thus, the general solution is

y(x) = cycos(VA+2Inz) + casin(VA + 21Inz)
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Next we apply the boundary conditions. y'(1) = 0 forces ca = 0. This leaves

y(x) = ¢ cos(VA+2Inx)

The second condition, y'(2) = 0, yields

sin(VA+2In2) =0

This will give nontrivial solutions when

VA+2In2=nmr, n=123...

In summary, the eigenfunctions for this eigenvalue problem are

nm
(@) = cos (5] ) 1<z<2
Yn () cos(ln2 nx), <z<
and all (including A = —2 ) the eigenvalues are \,, = (%)2 —2 forn=0,1,2,...

We can check the orthogonality of eigenfunctions. We recall that

o ) = / (@) () () i

Inzx

Let y = 2. Then, we have:

In2°
2 nmw mm dx
(Yns Ym) = /1 cos (m lnx> COoS (E In 93) g
In2 [™
=— [ cos(ny) cos(my)dy

where

5o 1, ifn=m
o, ifn#m

15 the so called Kronecker delta.
Now let us consider expanding a function f(x) in terms of a "Fourier Series" of these new eigen-
functions in the following form

)= 3 ) = 3 v (TF157)

In order to determine the coefficients ¢, we project the function f(x) onto the basis functions

¢n(x) as follows:

2 mrinz\ dr > 2 mrmlnz nrlnx\ dx
/1f(x)cos( — >?—nz:%cn/l cos( 05 )cos( 5 )?
In2
2

:Cm

Hence,
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f ntlnz\ dz
“a ln2 In2 T

e If the operator £ and the boundary conditions satisfy

y) ‘
/ vLudr = / uLlodr
0 0

e With the notation (f, g) fo x)dzx, the selfadjoint property can be written as

then £ is said to be self adjoint.

(v, Lu) = (u, Lv)

8.2 Application: Solving the heat equation with Robin bound-
ary conditions

We consider the function u(x,t), which models the temperature distribution in a heat-conductive rod
of length L that is perfectly insulated along its sides. The left end of the rod is also perfectly insulated,
meaning no heat escapes or enters at x = 0. Meanwhile, the right end at x = L loses thermal energy
at a rate proportional to its temperature at that point. The initial temperature distribution along the
rod is given by the function f(z).

Example 8.2.1. The problem is stated as follows:

U =0y, O0<az <L t>0
ug(0,t) =0, ugx(L,t)+ rku(L,t) =0 (8.4)
u(z,0) = f(z)

where k > 0. We use the method of separation of variables to solve the problem (8.4). We first
seek separated solutions of the form u(x,t) = X (x)T'(t) satisfying all of the homogeneous linear
requirements, i.e. the first three conditions. Substituting the separated solution into the PDE

yields
X// T/
XT' =X"T = — =
‘ X ~ T
since the two sides of the latter equation are functions of distinct independent variables. This
gives us the pair of separated ODFEs

= X (constant)

—AX =0, T'=\*T=0
From the first boundary condition we obtain
X'(0)T({t)=0= X'(0)=0

since we do not want T'= 0. The second boundary condition requires that
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X'(I)T(t) = —kX(L)T(t) = X'(L) = —xX (L)

We have thus obtained an ODE boundary value problem in X that requires a case by case analysis
of the possible values of k for which there are nontrivial (nonzero) solutions.

Case 1: \ = p? > 0.

In this situation the ODE for X becomes

X”—/LZX:O

with characteristic equation
r?— =0

whose roots are r = £u. The solutions are then given by
X = e + cye ™™
The boundary conditions require that

1 (cle”'o — 026_“'0) =0=c¢c —c=0

1 (cle”L — 026_“L) = —K (cle“L + @e‘”L) = ¢ (k + p)ett 4+ co(k — p)e ™ =0

(orsgere ommemns ) (2) = (o)

The determinant of the coefficient matrix is

or in matriz form

(k—pe ™ + (k4 p)et =k (e + e ) + p (e —e™) >0

which means that the only possibility is that c; = co = 0, or in other words X = 0.

Case 2: A =0.

Now the ODE in X simplifies to X" = 0 which means that X = ax +b. The first boundary
condition immediately implies a = 0 and the second then becomes

0=—-rb=0b=0
which once again tells us that X = 0. So we move on.
Case 3: A\ = —u? < 0.
Things finally get interesting. The ODE becomes X" + u?X = 0 whose characteristic equation has
roots +ip, so that X (x) = ¢; cos(ux) + casin(ux). From the first boundary condition we find
—c18in0+cpcos0=0=c¢c, =0
The second boundary condition is then

—pcy sin(pul) = —key cos(pul) = tan pul = L
I

since we do not want ¢; = 0 at this point. This equation has an increasing sequence of positive
solutions (We have proved it using a graphic), which we label

0 <y < prg <pg<---
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Finally, we obtain the nontrivial solutions
X, =cos(pupz), meN
Since —p® = X, for each n € N the ODE for T becomes
T+ (cun)’T=0=T' = — (citn)’ T = T = T, = cpe” )
We have finally obtained our separated solutions:
up(z,t) = Cpe ()t cog (nz), mneN
where p, is the nth positive solution to tan uL = K /.

Hence,
t) = Zun(:v, t) = Z Cne (@)t cog (pnx)
n=1

n=1

Using the initial condition, we have

f(z) = u(z,0) Zun z,t) Zc e~ (emn)’ 0 cos (pnz) chcos Un® (8.5)

n=1

Now, we want to show that the functions cos p,x are pairwise orthogonal on the interval [0, L].
Assume that for different eigenvalues 2 and p?, the corresponding eigenfunctions are given by

Xn(x) =cos (punz)  and X, (x) = cos (m)

With i, # fm-
Our goal is to show that these eigenfunctions are orthogonal:

L
/ Xp(z)Xp(x)de =0 forn#m
0
We know that X,,(z) satisfies

X!(z) + 12 Xn(w) = 0
If we multiply the latter identity by X,,(x) and integrate over [0, L] we obtain:

/OL Xon(2) X)) (2)dx + /OL Xp(2) X (z)dz = 0

Let the first term in the above equation be:

[ /O ¥ X ()X (2)de

I =B X0 - | Ko@) Xia)da

An integration by parts gives:

Using the boundary conditions, we get
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I =—kX,,(L)X,(L) —/0 X! ()X (z)dx

Returning to Substituting back we now have:

—6Xm (D)X, (L) — /0 X! ()X (z)dx + ,ui/o X (2) X (x)dz =0

A second integration by parts along with the equation solved by X,, lead us to

~ 1) [ Ko@) Xnla)da =0

Since u2 # u, for n # m, we must have

/ Xl z)dr =0

Finally, we multiply equation (8.5) by cos (umx) and integrate over [0, L]. Thanks to the orthog-
onality relation, we obtain

fo ) cos (pinx) dx
fOL cos? () dz

Cn =
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