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1. Consider the differential equation
Ly= 2% —zf +(L+2%)y=0 m
(@) Classify the points 0 < & < oo as ordinary points, regular singular points, or irregular singular points.
o0
(b) Find two values of r such that there are solutions of the form y(z) = Y a,z™*".
. n=0
(¢) Use the series expansion in (b) to determine two independent solutions of (1). You only need to calculate

the first three non-zero terms in each case.
[20 marks]
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2. Consider a conducting metal bar of length m/2 whose initial temperature is u(z,0) = z and which loses heat to
its surroundings. Assume that the left end of the bar is maintained at a zero temperature while the right end is
insulated. The temperature distribution in the bar u(z, t) is determined by the following initial boundary value

problem for the heat equation:

U = Uxx~U, 0<$<7I'/2, t>0
u(0,t) = 0, uz(n/2,t) =0 )
u(z,0) = =

(a) Determine the solution to the boundary value problem (2) by separation of variables.
[14 marks]

(b) Briefly describe how you would use the method of finite differences to obtain an approximate solution
this boundary value problem that is accurate to O(Az?, At) terms. Use the notation u¥ =~ u(z,, tx) to
represent the nodal values on the finite difference mesh. Explain how you propose to approximate the
boundary condition u.(/2,t) = 0 with O(Ax?) accuracy.

Hint: Taylor’s expansion may prove useful: f(z + Az) = f(z) + MIFZA:: + L;@Aa? + O(Azd).
(6 marks]
[total 20 marks]
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(Question 2 Continued)
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3. The motion of a damped string subject to an imposed load satisfies the following initial-boundary value problem:
Ut + 2vu, Upr — 8sinzcosz, 0<z<m, t>0 3)
u(0,t) u(mt) =0 )
u(z, 0) 0, u:(z,0) = sin 3.
(a) Determine the static deflection w(z) of the string (i.., the steady solution), which is determined by solving
(3) with ugs = u¢ = 0 and subject to the boundary conditions (4).

(5 marks]

(b) Letu(z,t) = w(z) + v(z, t) and determine the corresponding boundary value problem for v(z, t).
[5 marks]

(c) Assuming that ¥ < 1 use the method of separation of variables to solve for v(z, t) and therefore u(z, t).
[6 marks)

(d) Now assuming no damping, i.e., letting -y = 0, use D’ Alembert’s solution (see the formula sheet) to
determine v(x, t) and therefore u(z, t). .
[4 marks]
) [total 20 marks]
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4. Consider the eigenvalue problem
2+ +dy = 0 (1)
Y1) = 0=y(e"/?) z)

(@ Reduce this problem to the form of a Sturm-Liouville eigenvalue problem. Determine the eigenvalues and
corresponding eigenfunctions. (8 marks]

(b)  Use the eigenfunctions in (a) to solve the following mixed boundary value problem for Laplace’s equation
on the semi-annular region:

u.,.,-+;u,-+r—12uga =0 l<r<e™”?, 0<b<n
u(r,0) = 0 and u(r,x)=f(r)

w = 0 and u(e"/2,0) =0
X d [12 marks]
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5. Solve the inhomogeneous heat conduction problem subject to time dependent boundary conditions:

U = 0ugs+l-zet 0<z<],t>0
uz(0,t) = e~% andu(l,t) =t
u(z,0) = =

{20 marks]
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