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1. Consider the differential equation
Ly = 323z + 20" +Tzy -2y =0 (1)

(a) Classify the points —00 < £ < oo as ordinary points, regular singular points, or
irregular singular points.

(b) What form of expansion would you use around the point xp = —2? What is the
minimal radius of convergence of this series?

o0
(¢) Find two values of r such that there are solutions of the form y(z) = > a,z™".
n=0

(d) Use the series expansion in (c) to determine two independent solutions of (1).
You only need to calculate the first three non-zero terms in each case.
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2. Consider the following diffusion initial-boundary value problem

U = Ugp, O<z <, >0
u(0,t) = 0=u(m,1) (2)
u(z,0) = =z
(a) Determine the solution to (2) by separation of variables. (10 marks]

(b) Briefly describe how you would use the method of finite differences to obtain an ap-
proximate solution to this boundary value problem that is accurate to O(Az?, At)
terms. Use the notation uf =~ u(x,, %) to represent the nodal values on the finite
difference mesh. [6 marks]

(c) Use the solution u* = G*e™™ to derive a condition for the stability of this scheme.
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3. Solve the following initial boundary value problem for the wave equation subject to a
periodic forcing with w ¢ {1,2,...}:
Uy = Ugy +sinwtsin(3:1:) ,0<z<m >0
u(0,t) =0 and u(x,t) =0, t>0
u(z,0) =sinz, 1u(z,0)=0, O0<z<m
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4. Consider the eigenvalue problem

LY =2}y +zy+dy = 0
y(1) = 0=y(")
(a) Reduce this problem to the form of a Sturm-Liouville eigenvalue problem. Deter-
mine the eigenvalues and corresponding eigenfunctions. [8 marks]

(b) Use the eigenfunctions in (a) to solve the following mixed boundary value problem
for Laplace’s equation on the semi-annular region:

urr+%u,+%wg =0, l<r<e", 0O0<b<n7
u(r,0) = 0 and u(r,m) = f(r)
ou(1,6) Ou(e™,8)
o = 0 and —5—=0
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5. We wish to determine how long a steel beam will take to lose its structural integrity
when one end is subjected to a fire of increasing intensity. Consider the following one
dimensional model in which the left boundary condition represents the heat flux due to
the fire and the right boundary condition represents the heat lost to the environment.
Solve the inhomogeneous heat conduction problem subject to time dependent boundary
conditions:

U = Uz —Z,0<2<1,E>0
_ Ou(l,t)
uz(0,t) = —t, and e u(1,t)
u(z,0) = x?

(a) Determine a simple function w(z,t) that satisfies the inhomogeneous boundary
conditions. [4 marks]

(b) Now let u(z,t) = w(z,t) +v(z,t) and determine the boundary value problem sat-
isfied by v(z, ). [4 marks]

(c) Now determine a steady-state solution w(z) for the equation for v(z,t). Let
v(z,t) = w(z) + ¢(z,t), and determine the boundary value problem satisfied by
¢(z,¢). |4 marks]

(d) Complete the solution to the problem by using separation of variables to solve the
boundary value problem for ¢(z, ). Determine the equation satisfied by the eigen-
values and illustrate the solutions graphically - you need not obtain an explicit
expression for the eigenvalues. [8 marks]
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