Dec. 17,2018 Math 257/316  Name: Page 2 of 17

1. Consider the differential equation

Lﬂ=2x2(1 —2)y - 32y +2y=0 (1)

(a) Classify the points —oc < z < 0o as ordinary points, regular singular points, or
irregular singular points.

(b) What form of expansion would you use around the point zy = 1?7 What is the
minimal radius of convergence of this series?

(c) Find two values of r such that there are solutions of the form y(z) = Z a "t

(d) Use the series expansion in (¢) to determine two independent solutions of (1).
You only need to calculate the first three non-zero terms in each case.
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2. Solve the following mixed boundary value problem for Laplace’s equation on the semi-
circular region:

1 1
Ur + —Ur+ Zupp = 0, O0<r<l, O<f<nm
T T
i _ 7 Ou(r,m)
u(r,0) = 0 and 50 0
u(1,8) = f(6) and u(r,f)<oc as r—0

[total 20 marks]
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3. Solve the telegraph equation with 0 < 4 < 1 subject to an exponentially decaying
forcing function:

U + 27Uy = Uge + € P cos (52), O <z <7f2, t >0
uz(0,t) = 0 and u(#/2,¢) =0, t>0
w(z,0) =0, u(z,0)=cos(3z), O0<z<7/2
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4. Consider the following diffusion initial-boundary value problem

U = Ugg O0<z<7/2, t>0
u(0.1) = 1—tand u(7/2.)=1, t>0 (2)
u(r,0) = x

(a) Reduce problem (2) to one with homogeneous boundary conditions and determine
the solution to that problem by an eigenfunction expansion.

[14 marks]
(b) Briefly describe how you would use the method of finite differences to obtain an ap-

proximate solution to this boundary value problem that is accurate to O(Az?, At)

terms. Use the notation uf ~ u(x,, t) to represent the nodal values on the finite

difference mesh. [6 marks]
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5. Consider the following eigenvalue problem

L&a +3CLU+/\U = 0, l<z<e" [/)
y(1) = 0and y(e") =0 (Z)

(a) Reduce this problem to the form of a Sturm-Liouville eigenvalue problem. De-
termine the eigenvalues and corresponding eigenfunctions (consider the cases
A <1, A=1, A >1 separately).

(b) Now use the result in part (a) to solve the [ollowing heat conduction problem by
separation of varaibles:

Uy = T Ugg+3TUg, 1<z <, L>0
u(1,t) = 0, and u(e™,t) =0
u(z,0) = 2/z. [total 20 marks]
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