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Math 257/316 — Midterm Exam — 1 hr 15 min

June 03, 2025

• This test consists of 18 pages and 3 questions worth a total of 80 marks

• This is a closed-book examination. Notes, calculators, phones, com-
puters, or electronic device of any kind and cheat sheets are not
allowed.

• The formula sheet is on the last page of the exam booklet.
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1. 30 marks Consider the following Gauss’s hypergeometric equation:

x(1− x)y′′ + (c− (a+ b+ 1)x)y′ − aby = 0. (1)

where a, b and c are constants.

(a) Classify all points ∞ < x < ∞ as ordinary, regular singular or irregular
singular points. For the regular singular points, find the roots of the
corresponding indicial equations. (6 marks)

Solution: Rewrite in standard form. Divide (1) by the leading
coefficient x(1− x) (for x ̸= 0, 1):

y′′ + P (x) y′ +Q(x) y = 0,

P (x) =
c− (a+ b+ 1)x

x(1− x)
, Q(x) = − a b

x(1− x)
.

The singular points are; x = 0, x = 1.

All other finite points x ̸= 0, 1 are ordinary points.

• Singular point at x = 0

lim
x 7→0

xP (x) = lim
x 7→0

x
c− (a+ b+ 1)x

x(1− x)
= c (finite)

lim
x 7→0

x2Q(x) = lim
x7→0

−x2 a b

x(1− x)
= 0 (finite).

x = 0 is a regular singular point.

Indicial equation

r(r − 1) + cr = 0

=⇒ r1 = 0 and r2 = 1− c

• Singular point at x = 1.

lim
x 7→1

(x− 1)
c− (a+ b+ 1)x

x(1− x)
= a+ b+ 1− c (finite)

lim
x 7→1

−(x− 1)2
a b

x(1− x)
= 0 (finite).

x = 1 is a regular singular point.

Indicial equation

r(r − 1) + (a+ b+ 1− c)r = 0

=⇒ r1 = 0 and r2 = c− a− b
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(b) Classify the points at infinity as ordinary, regular singular or irregular
singular points. If they are regular singular points, find the roots of the
indicial equation. (6 marks)

Solution: Let t = 1/x, so x = 1/t and y(x) = Y (t). Using

dy

dx
= − t2

dY

dt
,

d2y

dx2
= 2 t3

dY

dt
+ t4

d2Y

dt2
,

The differential equation becomes

(t− 1) t2 Y ′′ +
[
2 t (t− 1)− c t2 + (a+ b+ 1) t

]
Y ′ − a b Y = 0.

Divide by (t− 1) t2 to write in standard form:

Y ′′ + P (t)Y ′ +Q(t)Y = 0,

P (t) =
(2− c) t+ (a+ b− 1)

t (t− 1)
, Q(t) = − a b

t2 (t− 1)
.

Classification at t = 0 (i.e. x = ∞).

Compute

lim
t→0

(2− c) t+ (a+ b− 1)

t− 1
= 1− (a+ b) (finite),

lim
t→0

[
− a b

t− 1

]
= a b (finite).

Hence t = 0 (i.e. x = ∞) is a regular singular point.

Indicial equation at t = 0.

r(r − 1) + (1− (a+ b))r + ab = 0 =⇒ (r − a)(r − b) = 0

=⇒ r1 = a and r2 = b

(c) Given that a = 1, b = 1 and c = 1. Use appropriate series expansion
to determine a series solution to (1) that satisfies y(0) = 0.5. What is
the radius of convergence of this series? (You may choose to write
the series in the general form, or only determine the first three
non-zero terms in each case.) (18 marks)

Hints: The following hints may be useful: Given x = 1/t,

dy

dx
= −t2

dy

dt
and

d2y

dx2
= 2t3

dy

dt
+ t4

d2y

dt2
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Solution: With a = 1, b = 1, and c = 1, Equation (1) becomes

x(1− x) y′′ +
(
1− 3x

)
y′ − y = 0.

Let

y(x) =
∞∑

n=0

an x
n+r, y′(x) =

∞∑

n=1

an(n+ r)xn+r−1,

y′′(x) =
∞∑

n=2

an(n+ r)(n+ r − 1)xn+r−2.

Substitute into the ODE:

∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r−1 −

∞∑

n=0

(n+ r)(n+ r − 1)anx
n+r

+
∞∑

n=0

(n+ r)anx
n+r−1 − 3

∞∑

n=0

(n+ r)anx
n+r −

∞∑

n=0

anx
n+r = 0

Simplify

∞∑

n=0

(n+ r)(n+ r)anx
n+r−1 −

∞∑

n=0

[(n+ r)(n+ r + 2) + 1]anx
n+r = 0

Shift index of the first summation, let n+r−1 = m+r and simplify

a0r
2xr−1

+
∞∑

n=0

{an+1(n+ r + 1)2 − an[(n+ r)(n+ r + 2) + 1]}xn+r = 0

Since difference x powers are independent, we equate x coefficients
to zero

xr−1: Indicial equation:

a0r
2 = 0 =⇒ r1,2 = 0

xn+r: Recurrence relation

an+1 =
an((n+ r)(n+ r + 2) + 1)

(n+ r + 1)2
, n ≥ 0

Note that we are in Case: r1 − r2 = 0

Case 1: r1 = 0: The recurrence relation simplifies to

an+1 =
an(n+ 1)2

(n+ 1)2
= an, n ≥ 0
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Hence,
an = a0, ∀n ≥ 0.

Therefore

y1(x) =
∞∑

n=0

a0 x
n =

a0
1− x

, |x| < 1.

Case 2: r1 = 0: Repeated root

y2(x) = ln x · y1(x) +
∞∑

n=0

bnx
n

The general solution is

y(x) = c1y1(x) + c2y2(x)

Since y(0) = 0.5 is finite, set c2 = 0

We get
y(x) = c1y1(x)

Th initial condition y(0) = 0.5 gives c1 = 0.5. Thus

y(x) = 0.5
∞∑

n=0

xn =
0.5

1− x

The series
∑∞

n=0 x
n converges for |x| < 1. Hence the radius of con-

vergence is
R = 1.
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2. 30 marks Apply the method of separation of variables to determine the
solution to the one dimensional heat equation with the following Mixed ho-
mogeneous boundary conditions (Show all cases of the eigenvalue problem):

P.D.E.:
∂u

∂t
=

∂2u

∂x2
, 0 < x < π, t > 0 (2a)

B.C. :
∂u(0, t)

∂x
= 0 = u(π, t) (2b)

I.C.: u(x, 0) = x(π − x) (2c)

Hint: It may be useful to know that:

2

π

∫ π

0

x(π − x) cos

(
2n+ 1

2
x

)
dx =

8

π

4(−1)n − (2n+ 1)π

(2n+ 1)3

Solution:

Use separation of variables: Let

u(x, t) = X(x)T (t).

Substituting into ut = uxx gives

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ2,

where λ2 is a separation constant. Then:

T ′(t) + λ2 T (t) = 0 =⇒ T (t) = D e−λ2t.

The eigenvalue problem:

X ′′(x) + λ2X(x) = 0, X ′(0) = 0, X(π) = 0.

The general solution of X ′′ + λ2X = 0 is

X(x) = A cos(λx) +B sin(λx), X ′(x) = −Aλ sin(λx) +B λ cos(λx).

Impose X ′(0) = 0:

X ′(0) = −Aλ sin(0) +B λ cos(0) = B λ = 0 =⇒ B = 0.

Hence X(x) = A cos(λx). Next impose X(π) = 0:

X(π) = A cos(λπ) = 0 =⇒ cos(λπ) = 0 =⇒ λπ =
π

2
+kπ, k = 0, 1, 2, . . .
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Thus

λk =
2k + 1

2
, k = 0, 1, 2, . . .

and a corresponding (nontrivial) eigenfunction is

Xk(x) = cos
(

2k+1
2

x
)
, k = 0, 1, 2, . . .

The time-dependent factor is then

Tk(t) = e−λ2
k t = e−

(
2k+1

2

)2

t.

Hence the general solution is

u(x, t) =
∞∑

k=0

Ak cos
(

2k+1
2

x
)
e−

(
2k+1

2

)2

t.

To satisfy the initial condition u(x, 0) = x(π − x), we require

x(π − x) =
∞∑

k=0

Ak cos
(

2k+1
2

x
)
, 0 ≤ x ≤ π.

Since the eigenfunctions {cos((2k + 1)x/2)} are orthogonal on [0, π] with
weight 1, the coefficients Ak are given by

Ak =

∫ π

0

x(π − x) cos
(

2k+1
2

x
)
dx

∫ π

0

cos2
(

2k+1
2

x
)
dx

.

Compute the denominator first:∫ π

0

cos2
(

2k+1
2

x
)
dx =

π

2
.

Thus

Ak =
2

π

∫ π

0

x(π − x) cos
(

2k+1
2

x
)
dx.

An integration by parts yields
∫ π

0

x(π − x) cos
(

2k+1
2

x
)
dx =

4(−1)k − (2k + 1) π

(2k + 1)3
· 4.

Hence

Ak =
2

π
· 4

[
4(−1)k − (2k + 1) π

]

(2k + 1)3
=

8

π

4(−1)k − (2k + 1) π

(2k + 1)3
.

The final solution is therefore given by

u(x, t) =
8

π

∞∑

k=0

[
4(−1)k − (2k + 1) π

(2k + 1)3

]
cos

(
2k+1
2

x
)
exp

[
−
(
2k+1
2

)2
t
]
.
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3. 20 marks Let f : R → R be an infinitely differentiable function. Using the
Taylor’s expansion, prove that

f ′(x) =
2f(x+ 3h)− 9f(x+ 2h) + 18f(x+ h)− 11f(x)

6h
+O (hp) ,

and the deduce the order of accuracy p.

Hint: Taylor expansion: It may be useful to know that

f(x+kh) = f(x)+kh f ′(x)+
(kh)2

2
f ′′(x)+

(kh)3

6
f ′′′(x)+

(kh)4

24
f (4)(x)+· · · ; k = 1, 2, 3 · · ·

Solution: Expand f(x+h), f(x+2h), and f(x+3h) about x via Taylor’s
theorem:

f(x+ h) = f(x) + h f ′(x) + h2

2
f ′′(x) + h3

6
f (3)(x) + h4

24
f (4)(x) + O(h5),

f(x+ 2h) = f(x) + 2h f ′(x) + 2h2 f ′′(x) + 4h3

3
f (3)(x) + 2h4

3
f (4)(x) + O(h5),

f(x+ 3h) = f(x) + 3h f ′(x) + 9h2

2
f ′′(x) + 9h3

2
f (3)(x) + 27h4

8
f (4)(x) + O(h5).

Substitute the Taylor’s expansion into

N = 2 f(x+ 3h) − 9 f(x+ 2h) + 18 f(x+ h) − 11 f(x).

Substitute the expansions:

2 f(x+ 3h) = 2f(x) + 6h f ′(x) + 9h2 f ′′(x) + 9h3 f (3)(x) + 27h4

4
f (4)(x) +O(h5),

−9 f(x+ 2h) = −9f(x)− 18h f ′(x)− 18h2 f ′′(x)− 12h3 f (3)(x)− 6h4 f (4)(x) +O(h5),

18 f(x+ h) = 18f(x) + 18h f ′(x) + 9h2 f ′′(x) + 3h3 f (3)(x) + 3h4

4
f (4)(x) +O(h5),

−11 f(x) = −11f(x).

The term-by-term summation gives:

Coefficient of f(x):
2− 9 + 18− 11 = 0.

Coefficient of h f ′(x):
6 − 18 + 18 = 6.

Coefficient of h2 f ′′(x):

9 − 18 + 9 = 0.
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Coefficient of h3 f (3)(x):

9 − 12 + 3 = 0.

Coefficient of h4 f (4)(x):

27
4

− 6 + 3
4
= 27+3

4
− 6 = 30

4
− 6 = 30−24

4
= 6

4
= 3

2
.

Thus

N = 6h f ′(x) +
3

2
h4 f (4)(x) + O(h5).

Divide by 6h:

2 f(x+ 3h)− 9 f(x+ 2h) + 18 f(x+ h)− 11 f(x)

6h
= f ′(x) +

3

2

h4

6h
f (4)(x) +O(h4)

= f ′(x) +
1

4
h3 f (4)(x) + O(h4).

Hence

f ′(x) =
2 f(x+ 3h)− 9 f(x+ 2h) + 18 f(x+ h)− 11 f(x)

6h
+ O(h3).

The finite difference approximation has order of accuracy

p = 3.
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Math 257-316 PDE Formula sheet - final exam

Trigonometric and Hyperbolic Function identities

sin(α± β) = sinα cosβ ± sinβ cosα sin2 t+ cos2 t = 1
cos(α± β) = cosα cosβ ∓ sinβ sinα. sin2 t = 1

2 (1− cos(2t))

sinh(α± β) = sinhα coshβ ± sinhβ coshα cosh2 t− sinh2 t = 1
cosh(α± β) = coshα coshβ ± sinhβ sinhα. sinh2 t = 1

2 (cosh(2t)− 1)

Basic linear ODE’s with real coefficients

constant coefficients Euler eq
ODE ay′′ + by′ + cy = 0 ax2y′′ + bxy′ + cy = 0

indicial eq. ar2 + br + c = 0 ar(r − 1) + br + c = 0
r1 6= r2 real y = Aer1x +Ber2x y = Axr1 +Bxr2

r1 = r2 = r y = Aerx +Bxerx y = Axr +Bxr ln |x|
r = λ± iµ eλx[A cos(µx) +B sin(µx)] xλ[A cos(µ ln |x|) +B sin(µ ln |x|)]
Series solutions for y′′ + p(x)y′ + q(x)y = 0 (?) around x = x0.

Ordinary point x0: Two linearly independent solutions of the form:

y(x) =
∑∞

n=0 an(x− x0)
n

Regular singular point x0: Rearrange (?) as:
(x− x0)

2y′′ + [(x− x0)p(x)](x− x0)y
′ + [(x− x0)

2q(x)]y = 0
If r1 > r2 are roots of the indicial equation: r(r − 1) + br + c = 0 where
b = lim

x→x0

(x− x0)p(x) and c = lim
x→x0

(x− x0)
2q(x) then a solution of (?) is

y1(x) =
∑∞

n=0 an(x− x0)
n+r1 where a0 = 1.

The second linerly independent solution y2 is of the form:
Case 1: If r1 − r2 is neither 0 nor a positive integer:

y2(x) =
∞∑

n=0

bn(x− x0)
n+r2 where b0 = 1.

Case 2: If r1 − r2 = 0:

y2(x) = y1(x) ln(x− x0) +
∞∑

n=1

bn(x− x0)
n+r2 for some b1, b2...

Case 3: If r1 − r2 is a positive integer:

y2(x) = ay1(x) ln(x− x0) +

∞∑

n=0

bn(x− x0)
n+r2 where b0 = 1.

Fourier, sine and cosine series

Let f(x) be defined in [−L,L]then its Fourier series Ff(x) is a 2L-periodic
function on R: Ff(x) = a0

2 +
∑∞

n=1

{
an cos(

nπx
L ) + bn sin(

nπx
L )

}

where an = 1
L

∫ L

−L
f(x) cos(nπxL ) dx and bn = 1

L

∫ L

−L
f(x) sin(nπxL ) dx

Theorem (Pointwise convergence) If f(x) and f ′(x) are piecewise con-
tinuous, then Ff(x) converges for every x to 1

2 [f(x−) + f(x+)].
Parseval’s indentity

1

L

∫ L

−L

|f(x)|2dx =
|a0|2
2

+

∞∑

n=1

(
|an|2 + |bn|2

)
.

For f(x) defined in [0, L], its cosine and sine series are

Cf(x) =
a0
2

+
∞∑

n=1

an cos(
nπx

L
), an =

2

L

∫ L

0

f(x) cos(
nπx

L
) dx,

Sf(x) =

∞∑

n=1

bn sin(
nπx

L
), bn =

2

L

∫ L

0

f(x) sin(
nπx

L
) dx.

D’Alembert’s solution to the wave equation

PDE: utt = c2uxx, −∞ < x < ∞, t > 0 IC: u(x, 0) = f(x), ut(x, 0) = g(x).

SOLUTION: u(x, t) = 1
2 [f(x+ ct) + f(x− ct)] + 1

2c

∫ x+ct

x−ct
g(s)ds

Sturm-Liouville Eigenvalue Problems

ODE: [p(x)y′]′ − q(x)y + λr(x)y = 0, a < x < b.
BC: α1y(a) + α2y

′(a) = 0, β1y(b) + β2y
′(b) = 0.

Hypothesis: p, p′, q, r continuous on [a, b]. p(x) > 0 and r(x) > 0 for
x ∈ [a, b]. α2

1 + α2
2 > 0. β2

1 + β2
2 > 0.

Properties (1) The differential operator Ly = [p(x)y′]′− q(x)y is symmetric
in the sense that (f, Lg) = (Lf, g) for all f, g satisfying the BC, where (f, g) =∫ b

a
f(x)g(x) dx. (2) All eigenvalues are real and can be ordered as λ1 < λ2 <

· · · < λn < · · · with λn → ∞ as n → ∞, and each eigenvalue admits a unique
(up to a scalar factor) eigenfunction φn.

(3) Orthogonality: (φm, rφn) =
∫ b

a
φm(x)φn(x)r(x) dx = 0 if λm 6= λn.

(4) Expansion: If f(x) : [a, b] → R is square integrable, then

f(x) =
∞∑

n=1

cnφn(x), a < x < b , cn =

∫ b

a
f(x)φn(x)r(x) dx∫ b

a
φ2
n(x)r(x) dx

, n = 1, 2, . . .

1
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