
Math 257/316 Assignment 3, 2025
Due Monday June 2 Submit online only the final solution of Problem 1 in
a PDF document (or direct entry) on Canvas by 11:59 pm of the due date

Problem 1 (Submit only the final solution)– Mixed BC: Apply the method of
separation of variables to determine the solution to the one dimensional heat equation with
the following Mixed homogeneous boundary conditions:

∂u

∂t
=

∂2u

∂x2
, 0 < x < π/2, t > 0

BC : u(0, t) = 0 =
∂u(π/2, t)

∂x
IC : u(x, 0) = sin(5x)

Solution 1. Separation of variables. Assume

u(x, t) = X(x)T (t).

Substitute into the PDE to get

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′(t)

T (t)
=

X ′′(x)

X(x)
= −λ.

2. Temporal ODE.

T ′(t) + λT (t) = 0 =⇒ T (t) = e−λ t.

3. Eigenvalue problem.

X ′′(x) + λX(x) = 0, X(0) = 0, X ′(π
2

)
= 0.

The general solution is

X(x) = A cos(µx) +B sin(µx), λ = µ2.

The boundary X(0) = 0 gives A = 0, so X(x) = B sin(µx). Then

X ′(π
2

)
= B µ cos

(
µπ/2

)
= 0 =⇒ cos

(
µπ/2

)
= 0 =⇒ µπ/2 = (2n+1)

π

2
, n = 0, 1, 2, . . .

Hence the eigenvalues and eigenfunctions are

µn = 2n+ 1, λn = (2n+ 1)2, Xn(x) = sin
(
(2n+ 1)x

)
.

Show that the cases λ < 0 and λ = 0 give trivial solutions.
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4. General solution.

u(x, t) =
∞∑
n=0

An sin
(
(2n+ 1)x

)
e−(2n+1)2 t.

5. Determine coefficients from the initial condition. At t = 0,

u(x, 0) = sin(5x) =

∞∑
n=0

An sin
(
(2n+ 1)x

)
.

But sin(5x) = sin
(
(2 · 2 + 1)x

)
, so the only nonzero coefficient is A2 = 1 and An = 0

for n ̸= 2. Note that here I used orthogonality property

∫ L

−L
sin

(
(2n+1)πx

2L

)
sin

(
(2m+1)πx

2L

)
dx =

{
L, n = m,

0, n ̸= m,

∫ L

−L
cos

(
(2n+1)πx

2L

)
cos

(
(2m+1)πx

2L

)
dx =

{
L, n = m,

0, n ̸= m,

or

∫ L

0
sin

(
(2n+1)πx

2L

)
sin

(
(2m+1)πx

2L

)
dx =


L

2
, n = m,

0, n ̸= m,

∫ L

0
cos

(
(2n+1)πx

2L

)
cos

(
(2m+1)πx

2L

)
dx =


L

2
, n = m,

0, n ̸= m.

6. Final solution.
u(x, t) = sin(5x) e−25 t.

Problem 2 (Do not submit) Find all eigenvalues and corresponding eigenfunctions for
the following eigenvalue problem
DE:

y′′ + λy = 0, 0 < x < L.

Boundary Conditions:
y′(0) = 0, y(L) = 0.

Please show all the cases when solving the eigenvalue problem.
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Solution We look for nontrivial solutions y(x) and corresponding values of λ. Three
cases are: λ < 0, λ = 0, and λ > 0.

Case 1: λ = 0. Show that there are no nontrivial solutions for λ = 0.

Case 2: λ < 0. Show that it also gives a triavial solution y ≡ 0.

Case 3: λ > 0. Let λ = µ2 with µ > 0. The ODE becomes

y′′ + µ2 y = 0,

with the general solution

y(x) = A cos(µx) + B sin(µx).

y′(x) = −Aµ sin(µx) + B µ cos(µx),

using y′(0) = 0.
We have

y′(0) = −Aµ · 0 + B µ · 1 = B µ = 0 =⇒ B = 0,

hence,
y(x) = A cos(µx).

y(L) = 0 gives
A cos(µL) = 0 =⇒ cos(µL) = 0.

Hence

µL =
(
2n+ 1

) π

2
, n = 0, 1, 2, . . . =⇒ µn =

(2n+ 1)π

2L
.

Therefore the eigenvalues are

λn = µ2
n =

(
(2n+1)π

2L

)2
, n = 0, 1, 2, . . .

The corresponding eigenfunctions are

yn(x) = cos
(
µn x

)
= cos

(
(2n+1)π

2L x
)
, n = 0, 1, 2, . . .

Problem 3 (Do not submit): Consider the following initial boundary value problem for
the heat equation:
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P.D.E. ut + u = 4uxx, 0 < x < π/2, t > 0

B.C. ux(0, t) = 0, and u(π/2, t) = 0

I.C. u(x, 0) =

{
1 if 0 < x < π

4 ,

0 if π
4 < x < π

2 .

(a) Apply the method of separation of variables to determine the solution of the heat equa-
tion (above) together with the given mixed boundary conditions (It is not necessary
to give all the details of the different cases for the eigenvalue problem).

(b) (i) Use the given initial condition to determine Fourier coefficients. Sketch the exten-
sion of the initial condition you would assume on the interval −2π ≤ x ≤ 2π.

(b) (ii) Use Parseval’s identity (or ortherwise) to find the series for π2 (See the formula
sheet for Parseval’s identity).

Hint: It may be useful to know that:

sin2
(
(2n+ 1)π

2

)
= 1/2

Solution (a) Separation of variables. Assume u(x, t) = X(x)T (t). Substitu-
tion gives

X T ′ +X T = 4X ′′ T =⇒ T ′

T
+ 1 = 4

X ′′

X
= −4λ.

Thus
X ′′ + λX = 0, T ′ + (1 + 4λ)T = 0.

The boundary conditions X ′(0) = 0, X(π/2) = 0 admit nontrivial solutions for

λn = (2n+ 1)2, Xn(x) = cos
(
(2n+ 1)x

)
, n = 0, 1, 2, . . .

and
Tn(t) = exp

[
− (1 + 4(2n+ 1)2) t

]
.

Hence the general solution is

u(x, t) =

∞∑
n=0

An cos
(
(2n+ 1)x

)
e− (1+4(2n+1)2) t.

(b)(i) Using initial condition. At t = 0 we have

f(x) =
∞∑
n=0

An cos
(
(2n+ 1)x

)
(0 < x < π

2 ).
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Using the orthogonality,

An =
2
π
2

∫ π
2

0
f(x) cos

(
(2n+ 1)x

)
dx

=
4

π

∫ π
4

0
cos

(
(2n+ 1)x

)
dx

=
4

π (2n+ 1)
sin

(
(2n+1)π

4

)
.

We assume an even extension of the function in the interval

x

f(x)

−π −π/2 0 π/2 π

1

(b)(ii) Parseval’s identity and series for π2.

4

π

∫ π/2

0
f(x)2 dx = 1 =

∞∑
n=0

A2
n.

Hence

∞∑
n=0

8

π2(2n+ 1)2
= 1 =⇒

∞∑
n=0

1

(2n+ 1)2
=

π2

8
,

Therefore

π2

8
=

∞∑
n=0

1

(2n+ 1)2
.

Problem 4 (Do not submit): (a) Briefly describe how you would use the method of
finite differences to obtain an approximate solution of the initial boundary value problem
in Problem 3 that is accurate to O(∆2,∆) terms. Use the notation ukn = u(xk, tk) to
represent the nodal values in the finite different mesh.
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(b) Given that the solution at k + 1 time can be computed in matrix form by:

u0
u1
...
un
...

uN−1

uN



k+1

=



· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
...

...
. . .

. . .
. . . · · ·

· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·





u0
u1
...
un
...

uN−1

uN



k

+



f1
f2
...
fn
...

fN−1

fN



(i) Describe the entries of the coefficient matrix A =



· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
...

...
. . .

. . .
. . . · · ·

· · · · · · · · · · · · · · ·
...

...
...

...
...

...
...

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·


and

the constant vector F = [f1, f2, · · · , fN ]T given the boundary conditions ux(0, t) = 1 and
u(π/2, t) = 1. (use central difference scheme)

Solution Consider the PDE

ut + u = 4uxx

Discretize in time by forward difference scheme and space by central difference scheme
and substitute into the PDE to get

uk+1
n − ukn

∆t
+ ukn =

4
(
ukn+1 − 2ukn + ukn−1

)
∆x2

, r =
4∆t

∆x2

uk+1
n = ukn −∆tuk

′
n + rukn+1 − 2rukn + rukn−1

uk+1
n = (1−∆t− 2r)ukn + rukn+1 + rukn−1

Apply central difference scheme on the left boundary

ukn+1 − ukn−1

2∆x
= 0

at n = 0, we have
uk
1−uk

−1

2∆x = 0, which introduces a ghost node

uk+1
0 = (1−∆t− 2r)uk0 + ruk1 + r uk−1

See Lecturer notes.
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The interior nodes form a tridiagonal matrix with the main diagonal being 1−∆t−2r
and off diagonal r and r.
Show that

A =


1−∆t− 2r 2r 0 0 · · ·

r 1−∆t− 2r r 0 · · ·
0 r 1−∆t− 2r r · · ·
...
0 0 0 0 1


and

F =



−2r∆x
0
0
0
...
0


Problem 5 (Do not submit): Use Taylor’s series expansions about the point x for
f(x − ∆x), and f(x − 2∆x) to find a backward finite difference approximation for f ′(x)
that has a second order accuracy.

Solution Consider the Taylor expansion;

(1) f(x) = f(x)

(2) f(x−∆x) = f(x)−∆xf ′(x) +
∆x2

2
f ′′(x)− ∆x3

3!
f ′′′(x) +O

(
∆x4

)

(3) f(x− 2∆x) = f(x)− 2∆xf ′(x) +
4∆x2f ′′(x)

2
−

8∆x3f ′′′(x) +O
(
∆x4

)
3!

To find an approximation for f ′(x) with second order accuracy, we need to have:
A · (1) +B · (2) + C · (3) = f ′(x) +O

(
∆x2

)
Find coefficients A,B, and C :
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
A+B + C = 0 → Coefficient of f(x) should go to zero

−∆xB − 2∆xC = 1 → coefficients of f ′(x)

∆x2

2
·B +

4∆x2c

2
= 0 → to ensure second accuracy

Solve to obtain A = 3/(2∆x), B = −2/(∆x) and C = 1/(2∆x)
The backward finite difference approximation is:

f ′(x) =
3f(x)− 4f(x−∆x) + f(x− 2∆x)

2∆x
+ 0

(
∆x2

)
Problem 6 (Do not submit): Consider the differential equation

2x2y′′ + (2x+ 1)xy′ − y = 0.

Identify singular points. Are they regular? Compute the Frobenius series (only the first 3
terms of each independent solution) and determine its radius of convergence.

Solution Show that x = 0 is a regular singular point.
Indicial equation. Set

y(x) =
∞∑
n=0

an x
n+r, a0 ̸= 0.

Then

y′ =
∞∑
n=0

an (n+ r)xn+r−1, y′′ =
∞∑
n=0

an (n+ r)(n+ r − 1)xn+r−2.

Substitute into the ODE

2x2
∞∑
n=0

an(n+r)(n+r−1)xn+r−2 + (2x+1)x

∞∑
n=0

an(n+r)xn+r−1 −
∞∑
n=0

an x
n+r = 0.

Simplify term by term:

2

∞∑
n=0

an (n+r)(n+r−1)xn+r + 2
∞∑
n=0

an (n+r)xn+r+1 +
∞∑
n=0

an (n+r)xn+r −
∞∑
n=0

an x
n+r = 0.

Shift the index:

2
∞∑
n=0

an (n+r)(n+r−1)xn+r + 2
∞∑
n=1

an−1 (n−1+r)xn+r +
∞∑
n=0

an (n+r)xn+r −
∞∑
n=0

an x
n+r = 0.
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Simplify and Equate coefficients of x-powers to zero

2 r(r−1) a0 + r a0 − a0 = 0, =⇒
[
2r2 − 2r + r − 1

]
a0 = 0 =⇒ 2r2−r−1 = 0.

Solve 2r2 − r − 1 = 0 to obtain

r =
1±

√
1 + 8

4
=

1± 3

4
=⇒ r1 = 1, r2 = −1

2 .

Recurrence relation. For n ≥ 1, we have:

2(n+ r)(n+ r − 1) an + 2(n− 1 + r) an−1 + (n+ r) an − an = 0.

Simplify to get

an = − 2 (n− 1 + r)

2(n+ r)(n+ r − 1) + (n+ r) − 1
an−1.

or

an = − 2 (n− 1 + r)

2(n+ r)2 − (n+ r) − 1
an−1, n ≥ 1.

(i) Frobenius series for r = 1. The recurrence relation simplifies to

an = − 2n

n(2n+ 3)
an−1 = − 2

2n+ 3
an−1, n ≥ 1.

a0 ̸= 0 is arbitrary

a1 = − 2

5
a0, a2 = − 2

7
a1 =

4

35
a0, a3 = − 2

9
a2 = − 8

315
a0, . . .

Thus the first three terms of the solution y1(x) are;

y1(x) = a0 x
1 + a1 x

2 + a2 x
3 + · · · = a0

[
x − 2

5 x
2 + 4

35 x
3 + · · ·

]
.

(ii) Frobenius series for r = −1
2 . The recurrence relation simplifies to:

an = −
2 (n− 3

2)

n(2n− 3)
an−1, n ≥ 1.

Choose a0 ̸= 0 arbitrary

a1 = −
2(1− 3

2)

1 · (2− 3)
a0 = − −1

−1
a0 = − a0,
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a2 = −
2(2− 3

2)

2 · (4− 3)
a1 = −

2 · 1
2

2 · 1
(−a0) =

1

2
a0,

a3 = −
2(3− 3

2)

3 · (6− 3)
a2 = −

2 · 3
2

3 · 3
a0
2

= − 1

6
a0, . . .

y2(x) becomes

y2(x) = a0x
−1
2

(
1 − x + 1

2 x
2 + · · ·

)
.

Use recurrence relation to show that R = ∞
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