
Math 257/316 Assignment 4, 2025
Tuesday June 10, 2025. Submit online in a PDF document on Canvas by 11:59 pm of the

due date

Problem 1 (Do not submit) Fourier series - Determine whether the following functions are odd, even or
neither:
(a) f(x) = x2 + |x| (b) f(x) = esin

2 x (c) f(x) = coshx+ sinhx f(x) = tanhx

Solution

(a) f(x) = x2 + |x|

To check if f is even, odd, or neither, we compute f(−x) and compare it with f(x) and −f(x).

f(−x) = (−x)2 + | − x| = x2 + |x| = f(x).

Since f(−x) = f(x) for all x, the function f is even.
(b) f(x) = esin

2 x

f(−x) = esin
2(−x) = e(sin(−x))2 = e(− sinx)2 = esin

2 x = f(x).

Since f(−x) = f(x) for all x, f is even.
(c) f(x) = coshx+ sinhx
Recall that coshx is even and sinhx is odd. That is,

cosh(−x) = coshx, sinh(−x) = − sinhx.

Now,
f(−x) = cosh(−x) + sinh(−x) = coshx− sinhx.

Hence, f is neither even nor odd.
(d) f(x) = tanhx
Recall the definition:

tanhx =
sinhx

coshx
.

Therefore,

f(−x) = tanh(−x) =
sinh(−x)

cosh(−x)
=

− sinhx

coshx
= − tanhx = −f(x).

Since f(−x) = −f(x), the function f is odd.

Problem 2 (Submit only the sketches for part (b) and (c) ) Fourier series - For the following functions,
sketch even and odd extensions of f(x) on [−L,L], and find the Fourier sine series of f(x) assuming that the
function has a period of 2L.

(a) f(x) = x2, 0 ≤ x ≤ L

Solution

Odd and even extensions over [−2L, 2L]
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x

f(x)

−2L −L 0 L 2L

Even extension

Odd extension

Fourier cosine series

The Fourier cosine series coefficients are unchanged from the single period case:

a0 =
2

L

∫ L

0
x2dx =

2L2

3
,

Integration by parts (check to be sure it is correct)

an =
2

L

∫ L

0
x2 cos

(nπx
L

)
dx =

4L2

(nπ)2
(−1)n.

Hence,

x2 =
L2

3
+

∞∑
n=1

4L2(−1)n

(nπ)2
cos
(nπx

L

)
.

Fourier sine series
The Fourier sine series coefficients are:

bn =
2

L

∫ L

0
x2 sin

(nπx
L

)
dx =

4L2

(nπ)3
(
(−1)n − 1

)
.

Nonzero only for odd n, that is,

bn =

0, if n is even,

− 8L2

(nπ)3
, if n is odd.

x2 =
∞∑
n=1
n odd

−8L2

(nπ)3
sin
(nπx

L

)
=

∞∑
k=0

−8L2

((2k + 1)π)3
sin

(
(2k + 1)πx

L

)
.

(b) L = 2, f(x) =

{
1 if 0 ≤ x < 1

x+ 1 if 1 ≤ x ≤ 2
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Solution

Even and Odd Extensions

x

f(x)

−4 −2 0 2 4

Even extension

x

f(x)

−4 −2 0 2 4

Odd extension

Fourier Cosine Series
The Fourier cosine series is given by

feven(x) =
a0
2

+
∞∑
n=1

an cos
(nπx

2

)
,

a0 =
2

2

∫ 2

0
f(x)dx =

∫ 2

0
f(x)dx,

an =

∫ 2

0
f(x) cos

(nπx
2

)
dx.

a0 =

∫ 1

0
1 dx+

∫ 2

1
(x+ 1)dx = (1− 0) +

[
x2

2
+ x

]2
1

= 3.5.

an =

∫ 1

0
cos
(nπx

2

)
dx+

∫ 2

1
(x+ 1) cos

(nπx
2

)
dx = I1 + I2.

I1 =

∫ 1

0
cos
(nπx

2

)
dx =

2

nπ
sin
(nπx

2

)∣∣∣∣1
0

=
2

nπ
sin
(nπ

2

)
.
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I2 =

∫ 2

1
(x+ 1) cos

(nπx
2

)
dx,

Apply integration by parts, Let:

u = x+ 1, dv = cos
(nπx

2

)
dx,

du = dx, v =
2

nπ
sin
(nπx

2

)
.

Then,

I2 = (x+ 1)
2

nπ
sin
(nπx

2

)∣∣∣∣2
1

− 2

nπ

∫ 2

1
sin
(nπx

2

)
dx.

(x+ 1)
2

nπ
sin
(nπx

2

)∣∣∣∣2
1

= − 4

nπ
sin
(nπ

2

)
,

∫ 2

1
sin
(nπx

2

)
dx = − 2

nπ
cos
(nπx

2

)∣∣∣∣2
1

= − 2

nπ

[
(−1)n − cos

(nπ
2

)]
.

Therefore,

I2 = − 4

nπ
sin
(nπ

2

)
+

4

(nπ)2

[
(−1)n − cos

(nπ
2

)]
.

You can simplify this using properties of sin and cos
Therefiore,

an =
2

nπ
sin
(nπ

2

)
− 4

nπ
sin
(nπ

2

)
+

4

(nπ)2

[
(−1)n − cos

(nπ
2

)]
,

or,

an = − 2

nπ
sin
(nπ

2

)
+

4

(nπ)2

[
(−1)n − cos

(nπ
2

)]
.

Fourier Sine Series

The Fourier sine series is

fodd(x) =
∞∑
n=1

bn sin
(nπx

2

)
,

where

bn =

∫ 2

0
f(x) sin

(nπx
2

)
dx =

∫ 1

0
sin
(nπx

2

)
dx+

∫ 2

1
(x+ 1) sin

(nπx
2

)
dx = J1 + J2.

J1 = − 2

nπ
cos
(nπx

2

)∣∣∣∣1
0

= − 2

nπ

[
cos
(nπ

2

)
− 1
]
.

Using integral by parts for J2:

u = x+ 1, dv = sin
(nπx

2

)
dx,

du = dx, v = − 2

nπ
cos
(nπx

2

)
.

Then,

J2 = −(x+ 1)
2

nπ
cos
(nπx

2

)∣∣∣∣2
1

+
2

nπ

∫ 2

1
cos
(nπx

2

)
dx.

Boundary term:

−(x+ 1)
2

nπ
cos
(nπx

2

)∣∣∣∣2
1

= − 6

nπ
(−1)n +

4

nπ
cos
(nπ

2

)
.
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∫ 2

1
cos
(nπx

2

)
dx =

2

nπ
sin
(nπx

2

)∣∣∣∣2
1

= − 2

nπ
sin
(nπ

2

)
.

Therefore,

J2 =
6

nπ
(−1)n+1 +

4

nπ
cos
(nπ

2

)
− 4

(nπ)2
sin
(nπ

2

)
.

bn = − 2

nπ

[
cos
(nπ

2

)
− 1
]
+

6

nπ
(−1)n+1 +

4

nπ
cos
(nπ

2

)
− 4

(nπ)2
sin
(nπ

2

)
.

Verify all the above calculations

(c) f(x) = sin(πx/L), 0 ≤ x ≤ L

Solution

x

f(x)

−2L −L 0 L 2L

Even extension

x

f(x)

−2L −L 0 L 2L

Odd extension

(d) f(x) = cos(πx/L), 0 ≤ x ≤ L

Solution

x

f(x)

−2L −L 0 L 2L

Even extension
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x

f(x)

−2L −L 0 L 2L

Odd extension

Problem 3 (Do not submit) Heat equation - Apply the method of separation of variables to solve the
heat equation

ut = 2uxx for t > 0, 0 ≤ x ≤ 4,

with boundary conditions

ux(0, t) = u(4, t) = 0,

and initial condition

u(x, 0) = cos(7πx/8).

Problem 4 (Do not Submit) Heat equation - Apply the method of separation of variables to solve the
heat equation

ut = 2uxx for t > 0, −1 ≤ x ≤ 1,

with boundary conditions

u(−1, t) = u(1, t), and ux(−1, t) = ux(1, t)

and initial condition

u(x, 0) = cos(x) + sin(x).

Problem 5 (Do not submit): Apply the method of separation of variables to determine a solution to the
one dimensional heat equation with homogeneous Neumann boundary conditions, i.e.

∂u

∂t
= α2∂

2u

∂x2

BC:
∂u(0, t)

∂x
= 0 and

∂u(π, t)

∂x
= 0

IC: u(x, 0) = cos γx, 0 ≤ x ≤ π

Distinguish between the cases in which γ is and is not an integer. Show by evaluating u(π, 0) that if γ is not
an integer then:

cotπγ =
1

π

[
1

γ
−

∞∑
n=1

2γ

n2 − γ2

]
Solution

Assume separable solution
u(x, t) = X(x)T (t).
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Substitute into PDE and separate variables:

T ′

α2T
=

X ′′

X
= −λ2,

with λ ̸= 0.
Then

T (t) = Ce−α2λ2t,

and
X ′′ + λ2X = 0,

with boundary conditions
X ′(0) = 0, X ′(π) = 0.

The general solution is
X = A cosλx+B sinλx.

Applying X ′(0) = 0:
X ′(x) = −Aλ sinλx+Bλ cosλx,

so
X ′(0) = Bλ = 0 =⇒ B = 0.

Applying X ′(π) = 0:
X ′(π) = −Aλ sinλπ = 0,

which implies
sinλπ = 0 =⇒ λ = n, n = 1, 2, . . .

Eigenfunctions are
Xn = cosnx.

For λ = 0, the solution is
X = Ax+B,

and applying X ′(0) = A = 0 makes the BC at π hold automatically.
Thus the eigenfunction for λ = 0 is the constant function

X0 = B · 1.

By superposition (linearity), the solution is

u(x, t) = A0 +
∞∑
n=1

An cos(nx)e
−α2n2t.

Apply initial condition:

cos γx = A0 +

∞∑
n=1

An cos(nx).

Using half-range cosine Fourier expansion,

A0 =
a0
2
, An = an,

where

a0 =
2

π

∫ π

0
cos γx dx =


2 sin(γπ)

γπ
, γ /∈ Z,

0, γ ∈ Z \ {0},
2, γ = 0.
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and

an =
2

π

∫ π

0
cos γx cosnx dx.

For γ ̸= n,

an =
2

π

∫ π

0
cos γx cosnx dx =

2

π

[∫ π

0
cos(γ + n)x dx+

∫ π

0
cos(γ − n)x dx

]
1

2
,

Therefore,

an =
1

π

[
sin(γ + n)π

γ + n
+

sin(γ − n)π

γ − n

]
.

For γ ∈ Z,

an =
2

π

∫ π

0
cos(γx) cos(nx) dx =

{
0, γ ̸= n,

1, γ = n.

For the solution u(x, t), three cases arise depending on γ:

u(x, t) =



1, γ = 0 ∈ Z,

e−α2n2t cos(nx), γ = n ∈ Z,

sin(γπ)

γπ
+

2

π

∞∑
n=1

{
sin((γ + n)π)

γ + n
+

sin((γ − n)π)

γ − n

}
cos(nx)e−α2n2t, γ /∈ Z.

Evaluating u(π, 0) = cos(γπ), we have:

cos(γπ) =
sin(γπ)

γπ
+

2

π

∞∑
n=1

(γ − n)
sin(γπ) cos(nπ) + cos(γπ) sin(nπ)

γ2 − n2
cos(nπ)

+(γ + n)
sin(γπ) cos(nπ)− cos(γπ) sin(nπ)

γ2 − n2
cos(nπ).

Using trigonometric identities and simplify:

=
sin(γπ)

γπ
+

2 sin(γπ)

π

∞∑
n=1

γ

γ2 − n2
(cos(nπ))2.

Hence,

cos(γπ) =
1

π

(
1

γ
− 2γ

∞∑
n=1

1

n2 − γ2

)
.

Problem 6 (Do not submit): Apply the method of separation of variables to find the temperature in a
laterally insulated bar with length L and thermal diffusion coefficient α2 whose ends are kept at temperature
zero and its temperature initially is

u(x, 0) = f(x) =

{
x if 0 ≤ x ≤ L

2

L− x if L
2 ≤ x ≤ L

Problem 7 (Do not submit): Assume that f has a Fourier sine series

f(x) =
∞∑
n=1

bn sin (nπx/L) , 0 ≤ x ≤ L
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(a) Show formally that

2

L

∫ L

0
[f(x)]2 =

∞∑
n=1

b2n.

Compare this result (Parseval’s equation) with that of Problem 17 in Section 10.3. in ‘Elementary Differ-
ential Equations and Boundary Value Problems’ by Boyce & DiPrima.’ What is the corresponding result if f
has a cosine series?
(b) Apply the result of part (a) to the series for the sawtooth wave given in Eq. (9) of ’Elementary Differential
Equations and Boundary Value Problems’ by Boyce & DiPrima.’, and thereby show that

π2

6
= 1 +

1

22
+

1

32
+

1

42
+ · · · =

∞∑
n=1

1

n2

Problem 8 (Do not submit) Heat equation - Apply the method of separation of variables to solve the
heat equation

∂u

∂t
=

∂2u

∂x2
, 0 ≤ x ≤ 2, t > 0

IC: u(x, 0) =

{
1 if 0 ≤ x < 1

0 if 1 ≤ x ≤ 2

subject to the following boundary conditions. For each case sketch the extension of the initial condition that
you would assume on the interval −6 ≤ x ≤ 6.

(a) ∂u(0,t)
∂x = 0 and ∂u(2,t)

∂x = 0

Solution

∂u
∂x(0, t) = 0, ∂u∂x(2, t) = 0 Neumann B.C.’s Separation of variables gives:

u(x, t) =
a0
2

+
∞∑
n=1

an cos
(nπx

L

)
· e−(

nπ
L )

2
t

u(x, 0) = f(x) = a0 +

∞∑
n=1

an cos
(nπx

L

)
Assume an even extension of f(x) :

x

f e(x)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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an =
1

2

∫ 2

−2
f(x) · cos

(nπx
2

)
dx =

2

2

∫ 1

0
cos
(nπx

2

)
dx

=
2

nπ
sin
(nπx

2

)∣∣∣∣1
0

=
2

nπ
sin
(nπ

2

)
a0 =

1

2
· 2
∫ 1

0
1 · dx = 1

f(x) = u(x, 0) =
1

2
+

∞∑
n=1

2

nπ
sin
(nπ

2

)
· cos

(nπx
2

)

u(x, t) =
1

2
+

∞∑
n=1

2

nπ
sin
(nπ

2

)
· cos

(nπx
2

)
· e−(

nπ
2 )

2
t

(b) u(0, t) = 0 and u(2, t) = 0

Solution

u(0, t) = 0, u(2, t) = 0 Dirichlet B.C.

u(x, t) =
∞∑
n=1

bn sin
(nπx

L

)
e−(

nπ
L )

2
t

f(x) = u(x, 0) =

∞∑
n=1

bn sin
(nπx

L

)
Assume an odd extension of f(x) :

x

f(x)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
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bn =
1

2

∫ 2

−2
fodd(x) sin

(nπx
L

)
dx =

2

2

∫ 1

0
sin
(nπx

2

)
dx

=
−2

nπ
cos
(nπx

2

)∣∣∣∣1
0

=
−2

nπ

[
Cos

(nπ
2

)
− 1
]

u(x, 0) = f(x) =

∞∑
n=1

−2

nπ

[
cos
(nπ

2

)
− 1
]
sin
(nπx

2

)

u(x, t) =
n=1∑
n=1

− 2

nπ

[
cos
(nπ

2

)
− 1
]
sin
(nπx

2

)
e−(

nπ
2 )

2
t

(c) ∂u(0,t)
∂x = 0 and u(2, t) = 0

Solution

∂u
∂x(0, t) = 0, and u(2, t) = 0 Mixed type B.C.B

u(x, t) =

∞∑
n=0

an cos

(
(2n+ 1)kx

2L

)
e
−
(

(2n+1)π
2L

)2
t

u(x, 0) =
∞∑
n=0

an cos

(
(2n+ 1)πx

2L

)
extension of f(x), where 2L = 4 =⇒ L = 2:

x

f e(x)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Compare this to the fundamental mode, Cos
(
πx
4

)
:

an =
2

2

∫ 1

0
cos

(
(2n+ 1)πx

4

)
· dx =

4

(2n+ 1)π
sin

(
(2n+ 1)πx

4

)∣∣∣∣1
0

=
4

(2n+ 1)π
sin

(
(2n+ 1)πx

4

)∣∣∣∣1
0

=
4

(3n+ 1)π
sin

(
(2n+ 1)π

4

)
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u(x, 0) = f(x) =

∞∑
n=0

4

(2n+ 1)π
· sin

(
(2n+ 1)π

4

)
· cos

(
(2n+ 1)πx

4

)

u(x, t) =

∞∑
n=0

4 sin
(
(2n+1)π

2

)
(2n+ 1)π

cos

(
(2n+ 1)πx

4

)
e
−
(

(2n+1)π
4

)2
t

(d) u(0, t) = 0 and ∂u(2,t)
∂x = 0

Solution

u(0, t) = 0 and ∂u
∂x(2, t) = 0, Mixed type B.C. A

u(x, t) =
∞∑
n=0

bn sin

(
(2n+ 1)π(x

2L

)
e
−
(

(2n+1)π
2L

)2
t

u(x, 0) =

∞∑
n=0

bn sin

(
(2n+ 1)πx

2L

)
extension of f(x) :

x

f(x)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

Compare to the fundamental mode sin
(
πx
4

)
bn =

2

2

∫ 1

0
sin

(
(2n+ 1)πx

4

)
dx

=
−4

(2n+ 1)π
cos

(
(2n+ 1)πx

4

)∣∣∣∣1
0

=
−4

(2n+ 1)π

[
cos

(
(2n+ 1)π

4

)
− 1

]
u(x, 0) = f(x) =

∞∑
n=0

−4

(2n+ 1)π

[
cos

(
(2n+ 1)π

4

)
− 1

]
sin

(
(2n+ 1)πx

4

)

u(x, t) =

∞∑
n=0

bn · sin
(
(2n+ 1)πx

4

)
· e−

(
(2n+1)π

2

)2
t

Problem 9 (Do not submit) Complex Fourier series - Find the complex Fourier series of f(x) = eαx

specified on −1 ≤ x ≤ 1, assuming a period of 2L = 2.
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Solution

The complex Fourier series for a function with period 2 is

f(x) =
∞∑

n=−∞
cne

inπx,

where

cn =
1

2

∫ 1

−1
f(x)e−inπxdx.

Substitute f(x) = eαx:

cn =
1

2

∫ 1

−1
eαxe−inπxdx =

1

2

∫ 1

−1
e(α−inπ)xdx.

This gives:

cn =
1

2

e(α−inπ)x

α− inπ

∣∣∣∣∣
x=1

x=−1

=
1

2
· e

α−inπ − e−α+inπ

α− inπ
.

Simplify
Recall that e−inπ = cos(nπ)− i sin(nπ) = (−1)n, so

eα−inπ = eα(−1)n, e−α+inπ = e−α(−1)n.

Thus,

cn =
1

2
· (−1)n(eα − e−α)

α− inπ
= (−1)n

sinhα

α− inπ
.

Therefore,

f(x) = eαx =
∞∑

n=−∞
(−1)n

sinhα

α− inπ
einπx.

Problem 10 (Do not submit) Heat equation with inhomogeneous boundary conditions - Consider
the following boundary value problem for the heat equation governing the temperature within a conducting
bar:

ut = uxx, 0 < x < 1, t > 0

BC : ux(0, t) = 1, u(1, t) = 0

IC : u(x, 0) = 0

(a) Determine the steady-state temperature u∞(x).
(b) Let u(x, t) = u∞(x) + v(x, t) and identify the PDE, BC and IC satisfied by v(x, t).
(c) Use the method of separation of variables to solve the above boundary value problem for v(x, t) and from
this determine the solution u(x, t).

Solution

(a) Steady-state solution u∞(x)
At steady state, ut = 0, so

u′′∞(x) = 0.

Integrate twice to get:
u∞(x) = Ax+B,
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where A,B are constants.
Apply boundary conditions:

u′∞(0) = A = 1,

u∞(1) = A · 1 +B = 1 +B = 0 =⇒ B = −1.

Thus,

u∞(x) = x− 1.

(b) Find PDE, BCs, IC for v Let
u = u∞ + v,

substitute into PDE:
ut = uxx =⇒ vt = vxx + u′′∞(x) = vxx + 0 = vxx,

Boundary conditions:

ux(0, t) = u′∞(0) + vx(0, t) = 1 =⇒ 1 + vx(0, t) = 1 =⇒ vx(0, t) = 0,

u(1, t) = u∞(1) + v(1, t) = 0 =⇒ 0 + v(1, t) = 0 =⇒ v(1, t) = 0.

Initial condition:
v(x, 0) = u(x, 0)− u∞(x) = 0− (x− 1) = 1− x.

Therefore, 
vt = vxx, 0 < x < 1, t > 0,

vx(0, t) = 0, v(1, t) = 0,

v(x, 0) = 1− x, 0 ≤ x ≤ 1.

(c) Solve for v(x, t) using separation of variables
Consider

vt = vxx, 0 < x < 1,

with mixed boundary conditions:
vx(0, t) = 0, v(1, t) = 0.

We let
v(x, t) = X(x)T (t).

Substitute into PDE:

X(x)T ′(t) = X ′′(x)T (t) =⇒ T ′

T
=

X ′′

X
= −λ,

ODEs:
T ′(t) + λT (t) = 0, ⇒ T (t) = e−λt,

X ′′(x) + λX(x) = 0,

with BCs:
X ′(0) = 0, X(1) = 0.

General solution:
X(x) = A cos(

√
λx) +B sin(

√
λx).

Apply BC at x = 0:

X ′(0) = −A
√
λ sin(0) +B

√
λ cos(0) = B

√
λ = 0 =⇒ B = 0.
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Apply BC at x = 1:
X(1) = A cos(

√
λ · 1) = 0.

For nontrivial A ̸= 0, hence we require

cos(
√
λ) = 0 =⇒

√
λ =

(2n+ 1)π

2
, n = 0, 1, 2, 3, . . .

Hence eigenvalues are:

λn =

(
(2n+ 1)π

2

)2

.

Corresponding eigenfunctions:

Xn(x) = cos

(
(2n+ 1)π

2
x

)
.

The general solution for v(x, t)

v(x, t) =
∞∑
n=0

cne
−λntXn(x) =

∞∑
n=1

cne
−
(

(2n+1)π
2

)2
t
cos

(
(2n+ 1)π

2
x

)
.

Using initial condition

v(x, 0) = 1− x =
∞∑
n=1

cn cos

(
(2n+ 1)π

2
x

)
.

using orthogonality:

cm = 2

∫ 1

0
(1 + x) cos

(
(2m− 1)π

2
x

)
dx.

cm = 2

∫ 1

0
cos(αmx)dx− 2

∫ 1

0
x cos(αmx)dx,

where

αm =
(2m+ 1)π

2
.

∫ 1

0
cos(αmx)dx =

sin(αmx)

αm

∣∣∣∣1
0

=
sin(αm)

αm
.

Use integration by parts:∫ 1

0
x cos(αmx)dx = x

sin(αmx)

αm

∣∣∣∣1
0

−
∫ 1

0

sin(αmx)

αm
dx =

sin(αm)

αm
− 1

αm

∫ 1

0
sin(αmx)dx.

∫ 1

0
sin(αmx)dx = −cos(αmx)

αm

∣∣∣∣1
0

=
1− cos(αm)

αm
.

Therefore, ∫ 1

0
x cos(αmx)dx =

sin(αm)

αm
− 1− cos(αm)

α2
m

.

or:

cm = 2 · sin(αm)

αm
− 2

(
sin(αm)

αm
− 1− cos(αm)

α2
m

)
= · 2

α2
m

.

Therefore

u(x, t) = u∞(x) + v(x, t) = x− 1 +
∞∑
n=0

2
8

(2n+ 1)2
e
−
(

(2n+1)π
2

)2
t
cos

(
(2n+ 1)π

2
x

)
.
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Problem 11 (Do not submit) Heat equation with inhomogeneous boundary conditions - Solve the
following heat conduction problem with heat loss and a distributed heat source

ut = uxx − u+ x, 0 < x < 1, t > 0

BC: ux(0, t) = 1, ux(1, t) = 2

IC: u(x, 0) = x

Hint: First try to find a steady-state solution that satisfies the PDE and the inhmogeneous boundary condi-
tions. Next, let u(x, t) = u∞(x) + v(x, t) and identify the PDE, BC and IC satisfied by v(x, t).

It may be helpful to know:∫
cos(Ax) cosh(Bx)dx =

B cos(Ax) sinh(Bx) +A sin(Ax) cosh(Bx)

A2 +B2

Solution

Consider the steady-state problem
u′′∞(x)− u∞(x) = −x,

with boundary conditions
u′∞(0) = 1, u′∞(1) = 2.

The general solution of the homogeneous equation u′′ − u = 0 is

uh(x) = C1 coshx+ C2 sinhx.

A particular solution can be found by variation of parameters or undetermined coefficients:

up(x) = x,

since
u′′p − up = 0− x = −x,

Thus,
u∞(x) = C1 coshx+ C2 sinhx+ x.

Applying the boundary conditions:

u′∞(x) = C1 sinhx+ C2 coshx+ 1.

At x = 0:
u′∞(0) = C1 · 0 + C2 · 1 + 1 = C2 + 1 = 1 =⇒ C2 = 0.

At x = 1:

u′∞(1) = C1 sinh 1 + 0 + 1 = 2 =⇒ C1 =
1

sinh 1
.

Therefore, the steady-state solution is

u∞(x) =
coshx

sinh 1
+ x.

Define v(x, t) = u(x, t)− u∞(x). Then v satisfies

vt = vxx − v,

with homogeneous Neumann boundary conditions

vx(0, t) = 0, vx(1, t) = 0,
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and initial condition

v(x, 0) = u(x, 0)− u∞(x) = x−
(
coshx

sinh 1
+ x

)
= −coshx

sinh 1
.

Show that separation of variables on the PDE for v gives Fourier cosine series:

v(x, t) =
∞∑
n=0

ane
−(µ2

n+1)t cos(µnx),

where µn = nπ, and the coefficients are (Derive the expressions)

a0 =

∫ 1

0
v(x, 0)dx = −2, an = 2

∫ 1

0
v(x, 0) cos(nπx)dx =

2(−1)n+1

(nπ)2 + 1
, n ≥ 1.

Use the given formula to evaluate the integrals

u(x, t) =
coshx

sinh 1
+ x+

a0e
−t

2
+

∞∑
n=1

ane
−(n2π2+1)t cos(nπx).

Problem 12: (Do not submit) Steady state solutions - Find the steady-state solutions for the following
heat conduction boundary value problems:

a) ut = α2uxx, u(0, t) = 1, u(π, t) = 2

b) ut = α2uxx, u(0, t) = 5, ux(1, t) = 0

c) ut = α2uxx, u(0, t) = 0, ux(2, t) + u(2, t) = 4
d) ut = uxx − β2u, u(0, t) = 1, u(π, t) = 2
e) ut = uxx − β2u, ux(0, t) = 1, u(π, t) = 2

Solution

(a)
ut = α2uxx, u(0, t) = 1, u(π, t) = 2.

Steady-state: ut = 0 =⇒ uxx = 0.
General solution:

u∞(x) = Ax+B.

Apply BCs:
u∞(0) = B = 1,

u∞(π) = Aπ +B = 2 =⇒ A =
2− 1

π
=

1

π
.

u∞(x) =
x

π
+ 1.

(b)
ut = α2uxx, u(0, t) = 5, ux(1, t) = 0.

Steady-state:
uxx = 0 =⇒ u∞(x) = Ax+B.

BCs:
u∞(0) = B = 5,
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u′∞(x) = A, u′∞(1) = A = 0 =⇒ A = 0.

Hence,

u∞(x) = 5.

(c)
ut = α2uxx, u(0, t) = 0, ux(2, t) + u(2, t) = 4.

Steady-state:
uxx = 0 =⇒ u∞(x) = Ax+B.

BCs:
u∞(0) = B = 0,

u′∞(x) = A, u′∞(2) + u∞(2) = A+ (2A+B) = A+ 2A+ 0 = 3A = 4 =⇒ A =
4

3
.

Therefore,

u∞(x) =
4

3
x.

(d)
ut = uxx − β2u, u(0, t) = 1, u(π, t) = 2.

Steady-state:
uxx − β2u = 0.

General solution:
u∞(x) = C1 cosh(βx) + C2 sinh(βx).

Apply boundary conditions:
u∞(0) = C1 = 1,

u∞(π) = C1 cosh(βπ) + C2 sinh(βπ) = 2.

Solve for C2:

1 · cosh(βπ) + C2 sinh(βπ) = 2 =⇒ C2 =
2− cosh(βπ)

sinh(βπ)
.

Therefore, the steady-state solution is

u∞(x) = cosh(βx) +
2− cosh(βπ)

sinh(βπ)
sinh(βx).

(e)
ut = uxx − β2u, ux(0, t) = 1, u(π, t) = 2.

Steady-state:
uxx − β2u = 0.

General solution:
u∞(x) = C1 cosh(βx) + C2 sinh(βx).

u′∞(x) = βC1 sinh(βx) + βC2 cosh(βx).

Apply BC at x = 0:

u′∞(0) = βC2 = 1 =⇒ C2 =
1

β
.

Apply BC at x = π:
u∞(π) = C1 cosh(βπ) + C2 sinh(βπ) = 2.
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Substitute C2:

C1 cosh(βπ) +
1

β
sinh(βπ) = 2 =⇒ C1 =

2− 1
β sinh(βπ)

cosh(βπ)
.

Thus the steady-state solution is

u∞(x) =
2− 1

β sinh(βπ)

cosh(βπ)
cosh(βx) +

1

β
sinh(βx).

Problem 13 (Do not submit): Solve the following heat conduction problem with a distributed heat source

ut = 16uxx + cos

(
7πx

4

)
, 0 < x < 2, t > 0

BC: ux(0, t) = 1 = ux(2, t)

IC: u(x, 0) = x2 − 4

Problem 14 (Submit only the final solution): Solve the following heat conduction problem with heat loss
and a distributed heat source

ut = uxx − u+ x, 0 < x < 1, t > 0

BC: ux(0, t) = 1, ux(1, t) = 2

IC: u(x, 0) = x

For Problem 14, submit only the final solution, not the workout
Hint: First try to find a steady-state solution that satisfies the PDE and the inhomogeneous boundary condi-
tions.

Solution

See problem 11

Problem 15 (Do not submit): Solve the initial boundary value problem:

ut = uxx + e−3t cos

(
7π

2
x

)
+ 1, 0 < x < 1, t > 0

BC: ux(0, t) = 1, u(1, t) = t

IC: u(x, 0) = 1

Problem 16 (Submit): Solve the inhomogeneous heat conduction problem subject to time dependent
boundary conditions:

ut = α2uxx + 1− xe−t, 0 < x < 1, t > 0

u(0, t) = e−t, and ux(1, t) = t

u(x, 0) = sin
(πx

2

)
+ 1.

Solution

Find a particular solution satisfying the boundary conditions
Let Up(x, t) = A(t)x+B(t)
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Boundary conditions for Up:
Up(0, t) = B(t) = e−t,

U ′
p(1, t) = A(t) = t.

So,

Up(x, t) = tx+ e−t.

Write u = Up + v, where v(x, t) satisfies homogeneous boundary conditions
BCs for v:

v(0, t) = u(0, t)− Up(0, t) = e−t − e−t = 0,

vx(1, t) = ux(1, t)− U ′
p(1, t) = t− t = 0.

Initial condition for v:

v(x, 0) = u(x, 0)− Up(x, 0) = sin
(πx

2

)
+ 1−

(
0 · x+ e0

)
= sin

(πx
2

)
.

PDE for v
Since

ut = vt + U ′
p(t)x− e−t,

and
uxx = vxx + 0,

substitute into PDE:

ut = α2uxx + 1− xe−t =⇒ vt +A′(t)x+B′(t) = α2vxx + 1− xe−t.

Recall A(t) = t, B(t) = e−t, so
A′(t) = 1, B′(t) = −e−t.

Simplify to get

vt = α2vxx + (1 + e−t)(1− x), 0 < x < 1, t > 0,

with homogeneous BCs:
v(0, t) = 0, vx(1, t) = 0,

and initial condition
v(x, 0) = sin

(πx
2

)
.

Solve PDE for v by eigenfunction expansion
Eigenvalues are:

λn = µ2
n, µn =

(2n+ 1)π

2
, n = 0, 1, 2, 3, . . . ,

and eigenfunctions
Xn(x) = sin(µnx).

Expand

v(x, t) =

∞∑
n=0

Tn(t)Xn(x).

Also expand the source term

f(x, t) = (1 + e−t)(1− x) =
∞∑
n=0

fn(t)Xn(x),
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where

fn(t) = 2(1 + e−t)

∫ 1

0
(1− x) sin(µnx)dx = Sn(1 + e−t).

with

Sn =
1

µn
− (−1)n

µ2
n

Solve ODEs for Tn(t)
Substitute back the expansions into the PDE

∞∑
n=0

[
T ′
n(t) + α2µ2

nTn(t)− fn(t)
]
sin(µnx) = 0

Each coefficient vanishes, hence
T ′
n(t) + α2µ2

nTn(t) = fn(t),

Solve the ODE by integrating factor:

Tn(t) = e−α2µ2
nt

[
cn +

∫ t

0
eα

2µ2
nsfn(s)ds

]
.

Simplify to get

Tn(t) = Sn

[
1

(αµn)2
+

e−t

(αµn)2 − 1

]
+ cne

−α2µ2
nt

Therefore we get

v(x, t) =
∞∑
n=0

{
Sn

[
1

(αµn)2
+

e−t

(αµn)2 − 1

]
+ cne

−α2µ2
nt

}
Xn(x).

Use IC to get cn

v(x, 0) =
∞∑
n=0

{
Sn

[
1

(αµn)2
+

1

(αµn)2 − 1

]
+ cn

}
Xn(x) = sin

(πx
2

)
.

Thus {
Sn

[
1

(αµn)2
+

1

(αµn)2 − 1

]
+ cn

}
= δn0

Final solution

u(x, t) = Up(x, t) +

∞∑
n=1

Tn(t) sin(µnx),

with
Up(x, t) = tx+ e−t,

and Tn(t) as above.

Problem 17 (Do not submit): Solve the inhomogeneous heat conduction problem with heat loss, a time
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dependent source, and subject to time dependent boundary conditions:

ut = uxx − u+ e−t sin(x), 0 < x <
π

2
, t > 0

u(0, t) = 0, and
∂u(π/2, t)

∂x
= e−t

u(x, 0) = x.

Solution

Let w(x, t) = A(t)x+B(t) such that it matches the BC.

0 = W (0, t) = B(t) Wx = A(t) Wx(π/2, t) = A(t) = e−t W = xe−t Wt = −xe−t

Now let u(x, t) = w(x, t) + k(x, t) and substitute into the PDE
Let u(x, t) = w(x, t) + v(x, t). Then v(x, t) satisfies

vt = vxx − v + e−t sinx

v(0, t) = 0, vx
(
π
2 , t
)
= 0,

v(x, 0) = u(x, 0)− w(x, 0) = x− x = 0.

Expand v(x, t) in eigenfunctions of the Laplacian with v(0, t) = 0 and vx(
π
2 , t) = 0, i.e., µn = 2n+ 1 and

Xn(x) = sin((2n+ 1)x) for n = 0, 1, 2, . . .

v(x, t) =
∞∑
n=0

vn(t) sin((2n+ 1)x).

Expand also the source term

e−t sinx =

∞∑
n=0

sn(t) sin(2n+ 1)x. ⇒ sn(t) = δn0e
−t

Now let

v(x, t) =

∞∑
n=0

vn(t) sinµnx vt =

∞∑
n=0

vn sinµnx vxx =

∞∑
n=0

vn
{
−µ2

n sinµnx
}

∴ 0 = vt − vxx + v − e−t sinx =
∞∑
n=0

{
dvn
dt

+
(
µ2
n + 1

)
vn − e−tδn0

}
sinµnx

We have dvn
dt +

(
1 + µ2

n

)
vn = e−tδn0 ⇒ d

dt

{
e+(1+µ2

n)tvn

}
= eµ

2
ntδn0

∴ e(1+µ2
n)

1

t
tvn =

∫ t

0
eµ

2
nδn0dτ + cn =

(
eµ

2
nt − 1

µ2
n

)
δn0 + cn.

∴ vn(t) =

(
e−t − e−(1+µ2

n)t

µ2
n

)
δn0 + cne

−(1+µ2
n)t; vn(0) = cn

Now

0 =
∞∑
n=0

Vn(0) sin (µnx) ⇒ Vn(0) = cn = 0

.

∴ u(x, t) = xe−t +

∞∑
n=0

(
e−t − e−(1+µ2

n)t

µ2
n

)
δn0 sinµnx µ0 = 1

= xe−t +

(
e−t − e−2t

1

)
sinx
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Problem 18 (Do not submit): Solve the inhomogeneous heat conduction problem subject to time dependent
boundary conditions:

ut = uxx + xt+ 1, 0 < x < 1, t > 0

ux(0, t) = 0, and u(1, t) = t

u(x, 0) = 0.

Problem 19 (Do not suubmit): The motion of a string on an elastic foundation with a stiffness γ satisfies
the following initial-boundary value problem:

ut = uxx − u+ 1, 0 < x < 1, t > 0

BC: u(0, t) = 1, u(1, t) = 2

IC: u(x, 0) = 1
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