Mathematics 317 — Midterm 1 — 50 minutes

February 12, 2025

e The test consists of 9 pages and 4 questions worth a total of 34 marks.

e This is a closed-book examination. None of the following are allowed:
documents, formula sheets other than the one provided, or electronic devices
of any kind (including calculators, cell phones, etc.)

e No work on this page will be marked.

e Fill in the information below before turning to the questions.

Student number

Section

Signature
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Please do not write on this page — it will not be marked.

Additional instructions

Please use the spaces indicated.

If you require extra paper then put up your hand and ask your instructor.

— You must put your name and student number on any extra pages.
— You must indicate the test-number and question-number.

— Please do this on both sides of any extra pages.

Please do not dismember your test. You must submit all pages.

Smoking is strictly prohibited during the test.
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1. Let C be the curve given by the intersecction of the cylinder 22 +y? = 1 and
the plane z +y + 2z = 1.

(a) Find a parameterization of C' (be sure to include the domain
as well as the vector valued function).
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(b) Compute the integral [, f ds where f(z,y,2) =z +y+ z — zy.
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2. Match the following vector valued functions to the following plots.
The axes of the plots have —2 < z,y < 2.
dvice with dishme o origa grvisy
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3. Consider the parameterized curve

7(t) = <1 — o2 2ty - t2> , 0<t<1.

(a) |3 marks| Find and simplify |7(¢)].
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(b) Find the distance from ¢t = 0 to t =T along the curve.
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c) Reparameterize the curve by arclength

' = cs<T
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4. Consider a racetrack given by the logarithmic spiral
7(0) = (e’ cos0,e’sinf), 0<6<2r.

(a) Compute the curvature () as a function of the angle 6. Sim-
plify as much as possible.
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(b) The friction between the road and the tires of a racecar is what

keeps it from skidding around turns. The friction is such that a racecar
of mass m can withstand a force in the principle normal direction of up
to and including pm without skidding (u is the coefficient of friction).

Find (), the angle as a function of time, so that a racecar travelling with
position vector 7(6(t)) is travelling as fast as possible at all times without
skidding. Hint: the component of the force in the normal direction of

travel should be exactly pm. Assume that at t =0, 6 = 0.
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This blank page can be used for spill over work. If you continue work from
another problem, be sure to indicate that on the original page.
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