Mathematics 317 - Midterm 2 - 50 minutes

March 14, 2025

- The test consists of 10 pages and 4 questions worth a total of 33 marks.
- This is a closed-book examination. You are allowed to bring in and use one formula sheet (this sheet should be reasonable: for example you shouldn't need special glasses or intervents to read it). None of the following are allowed: documents, formula sheets other than the one you came with, or electronic devices of any kind (including calculators, cell phones, etc.)
- No work on this page will be marked.
- Fill in the information below before turning to the questions.

Student number						
Section						
Signature	2	Solur	tion	5	 	
Name					 	

Additional instructions

- Please use the spaces indicated.
- If you require extra paper then put up your hand and ask your instructor.
 - You must put your name and student number on any extra pages.
 - You must indicate the test-number and question-number.
 - Please do this **on both sides** of any extra pages.
- Please do not dismember your test. You must submit all pages.
- Smoking is strictly prohibited during the test.

- 1. For each statement below, say whether the statement is true or false. If it is true, give a reason why it is true (this reason could include "this is a theorem in the book" or "we proved this in class"). If it is false, supply a counterexample that demonstrates that the statement is false. You may assume that all vector fields in the follow statements are reasonable: they are continuous and that all derivatives of their components exist.
 - (a) 2 marks Let $U \subset V \subset \mathbb{R}^2$ be open domains. If a vector field \vec{F} is conservative on V, then \vec{F} is conservative when restricted to U.

True: F concorradions on V means there is a function f on V such
that
$$\overline{\eta}f = \overline{f}$$
 then f restricted to U is a potential function fa-
F restrict to U

(b) 2 marks Let $U \subset V \subset \mathbb{R}^2$ be open domains. If a vector field \vec{F} is not conservative on V, then \vec{F} is not conservative when restricted to U.

False :	F= ($\frac{-9}{\chi^2 u_1^2}$ $\frac{\chi}{\chi^2 u_2^2}$	is n	ot consenativ	e on	V= R ² - (0,0)
but res	stricted te	$\mathcal{U} = \mathbb{R}^2 - \{p_0s, x-onis\}$	ĥ	consonative	with	potential
function 1	0. (we o	liscussed these in class 1.				

(c) 2 marks Suppose the domain of \vec{F} is \mathbb{R}^3 minus the z-axis. If curl $\vec{F} = \vec{0}$ then \vec{F} is conservative.

<u>False</u> $\left\langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}, 0 \right\rangle$ is a counter example. it has $\operatorname{curl} = \overline{O}$ but it is not conservative (domain is not simply connected).

(d) 2 marks Suppose the domain of \vec{F} is \mathbb{R}^3 minus the z-axis. If $\oint_C \vec{F} \cdot d\vec{r} = 0$ for all loops C, then \vec{F} is conservative.

Tru:	This	is	a	theorem	we proved	jn	class .	ht holds	for my	domein.
------	------	----	---	---------	-----------	----	---------	----------	--------	---------

(e) 2 marks Let S be the sphere $\{x^2 + y^2 + z^2 = 1\}$ oriented outward. Suppose that the flux integral $\iint_S \vec{F} \cdot d\vec{S} = 0$, then for all points (x, y, z) on the sphere $\vec{F}(x, y, z) \cdot \langle x, y, z \rangle = 0$.

$$\overline{False}: \overline{F} = \langle 0, 0, 1 \rangle \text{ is a canifur oxample since } \overline{F} \cdot \overline{N} \text{ is not zero at the north pole}$$

and since $\overline{N} = \langle X, Y, \overline{E} \rangle$ $\int \int \overline{F} \cdot d\overline{S} = \int \langle 0, 0, 1 \rangle \cdot \langle X, Y, \overline{E} \rangle dS = \int \int \overline{E} \, dS = 0$ by symmetry $\overline{E} \iff -\overline{E}$.

- (f) 2 marks Let P be the plane $\{x + y + z = 1\}$ oriented upward. Suppose that the flux integral $\iint_S \vec{F} \cdot d\vec{S} = 0$ for every closed and bounded region $S \subset P$, then for all points (x, y, z) on the plane $\vec{F}(x, y, z) \cdot \langle 1, 1, 1 \rangle = 0$.
- $\frac{True}{45} : \vec{N} = \frac{1}{45} \langle 1, 1, 1 \rangle .$ Suppose for the Sake of contradiction that $\vec{F}(x_0, y_0, z_0) \cdot \langle 1, 1, 1 \rangle \neq 0$ for some (X_0, y_0, z_0) . Then by continuity, $\vec{F}(x_1, y, z) \cdot \langle 1, 1, 1 \rangle \neq 0$ for all $(x_1, y, z) \in B_z(X_0, y_0, z_0)$ where $B_z(X_0, y_0, z_0)$ is the ball of radius ε contared at (x_0, y_0, z_0) and $\varepsilon > 0$ is sufficiently smell. Then lot $S \subset P$ be $B_z(x_0, y_0, z_0) \cap P$ so $SS \neq \cdot \vec{N} dS = \frac{1}{43} SS \neq \cdot \langle 1, 1, 1 \rangle dS$ is non-zero since $\vec{F} - \langle 1, 1, 1 \rangle$ is a non-zero continuous function on S. Their contradicts the hypothesis so $\vec{F}(x_0, y_0, z_0) \cdot \langle 1, 1, 1 \rangle = 0$ $V(x_0, y_0, z_0) \in P$.

2. (a) 4 marks Find the values of the constants A and B such the the vector field

$$\vec{F} = e^{2x+3y} \left\langle A + 2x + 2z, Bx + 3z, 1 \right\rangle$$

is conservative. Since the homein $\mathcal{B} \neq \mathcal{R}^3$ which is simply connected, \vec{F} is conservative $\langle \Rightarrow curl \vec{F} \Rightarrow \vec{C}$ We can compute $curl \vec{F}$ directly or with $curl(f\vec{G}) = \vec{\nabla}f \times \vec{G} + f \vec{\nabla} \times \vec{G}$ with $f = e^{2\pi i \cdot 3\eta} \vec{G} = \langle A + 2x + 2z, Bx + 3z, 1 \rangle$ $\vec{\nabla}f = e^{2x + 3\eta} \langle 2, 3, 0 \rangle$ $\vec{\nabla} \times \vec{G} = \begin{vmatrix} \vec{v} & \vec{v} & \vec{v} \\ A + 2x + 2z & Bx + 3z \end{vmatrix} = \langle -3, 2, B \rangle$

$$\vec{\nabla}f \times \vec{G} = e^{2x+3y} \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ 2 & 3 & 0 \\ A+2x+2y & Bx+3y & 1 \end{vmatrix} = e^{2x+3y} \langle 3, -2, 2(Bx+3y) - 3(A+2x+2y) \rangle$$

$$= e^{2x+3y} \langle 3, -2, (2B-6)x + 6x - 3A-6x \rangle$$

So $\vec{\nabla} \times \vec{F} = e^{2x+3y} \langle -3+3, 2-2, (B-3A) + (2B-6)x \rangle = e^{2x+3y} \langle 0, 0, (B-3A) + (2B-6)x \rangle$
So $B = 3A$ and
 $2B = 6$
$$= B = 3 A = 1$$

(b) 4 marks Recall that $\vec{F} = e^{2x+3y} \langle A + 2x + 2z, Bx + 3z, 1 \rangle$. Using the values of A and B found in part (a), compute the line integral $\int_C \vec{F} \cdot d\vec{r}$ where C is any curve starting at (1, 1, 1) and ending at (2, 2, 2)

$$A = | B = 3 \quad \overline{F} = \langle e^{2x+3y} (|+2x+2z), e^{2x+3y} (3x+3z), e^{2x+3y} \rangle$$

we want
$$f(x_{1}y_{1}z)$$
 with
(1) $f_{x} = e^{2x+3y}(1+2x+2z)$
(2) $f_{y} = e^{2x+3y}(3x+3z)$
(3) $f_{z} = e^{2x+3y}$
 $f_{z} = e^{2x+3y}$
 $f_{z} = e^{2x+3y}$
 $f_{z} = e^{2x+3y} + g(x_{1}y_{1}) = f_{y} = 3z e^{2x+3y} + g_{y}(x_{1}y_{1})$

$$(3) \Rightarrow f(xy,t) = 2e^{2x+3y} + g(x,y) \Rightarrow f_y = 32e^{2x+3y} + g_y(x,y)$$

$$(3) \Rightarrow f(x,y,t) = 2e^{2x+3y} + g(x,y) \Rightarrow f_y = 32e^{2x+3y} + g_y(x,y) \Rightarrow g_y(x,y) = 3xe^{2x+3y} \Rightarrow g(x,y) = Xe^{2x+3y} + h(x)$$

50 $f(x_1y_1z) = ze^{2x+3y} + xe^{2x+3y} + h(x)$

=>
$$f_x = 2ze^{2x+3y} + e^{2x+3y} + 2xe^{2x+3y} + h'(x) = (1+2x+2z)e^{2x+3y} + h'(x)$$
 so then $0 \Rightarrow h'(x) = 0$ so $h(x) = constant which we may assume in 0 .$

=)
$$f(x,y,z) = (x+z)e^{x+y}$$

so $\int \vec{F} \cdot d\vec{r} = f(z,z,z) - f(1,1,1) = 4e^{10} - 2e^{5}$

3. 5 marks Let R be the rectangle in \mathbb{R}^3 with vertices at (0,0,0), (2,0,0), (0,-4,3), and (2,-4,3) oriented downward. Let $\vec{F} = \langle xye^z, 7 - 4xy, 6 + 3xy \rangle$. Compute the flux integral $\iint_S \vec{F} \cdot d\vec{S}$.

$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
$$R \text{ hes a constant Moral vector which we can get
R \text{ hes a constant Moral vector when R with a wate a wait vector.}}$$

$$R \text{ hes a constant Moral vector where a loss of a set
R \text{ hes a constant Moral vector where a loss of a set
R \text{ hes a constant Moral vector where a loss of a set
R \text{ hes a constant Moral vector where a loss of a set
R \text{ hes a constant Moral vector moral vector of a set
R \text{ hes a constant Moral vector moral vector of a set
R \text{ hes a constant Moral vector moral vector of a set
R \text{ hes a constant Moral vector moral vector of a set
R \text{ hes a constant Moral vector moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a set we weel of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant Moral vector of a set
R \text{ hes a constant m$$$$$$$$$$$$$$$$$$$$$$$$$$$$

- 4. Let S be the part of the cone $z = \sqrt{x^2 + y^2}$ which is contained inside the cylinder $x^2 + z^2 = 1$ and has $x \ge 0$ and $y \ge 0$. Assume that S is oriented in the downward direction.
 - (a) 4 marks Find a parameterization of S (be sure to include the domain as well as the vector valued function).

for use in the next part:
$$\vec{r}_{r} = \langle \cos\theta, \sin\theta, i \rangle$$

 $\vec{r}_{\theta} = \langle -r\sin\theta, r\cos\theta, 0 \rangle$
 $\vec{r}_{r} \cdot \vec{r}_{\theta} = \langle -r\cos\theta, -r\sin\theta, r \rangle$ opposite from \vec{N}
 $\vec{r}_{x} = \langle 1, 0, \frac{x}{\sqrt{x^{2}m^{2}}} \rangle$
 $\vec{r}_{y} = \langle 0, 1, \frac{y}{\sqrt{x^{2}m^{2}}} \rangle$
 $\vec{r}_{x} \cdot \vec{r}_{y} = \langle -\frac{x}{\sqrt{x^{2}m^{2}}}, \frac{-y}{\sqrt{x^{2}m^{2}}}, 1 \rangle$ opposite from \vec{N}

(b) 4 marks Compute the flux integral $\iint_S \vec{F} \cdot d\vec{S}$ where $\vec{F}(x, y, z) = \langle zy, zx, 0 \rangle$.