
Math 318 – homework 1 solutions

Problem 1. A coin is tossed until either two Tails appear successively, or until the fifth toss, whichever
comes first. The outcome is the resulting sequence of coins.
(a) Write down the sample space, and determine the probability of each outcome in the sample space.
(b) For each i ∈ {2, 3, 4, 5}, let Ei be the event that the coin is tossed exactly i times. Determine P (Ei)

for each i.

Solution.
(a) The sample space is S = {TT, HTT, HHTT, THTT, HHHHH, HHHHT, HHHTH, HHHTT, HHTHH,

HHTHT, HTHHH, HTHHT, HTHTH, HTHTT, THHHH, THHHT, THHTH, THHTT, THTHH,
THTHT}.
We have P (TT ) = 1/4, P (HTT ) = 1/8, P (HHTT ) = P (THTT ) = 1/16 and the other 16 elements
have probability 1/32.

(b) E2 = {TT} so P (E2) = 1/4. Similarly, P (E3) = P ({HTT}) = 1/8 and P (E4) = P ({HHTT, THTT}) =
2/16. The remaining points are E5 with P (E5) = 16/32 = 1/2.

Problem 2. An herpetology graduate student is sent to estimate the number of frogs in a pond. She
captures 40 frogs, marks each with a dot of paint, and then releases them. The next day, she goes back and
captures another sample of 50. She finds that 14 of the frogs were previously marked, and 36 unmarked.
(a) Assuming that the frog population has size n, and that every frog is equally likely to be captured,

determine the probability L(n) that a sample of 50 frogs will contain exactly 14 marked ones.
(b) Show that the function L(n) is increasing up to some n∗, and decreasing afterwards. Hint: when does

the inequality L(n)/L(n− 1) ≤ 1 hold?
(c) Find the maximum likelihood estimate for n; that is the value n∗ which maximizes L(n).

Solution.
(a) Since there are 40 marked and n− 40 unmarked frogs, the number of ways to pick 14 marked and 36

unmarked frogs is
(
40
14

)(
n−40
36

)
. The sample space has size

(
n
50

)
. Therefore

L(n) =

(
40
14

)(
n−40
36

)(
n
50

) .

(b) Note that L(n) is positive for all n ≥ 76. We find after cancellations that

L(n)

L(n− 1)
=

(n− 40)(n− 50)

n(n− 76)
= 1− 14n− 2000

n(n− 76)
.

It follows that L(n) > L(n− 1) for n < 2000
14 = 142.8 . . . and L(n) < L(n− 1) for larger n. Therefore

L is maximized at n∗ = 142 where L(n∗) = 0.154 . . . .

Remark. If the 50 frogs are sampled with replacement, the likelyhood that 14 of them are marked is(
50
14

) (
40
n

)14 (
1− 40

n

)36
. This is not equal to L(n), but has is also maximized at the same n∗. See plot in

python notebook.

Problem 3. (a) Compute the probability that a poker hand contains:
(i) one pair (aabcd with a, b, c, d) distinct face values; answer: 0.42)
(ii) two pairs (aabbc with a, b, c distinct face values; answer: 0.047)

(b) Poker dice is played by simultaneously rolling 5 dice. Compute the probabilities of the following
outcomes:
(i) one pair (aabcd with a, b, c, d) distinct face values; answer: 0.46)
(ii) two pairs (aabbc with a, b, c distinct face values; answer: 0.23)
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Solution.
(a) The sample space is 5 unordered cards, with |S| =

(
52
5

)
.

(i) |E| = 13 ·
(
4
2

)
·
(
12
3

)
· 43, so

P (E) =
13 ·

(
4
2

)
·
(
12
3

)
· 43(

52
5

) .

(ii) |E| =
(
13
2

)
·
(
4
2

)2 · 11 · 4, so
P (E) =

(
13
2

)
·
(
4
2

)2 · 11 · 4(
52
5

) .

(b) The sample space is 5 dice in order, with |S| = 65.
(i) |E| =

(
5
2

)
· 6 · 5 · 4 · 3 = 3600, since we have to pick which two dice are equal, and then 4 different

values for the dice. Therefore P (E) = 3600/|S|.
(ii) There are

(
5

2,2,1

)
= 30 ways to splie 5 dice into two pairs and a single, however swapping the

pairs gives the same partition, so there are only 15 different ways. For each of these there are
6 · 5 · 4 = 120 ways to pick the values, so |E| = 15 · 120 = 1800 and P (E) = 1800/|S|.

Problem 4. A coin is tossed 2n times. Let pn be the probability that exactly half the outcomes are heads.
(a) Find a formula for pn.
(b) Calculate pn+1/pn, and show that pn is decreasing in n (i.e., pn+1 < pn).
(c) We are interested in the asymptotics of pn. We use the notation an ∼ bn if lim an/bn = 1. Using

Stirling’s formula
n! ∼

√
2πn(n/e)n,

prove that there is some α so that pn ∼ α/
√
n, and find the value of α.

Solution.
(a) All sequences of coins have the same probability 2−2n. We have pn =

(
2n
n

)
2−2n.

(b) Simplifying the factorials gives
pn+1

pn
=

2n+ 1

2n+ 2
< 1.

(c) We have

pn =
(2n)!

4nn!2
∼

√
2π(2n)(2n/e)2n

22n(
√
2πn(n/e)n)2

=
1√
πn

.

Thus the claim holds with α = 1/
√
π.

Problem 5. The number of ways to place n distinguishable balls in m urns is mn, since each ball can be
placed in any one of the m urns. The multinomial coefficient

(
n

n1,...,nm

)
= n!

n1!...nm! counts the number of
ways that ni balls are in urn i for each i = 1, 2, . . . ,m, so when each ball is randomly assigned to an urn,
the probability that ni balls are in urn i, for each i, is equal to

(
n

n1,...,nm

)
m−n. Systems described by these

probabilities are said to obey Maxwell–Boltzmann statistics.
(a) Suppose instead that the balls are indistinguishable; now we speak of Bose–Einstein statistics. When

there are m = 2 urns, the number of ways of putting the n balls in the 2 urns is n + 1, because an
outcome is specified by saying how many balls are in urn 1 and the possibilities are {0, 1, 2, . . . , n}. For
the case of general m ≥ 1, how many ways are there to place n indistinguishable balls in m urns?
Hint: This is the number of ways to arrange m− 1 barriers among a row of n balls, e.g., for n = 7 and
m = 3 the configuration with n1 = 0, n2 = 2, n3 = 5 is graphically described by | • • | • • • • •.

(b) Indistinguishable particles are said to obey Fermi–Dirac statistics if all arrangements that have at most
one ball per urn have the same probability, and those are the only arrangements. How many ways can
n of these particles be put into m urns (assuming m ≥ n
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Problem 6. write a program in python (A Jupyter notebook may be convenient) that will do the following.
(a) Write a function birthday(n) that:

(i) Generates a list containing n numbers uniformly distributed on {1, 2, . . . , 365} (think of this as
the list of birthdays of n people, excluding leap year).

(ii) Returns 1 (or True) if there is at least one pair of people with coinciding birthdays (a “match”)
and 0 (or False) otherwise.

(b) For each n, from 2 to 60, run the function birthday(n) 1000 times, and compute the proportion X(n)
of the 1000 times in which there was a match.

(c) Let Y (n) be the actual probability of a match:

Y (n) = 1− 365 · 364 · · · (365− n+ 1)

365n
.

In a single graph, plot of X(n) and Y (n) for n ∈ [2, 60].
(d) Repeat the steps above for Martians. (Hint: The Martian year has 669 Martian days.)
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