
1.  A klystron microwave tube has a cathode at a potential of  Volts 
that emits a beam of electrons toward its collector (anode) at 0 Volts.

A.  (1 point)  What is the kinetic energy (include units) of an electron at the anode?

B. (1 point) What is the relativistic total energy (include units) of an electron at the anode?
Add the electron rest mass contribution to get 

C. (2 points) What is the momentum (include units) of an electron at the anode?

D. (2 points) What is the velocity (include units) of an electron at the anode?

E. (2 points) What is the de Broglie wavelength (include units) of an electron at the anode?
de Broglie’s relation  uses the relativistic momentum.  

So .

It is incorrect to use the photon result  with either kinetic energy giving 1.24 pm
or relativistic energy giving 0.821 pm.  It is incorrect to use the classical relation 

 

with either the kinetic energy (giving 1.227 pm) or the relativistic energy (giving 0.998 pm).

F. (2 points) What is the minimum wavelength (include units) of X-rays produced at the anode?

.  The minimum wavelength comes from the maximum photon energy, 

which is the electron kinetic energy of 1 MeV, so .

(The de Broglie wavelength of a relativistic electron isn’t very different than 
the wavelength of a photon of comparable energy).  

−106

106  eV = 1 MeV = 1.602×10−13  Joules

mc2 = 0.511 MeV
1.511 MeV = 1.511×106  eV = 2.4206×10−13 Joules

pc = E2 − mc2( )2
= 1.511 MeV( )2

− 0.511 MeV( )2
= 1.422 MeV = 2.278×10−13  Joules

p = 1.422 MeV/c = 7.599×10−22  kg-m/s

p = 2mE = 2 ⋅0.511 MeV/c2 ⋅1 MeV = 1.011 or 1.243 MeV/c is wrong

E = γ mc2 p = βγ mc → β = pc
E

= 1.422 MeV
1.511 MeV

= 0.9411

v = βc = 0.9411⋅2.998×108 m/s = 2.821×108  m/s

v = 2E m = 2 ⋅106 ⋅1.6×10−19 9.11×10−31 = 5.93×108  or 7.28×108  m/s is wrong.

v = 2 ⋅1 MeV 0.511 MeV/c2 = 1.98c or 2.43c is wrong

λ = h p

λ = hc
pc

= 1240 eV-nm
1.422×106 eV

= 8.720×10−4  nm = 0.8720 pm

λ = hc E

E = p
2

2m
→ p = 2mE → λ = hc

2mc2E
= 1240 eV-nm

2 ⋅0.511×106  eV ⋅EeV

= 1.227 eV-nm
E eV

E = hf = hc
λ

→ λ = hc
E

λ = 1240 eV-nm
106  eV

=  1.240 pm



2.  A gas discharge tube produces light from singly-ionized He+1 that passes through 
a spectrometer with slits that are 1200 nm apart.  It is observed that a spectral line that is 
diffracted by 13.176° produces photoelectrons from a metal sample, but a spectral line diffracted 
by 15.493° does not produce photoelectrons from the sample.

A. (2 points) What are the wavelengths (include units) of the spectral lines?   Assume n = 1.

B. (2 points) What are the photon energies (include units) of the spectral lines?

C. (2 points) What can you say about the work function of the metal sample?

The work function is more than 3.869 eV and less than 4.534 eV.

D. (2 points) What transitions of singly-ionized He+1 are involved in the spectral lines?

The Rydberg formula for photon energy is .  

For He+1 with Z = 2, this is .  

If n1 = 1 or 2, the energies would be much higher than the above.
If n1 = 4, the energies would be lower than the lowest energy..

, a bit too low.

, consistent with the lower energy.

, consistent with the higher energy.  

d sinθ = nλ→ λ = 1200 nm ⋅sin13.176° = 273.5 nm and 1200 nm ⋅sin15.493° = 320.5 nm
2d sinθ = λ→ λ = 2400 nm ⋅sin13.176° = 547.1 nm and 2400 nm ⋅sin15.493° = 641.1 nm are wrong

E = hc
λ

= 1240 eV-nm
273.5 nm

= 4.534 eV and E = 1240 eV-nm
320.5 nm

= 3.869 eV

7.263×10−19  and 6.198×10−19  Joules
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3.  A potential in one dimension is  and  elsewhere.

A. (3 points) Sketch the wavefunction for the lowest energy bound state 
on the above diagram.  The wavefunction is positive above the dotted line, negative below it.

The wavefunction is a sinusoid inside the well.  The lowest energy state has roughly a half-cycle 
of cosine inside the well. But because the potential step is not infinite, the wavefunction does not 
go to zero at the steps, it extends outside as a decaying exponential. 

B. (8 points) Write the wavefunctions 

for a particle with mass m and energy  in regions A, B, and C.

C. (8 points) Write the boundary condition equations at  

required to solve for the bound state energy E and any other unknowns.
You don’t need to solve the equations.

Continuity of the wavefunction gives 

 and 

.
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The derivatives are 

Continuity of the derivatives gives

 and 

.

D. (3 points) Sketch the wavefunction for the first excited state (assume that it is bound).
The wavefunction is positive above the dotted line, negative below it.

The wavefunction will be odd, with about a full cycle of sine inside the well,
and decaying exponentials outside the well, with opposite signs.

E. (3 points) Sketch the wavefunction for the next excited state (assume that it is bound).
The wavefunction is positive above the dotted line, negative below it.

The wavefunction will be even, with 1.5 cycles of cosine inside the well, 
and decaying exponentials outside the well
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4.  Conductivity

A.  (2 points) Lithium has Z = 3.  What is the quantum mechanical explanation 
for why it is a conductor?

For N atoms, each energy level splits into N levels, each of which can hold 2N electrons.  
Lithium has one electron in its 2S level, so there are N electrons in the split 2S level,
which could hold 2N electrons.  So there are many un-occupied split 2S levels, allowing 
electrons to tunnel between atoms easily.

B.  (2 points) Carbon has Z = 6.  What is the quantum mechanical explanation 
for why diamond is an insulator?

Carbon has a full “valence band” so those electrons are not free to move, 
and the energy gap to its “conduction band” is large compared to , so while 
electrons would be free to move there, very few electrons are found there

C.  (2 points) Beryllium has Z = 4.  What is the quantum mechanical explanation 
for why it is a conductor?

Beryllium has 2 electrons in its 2S level.  When the 2S level splits into N levels, it can hold 2N 
electrons, and there are 2N electrons in it.  That sounds like the recipe for an insulator, but it 
turns out that when the un-occupied 2P levels split, some of them go down in energy far enough 
to overlap with the split 2S levels.  The overlapping energy levels allow electrons to move freely.

D.  (2 points) Silicon has Z = 14 and forms the same crystal structure as diamond.
What is the quantum explanation for why Silicon is a semiconductor (and diamond isn’t)?

Silicon is a semiconductor because while it has a full valence band, making it a poor conductor, 
the energy gap to its conduction band is rather small, so a non-negligible number of electrons are 
thermally excited to it, where they can move freely.  The holes left behind in the valence band 
can also move.

Carbon atoms are smaller than Silicon atoms, so they are closer together, which makes the level 
splitting larger and thus the band gap larger for Carbon.

kBT



5.  Lasers

A. (3 points)  Define spontaneous emission, stimulated emission, and absorption of photons.

Spontaneous emission is when an atom in an excited state jumps to a lower energy state
and emits a photon in a random direction.

Stimulated emission is when an atom in an excited state interacts with a photon whose energy 
equals the energy difference to some lower state.  This causes it to jump to the lower energy state 
and emit a photon in exactly the same direction as the incident photon.

Absorption is when a photon whose energy equals the energy difference between an atom’s 
initial state and some excited state interacts with the atom.  The photon vanishes, and the atom is 
left in the excited state.

B. (3 points) Define population inversion, and explain why it is necessary for a laser to operate.

Population inversion is when an excited state has a higher population than a lower state.  
Because the cross section for stimulated emission is exactly the same as the cross section for 
absorption, if there are more atoms in the lower state, absortion will dominate over stimulated 
emission.

C. (3 points) In a 4-level laser system, what are the desirable relative lifetimes of the levels?

Atoms are somehow excited to level 4.  We want a short lifetime for spontaneous decay from 
level 4 to level 3, and a long lifetime for spontaneous emission decay from level 3 to level 2.  
This will result is a high population in level 3.  The laser transition is from level 3 to level 2 by 
stimulated emission.  We want the lifetime for level 2 to decay to level 1 to be short.  This keeps 
the population of level 2 small, so it’s easier to maintain a population inversion between level 3 
and level 2.



6.  Rectangular Box Potential

A.  (5 points) Write the time-independent Schrodinger equation in x, y, z coordinates
for a potential .

B.  (5 points) A particle is in a box with 
and  elsewhere.  Write the time-independent wavefunction for the particle.  Define any 
variables you introduce.  Don’t worry about normalization.

The wavefunction is a 3D sinusoid inside the box, and zero at the walls.  

The solution is  with positive integer  

C.  (5 points) Write the formula for the energies of the possible states 
for a particle of mass m in this potential.

The energies are 

D.  (5 points) If the dimensions are wx = wy = 2 nm and wz = 1 nm, and the particles are electrons
obeying the Pauli Exclusion Principle, what would be the total energy if there are 9 electrons in 
the box?  Ignore repulsion between the electrons.

For those widths, 

For electrons,  , 

so 

The first 2 electrons go into 111, the next 4 go into 211 and 121, the next 2 go into 221.
That’s 8 electrons.  The 9th electron will go into 311 (or 131 with the same energy).  
So 
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7.  Spherical Shell Potential

An electron is in a spherically symmetric shell potential 
that is infinite for r < R,  and for r > R+ΔR, and zero for R < r < R+ΔR,
with R = 2 nm and ΔR = 0.2 nm.

A.  (4 points) Write the reduced radial Schrodinger Equation 
that must be solved to find the energy levels.  

B. (4 points) What is the wavefunction for the ground state 
as a function of r, θ, φ?  Don’t worry about normalization.

The full wavefunction is 

The ground state is  and (un-normalized) .

The radial equation is just  with U(r) = 0 at r = R and R+ΔR.

The  solutions are  with positive integer k.

So the (un-normalized) ground state wavefunction is 

C. (4 points) What is the energy (include units) of the ground state?

The energy for an electron in an infinite square well of width ΔR is 

So 
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D. (4 points) What is the approximate energy (include units) of the first excited state?

Since , we approximate the extra term in the radial equation as a constant 

evaluated at , which just shifts the energy up a bit.

The energy shift is 

For this problem, .

For .

The 

E. (4 points). What is the approximate total energy (include units) if there are 9 electrons 
in the potential obeying the Pauli exclusion principle?  Ignore repulsion between the electrons.

The energy changes from increasing  are much smaller than from increasing k, 
so the first 9 electrons will all have k = 1.  

The first two electrons will be in the 1S state with .  

The next electrons will be in the 1P state with .  This has m = –1, m = 0, and m = +1 
wavefunctions, each of which can hold 2 electrons, or 6 total.  That gets us to 8 electrons.

The 9th electron will go into one of the many 1D  states with , 
which all have the same energy.

The sum of the shifts is 

so the total energy is 

Putting electrons only in  states with k = 1, 2, 3, 4, 5 is wrong, but gives
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π 2 ⋅ 2.1 nm( )2 ⋅ℓ ⋅ ℓ+1( ) = .008636 eV ⋅ℓ ⋅ ℓ+1( )
k = 1, ℓ = 1, E = 9.398 eV + 0.008636 eV ⋅2 = 9.415 eV

k = 2, ℓ = 0 energy E20 = 22 ⋅E10 = 4 ⋅9.398 = 37.592 eV is far higher

ℓ

ℓ = 0

ℓ = 1

ℓ = 2

ΔE = 0.008636 eV ⋅ 6 ⋅ 1⋅ 1+1( )⎡⎣ ⎤⎦ +1⋅ 2 ⋅ 2+1( )⎡⎣ ⎤⎦{ } = 0.008636 eV ⋅ 18{ } = 0.1554 eV

E = 9.398 eV ⋅9+ 0.1554 eV = 84.7374 eV

ℓ = 0
2 ⋅E10 + 2 ⋅E20 + 2 ⋅E30 + 2 ⋅E40 + E50 = 2 ⋅ 1+ 4+ 9+16( )+ 25⎡⎣ ⎤⎦ ⋅E10 = 85⋅9.398 = 798.83 eV


