Relativity Formulas

 $c = 2.998 \times 10^8$ m/s = 29.98 cm/ns is the same in all frames

u = velocity of the origin of frame S' as observed from frame S, normally in +x direction

$$\beta = \frac{u}{c} \qquad -1 \le \beta \le +1 \qquad \gamma = \frac{1}{\sqrt{1-\beta^2}} = \left(1-\beta^2\right)^{-1/2} \quad \gamma \ge 1$$

$$\beta = \sqrt{1 - \gamma^{-2}} \qquad \gamma^2 - (\beta \gamma)^2 = 1$$

$$\gamma \approx 1 + \frac{1}{2}\beta^2$$
 for $\beta \ll 1$ $\beta \approx 1 - \frac{1}{2}\gamma^{-2}$ for $\gamma \gg 1$

Lorentz Transformations Inverse Energy-Momentum

$$ct' = \gamma (ct - \beta x)$$
 $ct = \gamma (ct' + \beta x')$ $\frac{E'}{c} = \gamma (\frac{E}{c} - \beta p_x)$

$$x' = \gamma (x - \beta ct)$$
 $x = \gamma (x' + \beta ct')$ $p'_{x} = \gamma \left(p_{x} - \beta \frac{E}{c} \right)$

$$y'=y$$
 $z'=z$ $p'_{Y}=p_{Y}$ $p'_{Z}=p_{Z}$

A moving clock ticks slower: $\Delta t_{\text{moving}} \cdot \gamma = \Delta t_{\text{yours}}$

A moving ruler looks shorter: $\Delta x_{\text{moving}} = \frac{\Delta x_{\text{yours}}}{\gamma}$

Velocity Addition: $\beta_{1+2} = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2}$

Doppler Effect: $f_{\text{obs}} = f_{\text{source}} \sqrt{\frac{1-\beta}{1+\beta}}$ $\lambda_{\text{obs}} = \lambda_{\text{source}} \sqrt{\frac{1+\beta}{1-\beta}}$ $\beta > 0$ means distance is increasing

Space-Time 4-Vector: $\vec{X} = (ct, x, y, z) = (ct, \vec{x})$

4-Vector Dot Product: $\vec{X}_1 \cdot \vec{X}_2 = ct_1 \cdot ct_2 - \vec{x}_1 \cdot \vec{x}_2$ is Lorentz-invariant

Relativistic Momentum: $p_{rel} = \gamma mv = \beta \gamma mc$

Relativistic Energy: $E_{\rm rel} = \gamma mc^2$ For small β , $E \approx mc^2 + \frac{1}{2}mv^2 \approx mc^2 \left(1 + \frac{1}{2}\beta^2\right)$

Energy-Momentum 4-Vector: $\vec{P} = \left(\frac{E_{\text{rel}}}{c}, \vec{p}_{\text{rel}}\right)$

$$\vec{P}^2 = \frac{E_{\text{rel}}^2}{c^2} - \vec{p}_{\text{rel}}^2 = \left(m_0 c\right)^2$$
 is Lorentz-invariant

Energy-momentum-mass relation: $E^2 = (pc)^2 + (m_0c^2)^2 \rightarrow E^2 = p^2 + m_0^2$ in c = 1 units

Electron-Volt Units: 1 eV = 1.602×10^{-19} Joule = q_e in Coulombs

$$m_e = 0.511 \text{ MeV}/c^2$$
 $m_p = 938.3 \text{ MeV}/c^2$ $m_n = 939.6 \text{ MeV}/c^2$