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Midterm exam has been moved to Wednesday June 4 at 5-6 PM.
It covers Relativity, Photons, and Atoms (this week).

Final exam schedule is not yet available.

Midterm Exam
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Worksheets?  (Scores and mark-ups should be on Canvas)

Webwork?  (Correct answers and solutions should be visible.
                     I’m still working on getting scores transferred to Canvas).

Clickers?  (Scores should be visible.  Can they be transferred to Canvas?)

Other Issues?
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If light goes through small slits, it emerges in circular waves.

In the forward direction, they are all in phase.
But they are also in phase for some other directions.

If the slit spacing is d, the path-length 
difference between slits is .

If the wavelength is λ, the waves will be
in phase if 

                 .  

This is different from Bragg diffraction:
  θ is measured from the normal, not the surface.
  The factor of 2 is missing.

Δx = d sinθ

d sinθ = nλ

Measuring Light Wavelengths
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If d >> λ, then θ will be very small, and diffraction is invisible.

If λ > d, sin θ > 1, so diffraction is impossible.

So the features we are diffracting from must be 
comparable to the wavelength for diffraction to be visible.

The n = 0 light goes straight through.

There is diffraction for n = 1, also for n = 2 at larger angle, etc.

d sinθ = nλ ⇒ sinθ = n λ
d

Diffraction Facts
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Shine the flashlight from your phone
on the center of a CD from about 10 cm.

If you center it properly, 
you get rings of color.

The tracks on a CD are 1600 nm
apart, which is comparable to the
wavelength of light.

The diffraction angle θ 
depends on wavelength.

Purple or blue is small angle, red is large angle.

n = 1 is the small-angle ring, n =  2 is the larger angle.

CD Diffraction
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Other Discs
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Hot dense objects emit black-body radiation, which has a continuous spectrum 
that depends on the temperature, but not on the substance.

Low density things, like gas in a electrical discharge tube, emit at 
only a few discrete wavelengths.  For most atoms, there is no simple prediction.

Spectral Emission Lines
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A gas can also absorb light at exactly 
the same wavelengths that it can emit.

This is a very high resolution spectrum
from space of the Sun 
(wrapped around many times)

The hot dense ionized gas gives a
continuous black-body spectrum,
but cooler gas above it absorbs
specific wavelengths.

Absorption vs Emission
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Atomic emission and absorption are due to “vibrations of electrons.”
Electrons have low mass, so the  frequency is high.

Cooler atoms form molecules.  The atoms in molecules can also “vibrate.”
Atoms have much higher mass than electrons, so the frequencies are lower.

Molecules can also rotate.  
That turns out to give absorption 
“lines” that are so close together 
that they look continuous, and they
are called absorption bands.

The absorption bands are at longer
than the human-visible spectrum.

Ozone (O3) absorbs ultraviolet.
Water and CO2 absorb infrared.

ω = k m

Absorption Bands



PHYS 250 Lecture 3.1 12

In 1865, Johann Balmer found a simple empirical formula for hydrogen lines.

λ = B n2

n2 − 4
   with B = 364.5 nm and n > 2

n = 3:   364.5 32

32 − 4
= 656.1    n = 4 :   364.5 42

42 − 4
= 486.0

n = 5:   364.5 52

52 − 4
= 433.9    n = 6 :   364.5 62

62 − 4
= 410.1

Hydrogen Emission Lines

656.1486.0433.9410.1
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The Balmer series of spectral lines of Hydrogen continues into the ultraviolet.    

What is the shortest Balmer series wavelength?

A.  91.13 nm

B.  182.3 nm

C.  364.5 nm

D.  410.1 nm

E.  820.2 nm

Clicker Question
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The visible Balmer series lines of Hydrogen continues into the ultraviolet.    

What is the shortest Balmer series wavelength?

C.  364.5 nm

Balmer says 

Increasing n decreases the wavelength.

Taking n to infinity gives λ = 364.5 nm

λ = B n2

n2 − 4
   with B = 364.5 nm with n > 2

Clicker Answer
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Other hydrogen lines in the ultraviolet and infrared were found later.  
They also fit a slightly modified formula.

λ = B
4
n2m2

n2 −m2 =    with B = 364.5 nm and n > m

m = 1:  Lyman series (ultraviolet)
m = 2 :  Balmer series (visible)
m = 3:  Paschen series (infrared)

Improved Balmer Formula
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In 1888, Johannes Rydberg was studying the spectra of “alkali” atoms 
(sodium, potassium, cesium) because they seemed simple like hydrogen 
and proposed a variation on Balmer, using 1 / λ instead of λ :

This predicts (some) alkali atom spectral lines pretty well.

The modern explanation is that the inner electrons “screen” the nuclear charge
so even though the total nuclear charge is many protons, it looks like the same 
charge as a single proton, to an electron far from the atom.

1
λ
= R 1

n1
2 −

1
n2

2

⎛

⎝⎜
⎞

⎠⎟
 with n2 > n1

R = 1.097 ×107  m−1 = 1
91.13 nm

= 4
B

Rydberg Formula
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If you can manage to remove all but one electron from an atom, 
which you can do by getting it very hot, then a modified Rydberg formula 
predicts the spectrum as exactly as it does for hydrogen:

This was verified for Li+2, Be+3, etc.

It works for He+1 too, but no one had any at the time.

1
λ
= RZ 2 1

n1
2 −

1
n2

2

⎛

⎝⎜
⎞

⎠⎟
 with n2 > n1    

R = 1.097 ×107  m−1 = 1
91.13 nm

Z =  atomic number (nuclear charge)

Improved Rydberg Formula
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Using Planck’s formula  we can turn Rydberg’s formula 

into a statement about photon energies:

E = hf = hc
λ

E = hc
λ

= hcRZ 2 ⋅ 1
n1

2 −
1
n2

2

⎛

⎝⎜
⎞

⎠⎟

= 1240 eV-nm ⋅ 1
91.13 nm

⋅Z 2 ⋅ 1
n1

2 −
1
n2

2

⎛

⎝⎜
⎞

⎠⎟

= 13.598 eV ⋅Z 2 ⋅ 1
n1

2 −
1
n2

2

⎛

⎝⎜
⎞

⎠⎟

Rydberg and Photon Energy
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Spectral lines come from gas-discharge tubes.  With better vacuum and higher 
voltage, we get cathode rays, and X-rays.  At first, neither was understood.

X-rays were not deflected by magnetic or electric fields, so they must be neutral.

Cathode rays are deflected by magnetic fields, so they must be charged.

Cathode Rays
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Cathode rays did not seem to be deflected by electric fields, which was strange.

The explanation is that the vacuum in cathode ray tubes was not very good,
so the residual gas got ionized, and shorted out any electric field.

JJ Thomson had much better vacuum, and set up an electric field 
at right angles to the magnetic field, so the deflections were in the same plane, 
and opposite to each other.

JJ Thomson Experiment

920    CHAPTER 27 Magnetic Field and  Magnetic Forces 

electrons pass straight through the plates when Eq. (27.13) is satisfied; combining this with 
Eq. (27.14), we get

 
E
B

= A2eV
m
  so  

e
m

= E2

2VB2 (27.15)

All the quantities on the right side can be measured, so the ratio e>m of charge to mass can 
be determined. It is not possible to measure e or m separately by this method, only their ratio.

The most significant aspect of Thomson’s e>m measurements was that he found a  single 
value for this quantity. It did not depend on the cathode material, the residual gas in the 
tube, or anything else about the experiment. This independence showed that the particles 
in the beam, which we now call electrons, are a common constituent of all matter. Thus 
Thomson is credited with the first discovery of a subatomic particle, the electron.

The most precise value of e>m available as of this writing is

e>m = 1.7588200241112 * 1011 C>kg

In this expression, (11) indicates the likely uncertainty in the last two digits, 24.
Fifteen years after Thomson’s experiments, the American physicist Robert Millikan 

succeeded in measuring the charge of the electron precisely (see Challenge Problem 
23.81). This value, together with the value of e>m, enables us to determine the mass of the 
electron. The most precise value available at present is

m = 9.10938356 1112 * 10-31 kg

Mass Spectrometers
Techniques similar to Thomson’s e>m experiment can be used to measure masses of ions and 
thus measure atomic and molecular masses. In 1919, Francis Aston (1877-1945), a student of 
Thomson’s, built the first of a family of instruments called mass spectrometers. A variation 
built by Bainbridge is shown in Fig. 27.24. Positive ions from a source pass through the slits S1  
and S2 , forming a narrow beam. Then the ions pass through a velocity selector with crossed  
E
S

 and B
S

 fields, as we have described, to block all ions except those with speeds v equal to 
E>B. Finally, the ions pass into a region with a magnetic field B

S
′ perpendicular to the figure, 

where they move in circular arcs with radius R determined by Eq. (27.11): R = mv>qB′. Ions 
with different masses strike the detector at different points, and the values of R can be mea-
sured. We assume that each ion has lost one electron, so the net charge of each ion is just +e. 
With everything known in this equation except m, we can compute the mass m of the ion.

One of the earliest results from this work was the discovery that neon has two species of 
atoms, with atomic masses 20 and 22 g>mol. We now call these species isotopes of the ele-
ment. Later experiments have shown that many elements have several isotopes—atoms with 
identical chemical behaviors but different masses due to differing numbers of neutrons in their 
nuclei. This is just one of the many applications of mass spectrometers in chemistry and physics.

B
S

E
S

Between plates P and P′ there
are mutually perpendicular, 
uniform E and B fields.

Electrons travel from the cathode to the screen.

AnodesCathode

Screen

+

A A′ P

P′

+

Electron beam

V

–
SS

Figure 27.23 Thomson’s apparatus for measuring the ratio e>m for the electron.

B′
S

Velocity selector
selects particles
with speed v.

Magnetic field separates particles by mass;
the greater a particle’s mass, the larger is
the radius of its path.

S1
S2

S3

m2 R2

Particle
detector

R1m1

SS
E, B

Figure 27.24 Bainbridge’s mass spec-
trometer utilizes a velocity selector to pro-
duce particles with uniform speed v. In the 
region of magnetic field B′, particles with 
greater mass 1m2 7 m12 travel in paths 
with larger radius 1R2 7 R1 2.
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Thomson adjusted the fields so the deflection cancelled.
This determines the velocity without knowing the mass.

Then he could determine the charge to mass ratio of the electron

Fmagnetic = qvB = Felectric = qE    →    v = E
B

Energy U = qV = 1
2
mv2 = 1

2
m E
B

⎛
⎝⎜

⎞
⎠⎟

2

   →    q
m
= 1

2V
E
B

⎛
⎝⎜

⎞
⎠⎟

2

Electron Charge to Mass Ratio
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Chemists could measure how much mass of a metal could be electroplated
by a Coulomb (Amperes times seconds) of charge.

So chemists knew the charge to mass ratio for the elements,
but they still didn’t know the absolute mass of any atom.

The highest charge to mass ratio was for hydrogen (charge 1, and lowest mass).

The ratio for cathode rays was ~ 2000 times higher than for hydrogen !

JJ Thomson also showed that cathode rays had the same charge to mass ratio, 
no matter what the cathode material was.

Electron Charge to Mass Ratio 2
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Chemists knew atoms had a size (but not what it was).

Cathode rays travelled farther through gases than they would  
if cathode rays were the same size as atoms, so they must be smaller.

Thomson guessed that atoms were balls of positive charge, 
with his negative electrons inside.

Maybe oscillations of the electrons
inside the positive ball could
explain spectral lines?

Thomson’s Plum-Pudding Atom
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The electric field outside an atom should be zero  
because the positive and negative charges would cancel.

Inside the atom, the electric field  
should mostly cancel, except near
an electron.  

But electrons have low mass, 
so they shouldn’t deflect the  
much heavier alpha particles.

Rutherford found that quite a few
alpha particles scattered through  
large angles.  

That would only be possible 
if the positive charge, and mass, 
were concentrated in a small volume.

Scattering Models
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All positive charge, and almost all of the mass, 
is concentrated in a small nucleus.

Electrons orbit the positive charge like planets.

All atoms of an element have the same charge, 
and same number of electrons

Rutherford Atom
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With the usual convention that potential energy is zero at infinity, 

and for an attractive force, the potential energy at r is .

The kinetic energy is , so 

Combine Coulomb’s Law  and Newton’s Law 

with acceleration in a circular orbit  to get , 

and multiply both sides by r: .

Plug into the total energy: 

Epotential = − qQ
4πε0

1
r

Ekinetic =
1
2
mv2 Etotal = Ekinetic + Epotential =

1
2
mv2( )− qQ

4πε0

1
r

F = qQ
4πε0

1
r 2

F = ma

a = v
2

r
qQ
4πε0

1
r 2

= mv
2

r
qQ
4πε0

1
r
= mv2

Etotal =
1
2

qQ
4πε0

1
r

⎛

⎝⎜
⎞

⎠⎟
− qQ
4πε0

1
r
= − 1
2
qQ
4πε0

1
r

Rutherford Orbit Energy
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Angular momentum is .  

Plug v into the relation for a circular orbit  and solve for 1/r:

Plug into the energy: 

!
L = !r × !p→ L = rmv→ v = L

mr
qQ
4πε0

1
r
= m v2( )

qQ
4πε0

1
r
= m L2

m2r 2
⎛
⎝⎜

⎞
⎠⎟

→ qQ
4πε0

= L
2

mr
→ 1

r
= qQ
4πε0

m
L2

Etotal = − 1
2
qQ
4πε0

1
r

⎛
⎝⎜

⎞
⎠⎟
= − 1
2
qQ
4πε0

qQ
4πε0

m
L2

⎛

⎝⎜
⎞

⎠⎟

= − m
2

qQ
4πε0

⎡

⎣
⎢

⎤

⎦
⎥

2
1
L2

Orbit Energy from Angular Momentum
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Orbits can be any size, so atoms of a given element should have a range of sizes.

Elements form nice crystals, so atoms of an element are all the same size.

The period of the orbit depends on the size of the orbit.  
So if light frequency is the same as the orbit frequency, 
there should be a continuous spectrum, not discrete lines.

Circular orbital motion is accelerated motion.  
And Maxwell says that accelerated charges radiate energy.  
It turns out that the orbits should decay very rapidly.

If E0 is –1 eV, the decay time is 39.2 nanoseconds.
If E0 is –13.6 eV, the decay time is 15.6 picoseconds.

t = E
−3
⋅ 2m2c3

256πε0q
= EeV

−3
⋅39.2 ns-eV3

Rutherford Atom Problems
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In 1913, Niels Bohr and Rutherford incorporated Planck’s constant 
into the orbiting-electron model in a way that fixed a lot of the defects, 
and also predicted the Rydberg spectrum, and the Rydberg (or Balmer) constant.

They postulated that the angular momentum of the orbits could only be 
integer multiples of Planck’s constant h,
but divided by 2π (so energies are right).

This  is used so much that it is abbreviated as .

Plug  and Q = Zq into  to get 

h
2π

h
2π

= !

L = n! E = − m
2

qQ
4πε0

⎡

⎣
⎢

⎤

⎦
⎥

2
1
L2

E = − m
2
qZq
4πε0

⎡

⎣
⎢

⎤

⎦
⎥

2
1
n2!2

= − m
2

q2

4πε0!
⎡

⎣
⎢

⎤

⎦
⎥

2
Z 2

n2

Bohr Model
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The value of .

Evaluating the constants in  gives

Converting into electron Volts gives .

Compare  to Rydberg’s 

The spectral line energies are differences of Bohr orbit energies!

! = h
2π

= 6.626×10−34

2π
= 1.055×10−34  J-s

E = − m
2

q2

4πε0!
⎡

⎣
⎢

⎤

⎦
⎥

2
Z 2

n2

m
2

q2

4πε0!
⎡

⎣
⎢

⎤

⎦
⎥

2

= 9.109×10−31

2
⋅

1.602×10−19( )2

4π ⋅8.854×10−12 ⋅1.055×10−34

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

2

= 2.177 ×10−19  J

2.177 ×10−19  J
1.602×10−19  J/eV

= 13.598 eV

E = −13.6 eV ⋅ Z
2

n2 E = 13.6 eV ⋅Z 2 1
n1

2 −
1
n2

2

⎛

⎝⎜
⎞

⎠⎟

Bohr Model Energies
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Take the energy-radius relation  and solve for .

Plug in the Bohr energy  to get 

The constant is 

Overall .  For n = Z = 1, the diameter is 106 pm.

E = 1
2
qZq
4πε0

1
r

r = 1
2
q2

4πε0

Z
E

E = m
2

q2

4πε0

⎡

⎣
⎢

⎤

⎦
⎥

2
1
!2
Z 2

n2

r = 1
2
q2

4πε0

Z

m
2

q2

4πε0

⎡

⎣
⎢

⎤

⎦
⎥

2
1
!2
Z 2

n2

= n
2

Z
!2

m
4πε0
q2

!2

m
4πε0

qq
=

1.055×10−34( )2

9.109×10−31

4π ⋅8.854×10−12

1.602×10−19( )2 = 5.297 ×10−11  m = 52.97 pm

r = 52.97 pm ⋅ n
2

Z

Bohr Model Radius
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Start with the angular momentum definition  

and the Coulomb orbit relation  to get 

Plug in angular momentum  to get  or .

Evaluate the constants: 

So .   For Hydrogen with Z = n = 1, relativity is negligible.  

But for Uranium, Z = 92, and n = 1, we get β = 0.6709, which gives γ = 1.349.  
So relativity is not negligible for heavy elements.

L = r ⋅mv→ v = L
m
⋅ 1
r

1
r
= Zq

2

4πε0

m
L2

v = L
m
⋅ Zq

2

4πε0

m
L2

= Z
L
q2

4πε0

L = n! v = Z
n
q2

4πε0!
β = v

c
= Z
n

q2

4πε0!c

q2

4πε0!c
=

1.602×10−19( )2
4π ⋅8.854×10−12 ⋅1.055×10−34 ⋅2.998×108

= 7.293×10−3

β = 7.293×10−3 ⋅ Z
n

Bohr Orbit Velocity
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We actually cheated in the classical orbit calculation, because we treated 
the electron as being in orbit around a fixed centre.  In reality, the electron
and the proton both orbit around the centre of mass of the system.

If the calculation is done right, for Hydrogen the electron mass gets replaced by 

the reduced mass .   Since , this is a very small change 

from the electron mass in 

For ionized Helium, , which is even closer to the electron mass.

But spectroscopy can be done precisely enough that it was noticable 
that the Helium energies were not exactly Z 2 = 4 times the Hydrogen energies,
but including the reduced masses explained the differences.

µ =
me ⋅mp
me +mp

mp ≈ 2000 ⋅me

En = − m
2

q2

4πε0!
⎡

⎣
⎢

⎤

⎦
⎥

2
Z 2

n2

µ =
me ⋅mHe
me +mHe

Reduced Mass
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The quantization of angular momentum defines specific orbits 
with specific predicted energies and radii.

The predicted energies come out exactly right for hydrogen, 
and the other cases where the Rydberg formula works.  

But note that Bohr needed the fudge factor of 2π to get the energies right, 
without explaining why.

The lowest energy orbit has a definite size, so all atoms are the same size,
and the size is sensible.

Bohr Model Pros
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Bohr atoms are planar, but atoms are spherical.

A charge moving in a circular orbit generates a magnetic moment.  

Ground state hydrogen atoms do have a magnetic moment, 
but it’s not the value predicted by the Bohr model.

In Schrodinger quantum mechanics, the ground state of hydrogen is spherical.

It has L = 0, so there is no orbital motion, and no magnetic moment from it.  

The magnetic moment of a hydrogen atom is due to the intrinsic magnetic 
moment of the electron, due to its “spin” angular momentum, plus a small
contribution from the magnetic moment from the “spin” of the proton.

Bohr Model Cons
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As the atomic number Z goes up, the Rydberg wavelengths go into the UV 
and eventually the X-ray range.  

It also gets increasingly hard to get rid of all but one electron.

In 1913-14, Henry Moseley used Bragg diffraction 
to measure the X-ray emission lines from most elements.  

He found the wavelength of the most prominent X-ray line 
(called Kα) varied smoothly like 1/Z 2, for almost all the elements.  

This was very different from the fairly random 
visible spectrum for different elements.

He did the classic “transform the data until it becomes a straight line” trick.

X-Ray Emission Lines
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Measure Kα wavelength λ as a function of atomic number Z.
Plot  as a function of Z, and fit a line:   with b = 1f = c λ f = a ⋅ Z − b( )

Moseley Plot
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Squaring both sides of  gives .  

Multiplying both sides by h gives .

If we use eV as the energy unit, and b = 1, Moseley’s fit becomes 

This is Moseley’s Law (for Kα X-ray emission).

f = a ⋅ Z − b( ) f = a2 ⋅ Z − b( )2

E = hf = ha2 ⋅ Z − b( )2

E = 10.2 eV ⋅ Z −1( )2

Moseley’s Law
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The atomic weights aren’t always in the same order as their atomic numbers.  

An example is cobalt (Z = 27, W = 58.9) and nickel (Z = 28, W = 58.7)

Moseley was able to directly measure Z, rather than inferring it from masses.

There were some elements not known in 1914.  

Moseley was able to definitely show that some Z values were missing.

Moseley would have surely won a Nobel Prize for his work,
but he was killed in WWI in the Battle of Gallipoli.

Moseley’s Law 2
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The improved Rydberg formula in terms of energy is

If n1 = 1 and n2 = 2, the bracket term is 1 – 1/4 = 3/4, and 3/4 x 13.6 = 10.2, 
which is the slope in Moseley’s Law.

This implies that the Kα line comes from an electron in the second Bohr orbit 
dropping into the first Bohr orbit.

Moseley’s Law has  because there is one electron in the first Bohr orbit, 
which partially “screens” the nuclear charge, reducing it by one unit.

ERydberg = 13.6 eV ⋅Z 2 1
n1

2 −
1
n2

2

⎡

⎣
⎢

⎤

⎦
⎥

Z −1( )2

Interpreting Moseley’s Law
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You can excite atoms to emit their characteristic Kα line by shining them with
X-rays with a higher energy, or spraying them with high voltage electrons.

Modern X-ray detectors can measure X-ray photon energies accurately 
without complicated Bragg setups.

So you can rather easily 
determine the elemental 
composition of a sample.

Using Moseley’s Law
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There is also a Kβ line at shorter wavelength
(higher energy) from n = 3 to n = 1.

The transition from n = 3 to n = 2 is called the L-α line.
There is a lot more “screening” in addition to the n changes.

There are 2 electrons in a full n = 1 “shell,” and 8 electrons in a full 
n = 2 “shell,” so we would expect the screening with one electron missing 
to be 9.   So 7.4 isn’t too surprising.

E = 13.6 eV 1
1
− 1

32

⎡

⎣
⎢

⎤

⎦
⎥ Z −1( )2

= 12.09 eV ⋅ Z −1( )2

E = 13.6 eV 1
22 −

1
32

⎡

⎣
⎢

⎤

⎦
⎥ Z − 7.4( )2

= 1.889 eV ⋅ Z − 7.4( )2

More Moseley’s Law
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Another Moseley Plot
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X-Ray Line Notation

K
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James Franck & Gustav Hertz, 1914.
Tube with low pressure mercury vapour and electrodes.
Measure the current of electrons reaching the last anode  
as a function of the voltage between the cathode and grid.

Franck-Hertz Experiment

Variable  
accelerating  
voltage

Small voltage 
to stop slow  
electrons

Current 
Meter
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Peaks are 5 Volts apart.

Surprising Result
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It was well known that mercury vapour has a spectral line at 250 nm (in the UV).  
This corresponds to 

Increasing the voltage increases the current, until the electron energy reaches 
5 eV.  That’s enough to excite the mercury atom to emit a photon.  
The electron loses the 5 eV, meaning it comes to a stop.  

The electron can gain another 5 eV, excite another mercury atom, and stop again.
Rinse and repeat.

Franck & Hertz verified that they saw the 250 nm spectral line in their tube.

E = hc
λ

= 1240 eV-nm
250 nm

= 4.96 eV

Franck-Hertz Experiment
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If you use neon gas instead of mercury vapor, the emitted photon is visible, 
and you can see alternate dark and bright regions.

Franck-Hertz in Neon
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It was the first clear evidence that the same discrete atomic energy levels, 
correlated with photon wavelengths via Planck’s constant, also showed up 
in the interactions of electrons with atoms.

It got Franck and Hertz the 1925 Nobel Prize.  

And it’s a common undergraduate physics labs experiment.

Franck-Hertz Significance
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In Louis de Broglie’s 1924 Ph.D. thesis, he proposed that particles, e.g. electrons, 
should have wave properties.  He proposed that for both matter and photons, 

A particle in an orbit with radius r and angular momentum L = rp would have a 
wavelength of λ = hr / L.

If we require an integer n wavelengths λ around the orbit circumference of 2π r,

This is a much more natural way of getting the 2π fudge factor  
that we needed to get the Rydberg energy formula from Bohr.

λ = h
p

nλ = n hr
L

= 2πr    →    L = n h
2π

= n!

de Broglie Waves
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Making the electron into a wave also helps avoid the problem of 
the electron radiating away its energy.

A uniform and constant current following a circular path makes a magnetic field, 
but it doesn’t radiate, even though the charges are accelerating.  The radiation 
from different parts of the path cancel.

(If the de Broglie wave were a standard real sine wave, with positive, negative, 
and zero values, it wouldn’t be uniform so it would still radiate.  

In Schrodinger quantum mechanics, the wave is complex with the real and 
imaginary parts out of phase by 90°, so the probability of finding the electron at 
any place along the orbit is constant.)  

de Broglie Waves 2
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For photons, the momentum p to put into  is , so 

For non-relativistic matter, the relation between kinetic energy and momentum is

, so  and 

To use eV units, 

For an electron, 

λ = h
p

p = E
c

λphoton =
hc
Ephoton

Ekinetic =
1
2
mv2 = 1

2
mv( )2
m

= p
2

2m
p = 2mEkinetic λmatter =

h
2mEkinetic

λmatter =
c
c

h
2mEkinetic

= hc
2mc2Ekinetic

λmatter =
1240 eV-nm

2 ⋅0.511×106  eV/c2 ⋅c2 ⋅EeV

= 1.227 eV ⋅nm
EeV

de Broglie Wavelength
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What is the de Broglie wavelength of an electron 
with kinetic energy of 12.4 keV?

A.  0.100 nm

B.  100 nm

C.  98.95 pm

D.  11.02 pm

E.  1.716 pm

Clicker Question
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What is the de Broglie wavelength of an electron 
with kinetic energy of 12.4 keV?

D.  11.02 pm

λ = hc
2mc2Ekinetic

= 1.227 eV ⋅nm
EeV

→ 1.227 eV ⋅nm

12.4×103  eV
= 1.102×10−2  nm = 11.02 pm

Clicker Answer
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WebWork 2 is due at 11:59 PM tonight.

We will continue with Atoms (and nuclei) on Wednesday.

Webwork 3 will be posted Wednesday (I hope), due next Monday.

There will be another worksheet on Friday, due 11:59 PM.

Midterm will be Wednesday June 4 at 5-6 PM, covering through this week.

We will start Schrodinger Equation on Monday (not on the midterm).

For Next Time


