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Lecture 4.1

Schrodinger Equation 1
This is where it starts to get complex …

PHYS 250
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Administriva
Wave Equation Review
Guessing the Schrodinger Equation (free particle case)
Schrodinger Equation and Solution Properties
Wavefunctions and Probability
Numerical Solution Examples
A Little Fourier Analysis
Heisenberg Uncertainty Principle
Including Forces in Schrodinger
Step-Potential Examples

Today
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WebWork 3 is due at midnight.

Worksheet 3 solutions are posted.  
Practice Midterm solutions available Tuesday at 8 AM.

Midterm Exam at 5-6 PM Wednesday, in this room.

You may bring one page (both sides) of notes.  
Group formula sheet is OK, but you learn more by making your own.
I don’t give you a formula sheet.

Any calculator, but no phones, tablets, laptops or anything wireless.

Today’s material on Schrodinger will not be on the exam.

Wednesday is more Schrodinger, Friday is tutorial worksheet.

Administrivia
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Thompson “plum pudding” atom was inconsistent with Rutherford scattering.
Rutherford model of electrons orbiting a nucleus doesn’t explain uniform sizes,
and the orbits are unstable and would collapse in picoseconds.

Bohr Model predicts the Rydberg wavelengths 
by introducing Planck’s Constant to atomic structure.

It predicts all hydrogen atoms are the same size, which it predicts correctly.

It also gets a lot of stuff wrong:
   Wrong magnetic moment (angular momentum is wrong)
   Predicts that atoms are flat
   No good extension to multi-electron atoms
   Davisson-Germer experiment shows electrons are waves outside atoms

Bohr Model Right and Wrong
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Photons obey Maxwell’s Equations, in particular the wave-equations 
derived from Maxwell (plus some quantum stuff)

Maxwell’s Equations are field equations: 
   partial differential equations involving space and time.

Schrodinger wanted something like that for particles like electrons, 
and hoped it would preserve the correct results of the Bohr Model, 
fix the wrong ones, and make new predictions.

We Want a Field/Wave Equation
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Wave Equation:  for 

Second-order in both time and space.  Linear. Velocity is built into the equation.

Solution: 
Velocity can have either sign, but only one magnitude.
Any linear combination of above form is also a solution.

The solution doesn’t have to be a sinusoid,  
but if it is a sinusoid with wavelength λ and period T, 

∂2 y
∂x2

= 1
v2

⋅ ∂
2 y
∂t2

y x,t( )

y x,t( ) = f x ± vt( )     for any  f one argument( )

y x,t( ) = Asin 2π ± x
λ
− t
T

⎛
⎝⎜

⎞
⎠⎟
+φ

⎡

⎣
⎢

⎤

⎦
⎥  with v = λ

T

Wave Equation Review
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It’s convenient to write the sinusoid solutions as

Putting the minus sign on ωt makes the wave direction have the same sign as k.  

To satisfy the wave equation we still require 

y x,t( ) = Asin ±kx −ωt +φ⎡⎣ ⎤⎦  with k = 2π
λ

 and ω = 2π
T

= 2π f

v = λ
T
= 2π k
2π ω

= ω
k

Wave Equation Review 2
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The Davisson-Germer experiment shows that electrons can diffract like waves 

that obey de Broglie:  .

We want a wave equation for electrons that obeys that.

But unlike light, electrons can have any velocity, including zero.  
So the equation can’t be the usual wave equation with a fixed velocity built-in.

We also want the equation to obey Planck: E = hf.  

Incorporating relativity turns out to be really complicated, 

so we will use the classical 

λ = h
p

Ekinetic =
1
2
mv2 = 1

2
mv( )2
m

= p
2

2m

What We Want
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If we plug the de Broglie condition   into the convenient 

we get .   

That implies .

Then  becomes .

If we plug the Planck condition  into the convenient 

we get .  

That implies 

λ = h
p

k = 2π
λ

k = 2π
h p

= p ⋅ 2π
h

= p
h 2π

= p
!

p = !k

Ekinetic =
p2

2m
Ekinetic =

!k( )2
2m

E = hf ω = 2π
T

= 2π f

ω = 2π E
h
= E
h 2π

= E
!

E = !ω

What We Want 2
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Guess  

with .  Using  makes the math cleaner.

Do some derivatives: 

y x,t( ) = sin 2π x
λ
− ft

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = sin kx −ωt⎡⎣ ⎤⎦

k = 2π
λ

 and ω = 2π f k  and ω

∂y
∂t

= cos kx −ωt⎡⎣ ⎤⎦ ⋅ −ω( )
∂y
∂x

= cos kx −ωt⎡⎣ ⎤⎦ ⋅ k
∂2 y
∂x2

= −sin kx −ωt⎡⎣ ⎤⎦ ⋅ k
2 = −k 2 ⋅ y x,t( )

Guess the Equation From the Solutions
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Note that   

and 

So   gives 

That almost works as an equation, but we have a sine vs cosine problem.

! ⋅ ∂y
∂t

= −! ⋅ω cos kx −ωt⎡⎣ ⎤⎦ = −Ecos kx −ωt⎡⎣ ⎤⎦

!2

2m
⋅ ∂

2 y
∂x2

= − !
2

2m
⋅ k 2 sin kx −ωt⎡⎣ ⎤⎦ = −E sin kx −ωt⎡⎣ ⎤⎦

!
∂y
∂t

= !
2

2m
∂y2

∂x2
−Ecos kx −ωt⎡⎣ ⎤⎦ = −E sin kx −ωt⎡⎣ ⎤⎦

First Guess Equation
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Complex exponential functions are also sinusoidal

   

So let’s try  as a solution.

The derivatives are

eiθ = exp iθ( ) = cosθ + isinθ ieiθ = icosθ − sinθ

d
dθ
eiθ = d

dθ
cosθ + isinθ( ) = −sinθ + icosθ = ieiθ

y x,t( ) = ei kx−ωt( ) = exp i kx −ωt( )⎡⎣ ⎤⎦

∂y
∂t

= exp i kx −ωt( )⎡⎣ ⎤⎦ ⋅ −iω( ) = −iω ⋅ y x,t( )
∂y
∂x

= exp i kx −ωt( )⎡⎣ ⎤⎦ ⋅ ik
∂2 y
∂x2

= exp i kx −ωt( )⎡⎣ ⎤⎦ ⋅ ik( )2 = −k 2 ⋅ y x,t( )

Complex Exponential Sinusoids
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Note that   

and 

So   gives 

That fixes the sine vs cosine problem, but now we have a factor of i problem

! ⋅ ∂y
∂t

= ! ⋅−iω y x,t( ) = −iE ⋅ y x,t( )

!2

2m
⋅ ∂

2 y
∂x2

= !
2

2m
⋅−k 2 y x,t( ) = −E ⋅ y x,t( )

!
∂y
∂t

= !
2

2m
∂y2

∂x2
−iE ⋅ y x,t( ) = −E ⋅ y x,t( )

Second Guess Equation
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Try  

and 

So   gives .  All problems fixed!

We have invented the Schrodinger Equation (for a free particle in 1 dimension).

It’s conventional to use  instead of 

i! ⋅ ∂y
∂t

= i! ⋅−iω y x,t( ) = E ⋅ y x,t( )

−!2

2m
⋅ ∂

2 y
∂x2

= −!2

2m
⋅−k 2 y x,t( ) = E ⋅ y x,t( )

i!
∂y
∂t

= −!2

2m
∂y2

∂x2
E ⋅ y x,t( ) = E ⋅ y x,t( )

ψ x,t( ) y x,t( )

i!
∂ψ
∂t

= −!2

2m
∂2ψ
∂x2

Schrodinger Equation
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Replace :  then divide out A.

So if .

For solutions :  and 

Add them and rearrange: 

So  is a solution if  are solutions.

i!
∂
∂t
ψ = −!2

2m
∂2

∂x2
ψ

ψ  by Aψ i!
∂
∂t
Aψ = −!2

2m
∂2

∂x2
Aψ

ψ  is a solution, so is Aψ

ψ 1  and ψ 2 i!
∂
∂t
Aψ 1 =

−!2

2m
∂2

∂x2
Aψ 1 i!

∂
∂t
Bψ 2 =

−!2

2m
∂2

∂x2
Bψ 2

i!
∂
∂t
Aψ 1 + Bψ 2( ) = −!2

2m
∂2

∂x2
Aψ 1 + Bψ 2( )

Aψ 1 + Bψ 2 ψ 1  and ψ 2

Schrodinger is Linear
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A function takes a number as input, and gives a number as output: 

An operator takes a function as input, and gives a function as output.

An example of an operator is .  

Applying  to  gives 

f x( ) = y

d
dx

d
dx

f x( ) d
dx
f x( ) = df

dx x

= ′f x( )

The Operator Concept
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If we apply the operator  to  we get 

If we apply the operator to  we get 

So we define the momentum operator as .

Apply the momentum operator twice: 

So we can write Schrodinger as 

∂
∂x

exp i
px − Et
!

⎡

⎣
⎢

⎤

⎦
⎥ i

p
!
⋅exp i px − Et

!
⎡

⎣
⎢

⎤

⎦
⎥

!
i
∂
∂x

exp i
px − Et
!

⎡

⎣
⎢

⎤

⎦
⎥ p ⋅exp i px − Et

!
⎡

⎣
⎢

⎤

⎦
⎥

pop =
!
i
∂
∂x

pop
2 = !

i
∂
∂x

⋅ !
i
∂
∂x

= −!2 ∂2

∂x2

i!
∂ψ
∂t

= −!2

2m
∂2ψ
∂x2

=
pop
2

2m
ψ

Momentum Operator
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The complex conjugate of z = a + ib is z* = a – ib

Note that  
is real and never negative.

The Schrodinger Equation  is explicitly complex.

It has no non-trivial solutions that aren’t complex.

But  is real and positive, and that’s what has a physical interpretation.

It’s a bit like the E-field of a wave, which alternates between positive and 
negative.  But the energy density is proportional to E2, which is always positive.

Does  mean anything?  Yes, it turns out to be the probability density.

z∗ ⋅ z = a + ib( ) ⋅ a − ib( ) = a2 − iab+ iba + ib( ) ⋅ −ib( ) = a2 + b2

i!
∂ψ
∂t

= −!2

2m
∂2ψ
∂x2

ψ ∗ ⋅ψ

ψ ∗ ⋅ψ

Complex vs Real
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Take , and pre-multiply both sides by :

Conjugate  to  and post-multiply by : 

Subtract them: 

Divide out :  

i!
∂ψ
∂t

= −!2

2m
∂2ψ
∂x2

ψ ∗

ψ ∗ ⋅ i! ∂ψ
∂t

⎡

⎣
⎢

⎤

⎦
⎥ =ψ

∗ ⋅ −!
2

2m
∂2ψ
∂x2

⎡

⎣
⎢

⎤

⎦
⎥

i!
∂ψ
∂t

= −!2

2m
∂2ψ
∂x2

−i! ∂ψ
∗

∂t
= −!2

2m
∂2ψ ∗

∂x2
ψ

−i! ∂ψ ∗

∂t
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ = −!2

2m
∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

i! ψ ∗ ⋅ ∂ψ
∂t

⎡

⎣
⎢

⎤

⎦
⎥ +

∂ψ ∗

∂t
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
= −!2

2m
ψ ∗ ⋅ ∂2ψ

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ −

∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

i! ψ ∗ ⋅ ∂ψ
∂t

⎡

⎣
⎢

⎤

⎦
⎥ +

∂ψ ∗

∂t
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
= −!
2im

ψ ∗ ⋅ ∂2ψ
∂x2

⎡

⎣
⎢

⎤

⎦
⎥ −

∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

Proving Probability (not on any exam)
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Note that  and that 

Plug those into the above, and move the right side to the left:

ψ ∗ ⋅ ∂ψ
∂t

⎡

⎣
⎢

⎤

⎦
⎥ +

∂ψ ∗

∂t
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
= −!
2im

ψ ∗ ⋅ ∂2ψ
∂x2

⎡

⎣
⎢

⎤

⎦
⎥ −

∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

∂
∂t

ψ ∗ ⋅ψ( ) = ψ ∗ ⋅ ∂ψ
∂t

⎡

⎣
⎢

⎤

⎦
⎥ +

∂ψ ∗

∂t
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

∂
∂x

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
= ∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ +ψ

∗ ⋅ ∂2ψ
∂x2

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟
− ∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ + ∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅

∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝⎜
⎞

⎠⎟

= ψ ∗ ⋅ ∂2ψ
∂x2

⎡

⎣
⎢

⎤

⎦
⎥ −

∂2ψ ∗

∂x2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

∂
∂t

ψ ∗ ⋅ψ⎡⎣ ⎤⎦ +
∂
∂x

!
2im

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

Proving Probability 2
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Integrate from .  The first term gives .

Integrating the second term just removes the  in front.  So we have 

Consider a wavefunction ψ that goes to zero at infinity:

Then the square bracket term will be zero at both limits, and we have simply

∂
∂t

ψ ∗ ⋅ψ⎡⎣ ⎤⎦ +
∂
∂x

!
2im

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

x = −∞ to x = +∞ ∂
∂t

ψ ∗ψ ⋅dx
−∞

+∞

∫
∂
∂x

∂
∂t

ψ ∗ψ ⋅dx
−∞

+∞

∫ + !
2im

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥−∞

+∞

= 0

∂
∂t

ψ ∗ψ ⋅dx
−∞

+∞

∫ = 0

Proving Probability 3
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If the wavefunction goes to zero at ± infinity, then .

That says that the area under the (real and positive) curve of  stays constant,
even though the wavefunction ψ itself isn’t constant.

We can multiply ψ by any constant and it’s still a solution.

So we can require .  This is called normalizing the wavefunction.

For a normalized wavefunction,   is the probability density.

∂
∂t

ψ ∗ψ ⋅dx
−∞

+∞

∫ = 0

ψ ∗ψ

ψ ∗ψ ⋅dx
−∞

+∞

∫ = 1

ψ ∗ψ

Proving Probability 4
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Recall the equation relating charge density  and current density 

We found the equation 

We decided that  was the probability density.

So  acts like the x-component of current density.

ρ
!
J

∂
∂t

ρ +
!
∇⋅
!
J = 0  or  

∂
∂t

ρ + ∂
∂x
Jx +

∂
∂y
J y +

∂
∂z
Jz

⎛
⎝⎜

⎞
⎠⎟
= 0

∂
∂t

ψ ∗ψ⎡⎣ ⎤⎦ +
∂
∂x

!
2im

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0

ψ ∗ψ

!
2im

ψ ∗ ⋅ ∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥ −

∂ψ ∗

∂x
⎡

⎣
⎢

⎤

⎦
⎥ ⋅ψ

⎛

⎝⎜
⎞

⎠⎟

Probability Current
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Wave Solution with E = 1 eV

Wave Solution with E = 0.25 eV

Gaussian with E = 0

Narrower Gaussian with E = 0

Gaussian with E = 0.25 eV

Narrower Gaussian with E = 0.25 eV

Examples
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Wave Solution with E = 1 eV
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Wave Solution with E = 0.25 eV
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Gaussian with E = 0
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Narrower Gaussian with E = 0
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Gaussian with E = 0.25 eV
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Narrower Gaussian with E = 0.25 eV
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Wave Solution with E = 1 eV
Real and imaginary parts out of phase, everywhere, for either direction.

Wave Solution with E = 0.25 eV
Twice the wavelength, half the velocity.

Gaussian with E = 0
     Starts real, gets imaginary part, probability density stays Gaussian.

Narrower Gaussian
     Spreads into wider Gaussian, area under probability density looks constant.

Gaussian with E = 0.25 eV:  Gaussian can move while spreading out.

Summary
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Fourier Analysis means decomposing a data set or function into a sum or integral 
of sinusoidal functions.

For N discrete data samples xj, the transform Xk is

Even if the xj are real, the transform Xk is complex

The inverse transform is

Xk = x j exp −2π i jk
N

⎡

⎣
⎢

⎤

⎦
⎥

j=0

N−1

∑     j and k  are indices, i = −1

x j = Xk exp +2π i jk
N

⎡

⎣
⎢

⎤

⎦
⎥

k=0

N−1

∑

Fourier Analysis
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The continuous equivalent, in the signal-processing convention

In the quantum mechanics convention, it looks like

S f( ) = dt   s t( )exp −2π ift⎡⎣ ⎤⎦
−∞

+∞

∫

   s t( ) = df  S f( )exp +2π ift⎡⎣ ⎤⎦
−∞

+∞

∫

y x( ) = dk a k( )exp ikx( )
−∞

+∞

∫

a ′k( ) = 1
2π

dx y x( )exp −i ′k x( )
−∞

+∞

∫

Fourier Analysis 2
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Decompose it into spatial frequencies a(k):

Take a Gaussian with width σ x  at t = 0 : y x, t = 0( ) = exp
−x2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟

a k( ) = 1
2π

dx y x( )exp −ikx( )
−∞

+∞

∫ = 1
2π

dx exp
−x2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟
exp −ikx( )

−∞

+∞

∫

= 1
2π

dx exp
−x2 − 2iσ x

2kx
2σ x

2

⎛

⎝⎜
⎞

⎠⎟−∞

+∞

∫ = 1
2π

dx exp −
x2 + 2ikσ x

2x
2σ x

2

⎛

⎝⎜
⎞

⎠⎟−∞

+∞

∫

Notice that x + ikσ x
2( )2

= x2 + 2ikσ x
2x − k 2σ x

4

So 
x2 + 2ikσ x

2x
2σ x

2 =
x2 + 2ikσ x

2x − k 2σ x
4 + k 2σ x

4

2σ x
2 =

x + ikσ x
2( )2

2σ x
2 +

k 2σ x
2

2

Fourier Transform of a Gaussian (not on exam)
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Fourier Transform of a Gaussian 2
So dx exp −

x2 + 2ikσ x
2x

2σ x
2

⎛

⎝⎜
⎞

⎠⎟
= dx exp −

x + ikσ x
2( )2

2σ x
2 −

k 2σ x
2

2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

+∞

∫
−∞

+∞

∫

= dx exp −
x + ikσ x

2( )2

2σ x
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

+∞

∫ ⋅exp −
k 2σ x

2

2

⎛

⎝⎜
⎞

⎠⎟

= exp −
k 2σ x

2

2

⎛

⎝⎜
⎞

⎠⎟
⋅ dx exp −

x + ikσ x
2( )2

2σ x
2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟−∞

+∞

∫

Change integration variable to u = x + ikσ x
2

= exp −
k 2σ x

2

2

⎛

⎝⎜
⎞

⎠⎟
⋅ du exp − u2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟−∞

+∞

∫  

and the integral is a number independent of k

So a k( ) = 1
2π

dx y x( )exp −ikx( )
−∞

+∞

∫ = exp −
k 2σ x

2

2

⎛

⎝⎜
⎞

⎠⎟
⋅number
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Fourier Transform of a Gaussian 3
Define σ k =

1
σ x

a k( ) = exp −
k 2σ x

2

2

⎛

⎝⎜
⎞

⎠⎟
= exp − k 2

2σ k
2

⎛

⎝⎜
⎞

⎠⎟

This is a Gaussian in k, with width σ k =
1
σ x

So a Gaussian in x of width σ x  Fourier-transforms into

      a Gaussian in k  of width σ k =
1
σ x

Note that σ x ⋅σ k =σ x ⋅
1
σ x

= 1

I've been sloppy about normalizations, but they don't matter for the above
And they all do work out.
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This is a Gaussian in k-space, centered on k = 0, and width 

So a Gaussian envelope in x-space of width  gives a Gaussian in k-space 
of width , which implies that 

Since , the width in momentum space is 

Then .  That’s looking Heisenberg-ish.

Consider   a k( ) = 1

2π σ k

exp
−k 2

2σ k
2

⎡

⎣
⎢

⎤

⎦
⎥

σ k = 1 σ x

σ x

σ k = 1 σ x σ xσ k = 1

p = !k σ p = !σ k

σ xσ p =σ x!σ k = !

Heisenberg Uncertainty Principle
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Heisenberg says .  Why are we off by a factor of 2?

Heisenberg is a statement about probabilities, and we have been calculating 
with wavefunctions.  We have to conjugate-square our wave functions.

When you square a Gaussian, the width goes down by .

That happens in both .  So we get 

σ xσ p ≥
!
2

exp
−x2

2σ 2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

2

= exp −2x2

2σ 2

⎛
⎝⎜

⎞
⎠⎟
= exp −x2

σ 2

⎛
⎝⎜

⎞
⎠⎟
= exp −x2

2 σ 2( )2
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

2

σ x  and σ p σ xσ p ≥
!
2

Heisenberg Uncertainty Principle 2
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Heisenberg says .  Why greater than or equal?

Gaussian wave functions are “minimum uncertainty” and give you the lower 
limit.  You can prove formally that absolutely any other wavefunction is worse.

In fact, remember that the wave packet spreads in x-space, but it stays the same 
width in k-space.  It doesn’t get narrower in k-space.  So we only get the 
minimum product at t = 0.

Amusingly, you can step Schrodinger backwards in time as well as forward.
The wave packet spreads in negative time as well as positive time.
That means that it is getting narrower at negative time approaches zero.

So it’s not true that a wave packet always spreads out.  If you construct it 
carefully, you can make a wave packet that gets narrower.  But only for a while.  
It will eventually hit a minimum width, then start to get wider again.

σ xσ p ≥
!
2

Heisenberg Uncertainty Principle 3
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The 1-D free-particle Schrodinger Equation is 

“Free-particle” means it doesn’t include any forces.

Both sides have dimensions of energy (times the wavefunction).

We include forces by adding a potential energy function, V(x),
also times the wavefunction:

i!
∂y
∂t

= −!2

2m
∂2 y
dx2

i!
∂
∂t
y x,t( ) = −!2

2m
∂2

dx2
y x,t( )+V x( ) ⋅ y x,t( )

Introducing Forces
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The potential is (minus) the integral of force over distance.

A constant force gives a linear potential:

The Schrodinger solutions for that turn out to be something called 
the Airy function. You probably haven’t seen it, but it’s not hard to work with.

A (restoring) force proportional to distance gives a quadratic: 

This is the potential for a harmonic oscillator.  
The solutions turn out to be a Gaussian times polynomials in x.

F x( ) = Fconstant →V x( ) = −Fconstant ⋅ x

F x( ) = −kx→V x( ) = + 1
2
kx2

Potential Types

x

V

V



PHYS 250 Lecture 4.1 43

The simplest cases are when the potential is zero at x < 0,
and steps to a different value for x > 0, then maybe steps back.

Classically, if a particle comes in from the left with energy E,
and V > E, the particle will bounce back.  

If V < E, the particle will continue to positive x, but at a reduced velocity.

Step Potential

x

V

0
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V = 0.6 eV

V = 1.0 eV

V = 1.0 eV, then back to V = 0

Examples with E = 0.8 eV
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Step of 0.6 eV, E = 0.8 eV
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Step of 1.0 eV, E = 0.8 eV
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Step of 1 eV up, then back down to 0 eV
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V = 0.6 eV
    Wave is transmitted, like the classical case.
    There is also a reflected wave, which sums to a standing wave
    (if the step were gradual, the reflection wouldn’t occur)

V = 1.0 eV
    The incident wave is completely reflected as a standing wave,
    like the classical case.  
    But the wavefunction extends into the barrier a bit.

V = 1.0 eV, then back to V = 0
    Unlike the classical case, some of the wave crosses the step.
    The rest of the wave is reflected.

Summary of Examples with E = 0.8 eV
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WebWork 3 is due at midnight

Midterm Exam at 5-6 PM Wednesday, in this room.
   You may bring one page (both sides) of notes.  
   Group formula sheet is OK, but you learn more by making your own.
   Any calculator, but no phones, tablets, laptops or anything wireless.

Today’s (and Wednesday’s) material on Schrodinger will not be on the exam.

Wednesday is Schrodinger bound states, Friday is tutorial worksheet.

Next week is Applications: Lasers and Semiconductors.

For Next Time


