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Separating the Time-Dependence
Waves with Potential Step: Transmission, Reflection
Waves with Potential Barrier
Tunnelling
Infinite Square Well: Bound States
Finite Square Well: Bound States + Continuum
Symmetry of Solutions
Quantum Harmonic Oscillator

Preview



PHYS 250 Lecture 4.2 3

Midterm is today at 5-6 PM, in this room.

Bring 1 page (both sides) of notes.  I do not provide a formula sheet.

Bring any calculator.  But no laptops, tablets, or anything wireless.

Final exam is Monday June 23 at 3:30-6 PM in BIOL 1000.

Bring two pages (both sides) of notes, and a calculator.

Midterm and Final Exam
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Wave Equation  has a fixed velocity built in.

Solutions 

Schrodinger sought a wave equation with different velocities, 

consistent with de Broglie , Planck E = hf, and classical .

Time-Dependent Schrodinger Equation:   

Plane-Wave Solutions:    

with , 

∂2 y
∂x2

= 1
v2

⋅ ∂
2 y
∂t2

y x,t( ) = g x ± vt( )  or sin kx −ωt +φ( )  with k = 2π
λ

,ω = 2π f ,v = ω
k

λ = h
p

E = p
2

2m

i!
∂
∂t
ψ x,t( ) = −!2

2m
∂2

dx2
ψ x,t( ) ! = h

2π

ψ x,t( ) = exp i kx −ωt( )⎡⎣ ⎤⎦ = exp i
px − Et
!

⎡

⎣
⎢

⎤

⎦
⎥

p = !k E = !ω =
!k( )2
2m

Review 1
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Both sides of Schrodinger are of the form 

Include forces by adding a term  where  is the potential function

related to the force by  

Time-Dependent Schrodinger Equation with Potential

E( ) ⋅ψ

V x( ) ⋅ψ V x( )

V x( ) = − F x( )dx∫

i!
∂ψ
∂t

= −!2

2m
∂2ψ
dx2

+V x( ) ⋅ψ

Review 2
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The time-dependent wavefunction  is complex.

The complex conjugate is , which we get by changing i to –i everywhere.

The product  is real and non-negative.

The relative probability of finding the particle at position x is .

We can multiply a Schrodinger solution  by any constant, 
and it’s still a solution.

So we can require .  This is called normalizing the wavefunction.

Then  is the probability of finding the particle between .

ψ x, t( )

ψ ∗ x, t( )

ψ ∗ x,t( ) ⋅ψ x,t( )

ψ ∗ x,t( ) ⋅ψ x,t( )

ψ x, t( )

ψ *ψ dx
−∞

+∞

∫ = 1

ψ *ψ dx
x1

x2

∫ x1  and x2

Review 3
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The Fourier Transform of a function y(x) is .

This decomposes y(x) into plane waves exp(ikx) with amplitudes a(k).

To reconstruct y(x), use the inverse transform .

The Fourier Transform of a Gaussian in x-space , 

ignoring normalization, is a Gaussian in k-space  with 

This leads to the Heisenberg Uncertainty Principle:  .

a k( ) = 1
2π

dx y x( )exp −ikx( )
−∞

+∞

∫

y x( ) = dk a k( )exp +ikx( )
−∞

+∞

∫

exp
−x2

2σ x
2

⎛

⎝⎜
⎞

⎠⎟

exp
−k 2

2σ k
2

⎛

⎝⎜
⎞

⎠⎟
σ x ⋅σ k = 1

σ xσ p ≥
!
2

Review 4
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A Gaussian wavefunction with zero velocity can be decomposed into 
components with positive and negative k, and thus positive and negative .

So the Gaussian wavefunction spreads out over time.  
The narrower it is in x-space, the wider it is in k-space, and the faster it spreads.

But the area under  stays constant.

p = !k

ψ ∗ x,t( ) ⋅ψ x,t( )

Review 5
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A plane wave incident on a potential step that is
higher than its energy is completely reflected, 
like the classical case, but penetrates inside a bit.

A plane wave incident on a step lower than its energy
is transmitted like the classical case, but there is also
some reflection (artifact of infinitely steep step).

If the potential steps up above the particle energy,
then steps back to zero, in a distance that is not long
compared to the wavelength, then the wave is
mostly reflected, but some penetrates the barrier.
This is called tunnelling.

Review 6
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An operator is something that turns a function into another function.

The momentum operator is .  

Applying it to  gives .

We say that this  is an eigenfunction of  with eigenvalue p.

pop =
!
i
∂
∂x

ψ = exp i px − Et
!

⎡

⎣
⎢

⎤

⎦
⎥

!
i
⋅ i p
!
⋅exp i px − Et

!
⎡

⎣
⎢

⎤

⎦
⎥ = pψ

ψ pop

Review 7
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Many Schrodinger solutions can be written as the product of a function of space 
and a function of time: .  Plugging that into Schrodinger

Divide by :        

The left side has no x-dependence, the right side has no t-dependence, 
so both sides must be equal to some constant we will call E:

ψ x,t( ) = f x( ) ⋅ g t( )

i!
∂ψ
∂t

= −!2

2m
∂2ψ
dx2

+V x( ) ⋅ψ

i!f x( ) ⋅ ∂∂t g t( ) =
−!2

2m
g t( ) ⋅ ∂

2

dx2
f x( )+V x( ) ⋅ f x( ) ⋅ g t( )

f x( ) ⋅ g t( ) i!
1
g
⋅ ∂g
∂t

= −!2

2m
1
f
⋅ ∂

2 f
dx2

+V x( )

i!
1
g
⋅ ∂g
∂t

= E = −!2

2m
1
f
⋅ ∂

2 f
dx2

+V x( )

Separating Schrodinger
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The left equation is easy to solve: 

i!
1
g
⋅ ∂g
∂t

= E = −!2

2m
1
f
⋅ ∂

2 f
dx2

+V x( )

i! 1
g
⋅ ∂g
∂t

= E→ dg
g

= E
i!
⋅dt→ dg

g∫ = E
i!

dt∫ +C

ln g = Et
i!

+C→ g t( ) = exp −i Et
!
+C

⎛
⎝⎜

⎞
⎠⎟
= ′C exp −i Et

!
⎛
⎝⎜

⎞
⎠⎟

g t( ) = ′C exp −iωt( )  with ω = E
!

Separating Schrodinger 2



PHYS 250 Lecture 4.2 13

The right equation we just transform by multiplying by f and rearranging:

This is more commonly written with ψ(x):   

This is the Time-Independent Schrodinger Equation.

Note that this is a real equation (no i’s) so it can have real solutions.

But it can also have complex solutions, and they are often convenient to use.

E = −!2

2m
1
f
⋅ ∂

2 f
dx2

+V x( )→ −!2

2m
⋅ ∂

2

dx2
f x( )+V x( ) ⋅ f x( ) = E ⋅ f x( )

−!2

2m
⋅ ∂

2ψ
dx2

+V ⋅ψ = Eψ

Separating Schrodinger 3
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There is a wave with some momentum or energy, 
incident from a region with V = 0 on the left, on a step to V at x = 0.

We find  if necessary, then .  

The incident wave is ,  taking the amplitude to be 1.

There is a reflected wave with unknown amplitude and opposite momentum, 
and a transmitted wave with unknown amplitude and different momentum k’.

There are boundary conditions at the step, that have to be satisfied at all times.
So all 3 waves must have the same time-frequency ω.  

So they are   and 

p = 2mE k = p !

ψ I x,t( ) = exp i kx −ωt( )⎡⎣ ⎤⎦

ψ R x,t( ) = Rexp i −kx −ωt( )⎡⎣ ⎤⎦ ψ T x,t( ) = T exp i ′k x −ωt( )⎡⎣ ⎤⎦

Simple Step Potential Problem

x

V

0
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Since the time-dependence is the same, the energy  is the same 
for all 3 waves, and we can use the time-independent Schrodinger Equation, 
and time-independent wavefunctions.  So we have 

Now we use Schrodinger to figure out k’: 

E = !ω

ψ I =exp ikx⎡⎣ ⎤⎦ ψ R = Rexp −ikx⎡⎣ ⎤⎦ ψ T = T exp i ′k x⎡⎣ ⎤⎦

−!2

2m
⋅
∂2ψ T

dx2
+V ⋅ψ T = Eψ T

−!2

2m
⋅ i ′k( )2 ⋅T exp i ′k x⎡⎣ ⎤⎦ = E −V( )T exp i ′k x⎡⎣ ⎤⎦

−!2

2m
⋅ i ′k( )2 = E −V

′k =
2m E −V( )
!

=
2mc2 E −V( )
!c

Simple Step Potential Problem 2
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One boundary condition is that the sum of the incident and reflected waves 
must be equal to the transmitted wavefunction at the boundary.

The other condition is that the slope of the incident plus reflected waves
must be equal to the slope of the transmitted wave at the boundary.

ψ I 0( )+ψ R 0( ) =ψ T 0( )
exp ik0⎡⎣ ⎤⎦ + Rexp −ik0⎡⎣ ⎤⎦ = T exp i ′k 0⎡⎣ ⎤⎦

1+ R = T

dψ I

dx
0

+
dψ R

dx
0

=
dψ T

dx
0

ik exp ik0⎡⎣ ⎤⎦ − ikRexp −ik0⎡⎣ ⎤⎦ = i ′k T exp i ′k 0⎡⎣ ⎤⎦
k − kR = ′k T

Simple Step Potential Problem 3
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We have .

Multiply first equation by k and add:

Multiply first by k’ and subtract:

1+ R = T  and k − kR = ′k T

k + kR = kT
k − kR = ′k T
2k = k + ′k( )T
T = 2k

k + ′k

′k + ′k R = ′k T
k − kR = ′k T
′k − k + ′k R + kR = 0
′k + k( )R = k − ′k

R = k − ′k
k + ′k

Simple Step Potential Problem 4



PHYS 250 Lecture 4.2 18

So we have    

The factor  cancels in T and R, so we don’t need the mass or  !

If V = 0, then reflected R = 0, and transmitted T = 1.

If V < E, then R > 0, but transmitted T > 1 ??

If V > E, we get an imaginary k’!  That makes R and T complex, which is OK.

And the transmitted wave becomes a real exponential .

R = k − ′k
k + ′k

T = 2k
k + ′k

k = 2mE
!

′k =
2m ⋅ E −V( )
!

2m ! !

R = E − E −V
E + E −V

T = 2 E
E + E −V

ψ T = T exp − ′k x⎡⎣ ⎤⎦

Simple Step Potential Problem 5
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If V goes to + infinity,  becomes imaginary infinity.  

That makes R = –1.  The reflected wave has the same magnitude as the 
incident wave, but the opposite phase, so they add up to zero at the potential step.
The transmitted amplitude T goes to zero.

If V is slightly less than E then  is real but small.  
That makes T slightly less than 2. The transmitted probability is the square, or 4 !

What’s going on?

R = E − E −V
E + E −V

T = 2 E
E + E −V

E −V

E −V

Simple Step Potential Problem 6
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We already saw a similar thing with the simulation.
When E and V are similar, the transmitted amplitude
can be larger than the incident amplitude.

That does mean that the probability of finding
a particle to the right of the step is larger than
on the left of the step.

But that’s because the step slows the particle down.  

If particles with speed v enter separated by Δt, the density is 1/(vΔt).

If they slow down to 1/10 the speed, the density goes up by a factor of 10.

Interpreting the Results



PHYS 250 Lecture 4.2 21

We will assume V in the barrier, and V = 0 outside.
The barrier runs from x = 0 to x = w.

There is an incident wave, a reflected wave,
a transmitted wave, but also a forward wave 
a backwards wave inside the barrier.

We compute k and k’ the same way as for the simple potential step.
The boundary condition equations are 

ψ I =exp ikx⎡⎣ ⎤⎦ ψ R = Rexp −ikx⎡⎣ ⎤⎦ ψ T = T exp ikx⎡⎣ ⎤⎦
ψ F = F exp i ′k x⎡⎣ ⎤⎦ ψ B = Bexp −i ′k x⎡⎣ ⎤⎦

1+ R = F + B F exp i ′k w⎡⎣ ⎤⎦ + Bexp −i ′k w⎡⎣ ⎤⎦ = T exp ikw⎡⎣ ⎤⎦
k − kR = ′k F − ′k B ′k F exp i ′k w⎡⎣ ⎤⎦ − ′k Bexp −i ′k w⎡⎣ ⎤⎦ = kT exp ikw⎡⎣ ⎤⎦

Potential Barrier
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Four linear equations in 4 unknowns.  Put variables in order.

Write in matrix form:

−R + F + B = 1
kR + ′k F − ′k B = k
ei ′k wF + e− i ′k wB − eikwT = 0
′k ei ′k wF − ′k e− i ′k wB − keikwT = 0

−1 1 1 0
k ′k − ′k 0
0 ei ′k w e− i ′k w −eikw

0 ′k ei ′k w − ′k e− i ′k w −keikw

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

R
F
B
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1
k
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Potential Barrier 2
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Pick values to make the matrix pretty: , which gives

The solution is 

That means 60% reflection amplitude, or 60%2 = 36% reflection probability.
And 80% transmission amplitude, or 80%2 = 64% transmission probability.

There is a large internal forward wave, and a smaller backward wave.

k = 1, ′k = 0.5, w = π

−1 1 1 0
1 0.5 −0.5 0
0 i −i 1
0 0.5i 0.5i 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

R
F
B
T

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

1
1
0
0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

R = 0.6,F = 1.2,B = 0.4,T = −0.8i

Potential Barrier 3
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If the barrier is higher than the particle energy, k’ will be imaginary.
Let’s try , with the other values unchanged.  The solution is

Note that .  

Square both sides: .

′k = 0.5i

R = 0.53− 0.79i R = 0.944 R
2
= 0.892

F = 1.54− 0.85i F = 1.765 F
2
= 3.118

B = −0.01+ 0.07i B = 0.076 B
2
= 0.006

T = −0.27 − 0.19i T = 0.328 T
2
= 0.107

′k
k
= 0.5i =

2m E −V( ) !
2mE !

= E −V
E

−0.25 = E −V
E

→V = 1.25E

Potential Barrier 4
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There is a wave transmitted into the barrier, which is a decaying real exponential.

At the exit end of the barrier, some of that wave is transmitted out of the barrier
as a complex exponential with the original k, and there is also a reflection.

The reflection decays as it travels back to the entry end.

Ideally, we calculate the transmission into the barrier from the incident wave, 
the transmitted wave, and the reflection from the exit end of the barrier.

But if the decay in the barrier is large, the reflected wave is tiny at the entry,
so we neglect it.  

We already know how to calculate the transmission T into the barrier.
And we know how to calculate the decay from entry to exit.
So we just need to calculate the transmission  out at the exit,
and multiply it all together.

T2

Tunnelling Approximation
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At the exit end, we have forward and backward waves, and a transmitted wave

               

For V > E, k is real but k’ is imaginary.  So   is a real decaying exponential,
and  is a real exponential that grows toward +x, so it decays toward –x.
But  is a non-decaying complex wave.

The exit boundary is at some non-zero x, but that just gives a phase-factor
that is the same for all 3 functions, and we can divide it out.  So it’s OK
to treat the boundary as if it’s at x = 0.

Matching the wavefunctions at x = 0 gives .  
Matching the derivatives gives .

Multiply the first by  and add to get 

ψ F =exp i ′k x⎡⎣ ⎤⎦ ψ B = R2 exp −i ′k x⎡⎣ ⎤⎦ ψ T 2 = T2 exp ikx⎡⎣ ⎤⎦

ψ F

ψ B

ψ T 2

1+ R2 = T2
i ′k − i ′k R2 = ikT2

i ′k 2i ′k = i k + ′k( )T2 → T2 =
2 ′k
k + ′k

Tunnelling Approximation 2
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Inside the barrier we have  with imaginary  and .

We multiply that by  then  for the transmitted wave,

where w is the barrier width.

The matrix solution for  was .

This approximate solution is 

ψ T1 = T1 exp i ′k x⎡⎣ ⎤⎦ ′k T1 =
2k
k + ′k

T2 =
2 ′k
k + ′k

exp ik ⋅ x + w( )⎡⎣ ⎤⎦

ψ T 2 = T1 ⋅exp i ′k w⎡⎣ ⎤⎦ ⋅T2 ⋅exp ik ⋅ x + w( )⎡⎣ ⎤⎦ =
2k
k + ′k

⋅ 2 ′k
k + ′k

⋅exp i ′k w⎡⎣ ⎤⎦ ⋅exp ik ⋅ x + w( )⎡⎣ ⎤⎦

k = 1, ′k = 0.5i, w = π T = −0.27 − 0.19i( ) ⋅exp ikx⎡⎣ ⎤⎦

ψ T 2 =
2

1+ 0.5i
⋅ 2 ⋅0.5i
1+ 0.5i

⋅exp − π
2

⎡

⎣
⎢

⎤

⎦
⎥ ⋅exp i ⋅1⋅π⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟
⋅exp ikx⎡⎣ ⎤⎦

= −0.266− 0.199i( ) ⋅exp ikx⎡⎣ ⎤⎦

Tunnelling Approximation 3
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We can write the transmitted amplitude

using .

Many factors of  cancel, so 

The transmission probability is 

T = 2k
k + ′k

⋅ 2 ′k
k + ′k

⋅exp i ′k w⎡⎣ ⎤⎦ =
2

1+ ′k k
⋅ 2
1+ k ′k

⋅exp i ′k w⎡⎣ ⎤⎦

k = 2mE
!

  and  ′k =
2m ⋅ E −V( )
!

= i ⋅
2m ⋅ V − E( )
!

2m ! T = 2

1+ i V − E
E

⋅ 2

1− i E
V − E

⋅exp i ′k w⎡⎣ ⎤⎦

T ∗T = 4

1+ V − E
E

⋅ 4

1+ E
V − E

⋅exp 2i ′k w( ) = 4

1+ V − E
E

⋅ 4

1+ E
V − E

⋅exp −2
2m ⋅ V − E( )
!

w
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Tunnelling Approximation 4
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If V >> E, we can introduce another approximation:

Then the transmission probability through thickness w is then

This the formula in Young and Friedman, and most other sources.

4

1+ V − E
E

⋅ 4

1+ E
V − E

≈ 4

1+ V
E

⋅ 4

1+ E
V

≈16 ⋅ E
V
⋅ 1− E

V
⎛
⎝⎜

⎞
⎠⎟

P w( ) = 16 ⋅ EV ⋅ 1− E
V

⎛
⎝⎜

⎞
⎠⎟
⋅exp −2

2m ⋅ V − E( )
!

w
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Tunnelling Approximation 5
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If the barrier is not flat, then the wavefunction inside the barrier 
will not be exactly an exponential, and we have to solve Schrodinger.  

But there is fairly simple approximation for that.  We assume the wavefunction is 
of the form , meaning the decay length is a function of x.  
Then we manipulate Schrodinger into a differential equation for , 
that can be solved by doing an integration.

The approximate decaying wavefunction inside the barrier is

The probability to tunnel through thickness w is then

ψ x( ) = exp − f x( )⎡⎣ ⎤⎦
f x( )

ψ x( ) = exp − 2m
!

dx V x( )− E
x=0

x

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

P w( ) = 16 ⋅ E
V

⋅ 1− E
V

⎛

⎝
⎜

⎞

⎠
⎟ exp −2 2m

!
dx V x( )− E

x=0

x=w

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Tunnelling Approximation 6
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Imagine a potential that is + infinite for x < 0, zero for 0 < x < w,
and + infinite again for x > w.

The wave function must satisfy 

Solutions to that are sines, cosines, and complex exponentials.

The boundary conditions require the solution to be zero at x = 0 and at x = w.  

The solutions are then 

Eψ = − !
2

2m
∂2ψ
∂x2

+ 0 ⋅ψ

ψ x( ) = sin knx( )   with  kn =
nπ
w

    for n = 1, 2, 3, ...

Infinite Square Well 1

x = 0 x = w

V = 0

V = ∞V = ∞
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The solutions look like this:

The energies of the solutions are En =
!2kn

2

2m
= !

2n2π 2

2mw2
= n2 !

2π 2

2mw2

Infinite Square Well 2
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The integral of the conjugate square (for normalization) is

Infinite Square Well 3

dxψ n
∗ψ n

0

w

∫ = dx sin2 knx( )
x=0

x=w

∫ = dx
1− cos 2knx( )

2x=0

x=w

∫

= 1
kn

d knx( ) 1− cos 2knx( )
2knx=0

knx=knw

∫ = 1
2kn

du 1− cos 2u( )⎡⎣ ⎤⎦
u=0

u=knw

∫

= 1
2kn

u − 1
2

sin 2u( )⎡

⎣
⎢

⎤

⎦
⎥
u=0

u=knw

= w
2nπ

u − 1
2

sin 2u( )⎡

⎣
⎢

⎤

⎦
⎥
u=0

u= nπ
w
w

= w
2nπ

u⎡⎣ ⎤⎦u=0

u=nπ

= w
2nπ

⋅nπ = w
2

      →      ψ n =
2
w

sin knx( )
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The potential is zero everyplace, 
except a region where it is flat and negative.

For the usual positive-energy plane wave, 
this is just a barrier problem, with a negative potential.
There is a large transmitted wave, a small reflected wave,
and complex-exponential waves inside.

But there can also be bound states.  

The lowest state is a half-cycle of sine wave, 
but a bit wider than the well, and has exponential tails.
The higher states are a full cycle, 1.5 cycles, etc,
all with exponential tails.

The energies are approximately .  

The bound states have negative energy, and there are only a finite number.

En ≈ −V + n2 !
2π 2

2mw2

Finite Negative Square Well
V = 0

–V

x = 0
+w/2–w/2
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The right-hand side of  or  

is an operator: it takes the  function as an input, and returns another function.

This is called the Hamiltonian operator .

When you take more advanced classical mechanics, the Hamiltonian 
is the sum of the kinetic and potential energy.  This is the quantum version.

So the time-dependent Schrodinger equation can be written ,

and the time-independent Schrodinger equation is .

This is just vocabulary, nothing actually new.

i!
∂ψ
∂t

= −!2

2m
∂2ψ
dx2

+V x( ) ⋅ψ Eψ = −!2

2m
∂2ψ
dx2

+V x( ) ⋅ψ
ψ

Hop =
−!2

2m
∂2

dx2
+V x( )

i!
∂ψ
∂t

= Hopψ

Eψ = Hopψ

Hamiltonian Operator
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If we change x to –x in a derivative, .

For a second derivative, we get two minus signs, so .

So changing from x to –x doesn’t change a second derivative.

If we put the x-origin at the center of an infinite or finite square well,
then the potential has the property that .

So if the potential  has reflection symmetry, 
changing from x to –x doesn’t change the Hamiltonian.

∂
∂x

→ ∂
∂ −x( ) = − ∂

∂x
∂2

∂x2
→ ∂

∂ −x( )
∂

∂ −x( ) = + ∂2

∂x2

V −x( ) =V x( )

V −x( ) =V x( )

Reflection Symmetry
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Here are some solutions for the infinite square well:

They are all either symmetric around  so ,
or anti-symmetric so .

This is a general property: if  is symmetric so  is symmetric,
then the solutions will be either symmetric or anti-symmetric.

x = 0 ψ −x( ) =ψ x( )
ψ −x( ) = −ψ x( )

V x( ) Hop

Reflection Symmetry of Solutions

x = 0
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We just plug  into Schrodinger:

At large enough ± x, , so let’s drop Eψ for a while.

So we need a function whose second derivative is proportional to
 x2 times the function.  We also want the function to go to zero at x = ± infinity.

V x( ) = 12 kx
2

−!2

2m
∂2ψ
∂x2

+ 1
2
kx2 ⋅ψ = Eψ

V x( ) = 12 kx
2 >> E

!2

2m
∂2ψ
∂x2

= 1
2
kx2 ⋅ψ

Quantum Harmonic Oscillator 1
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Let’s guess a Gaussian:   and work out the derivatives

Plug into the full equation:  

Divide out ψ and collect powers of x:   

Each square bracket must equal zero for this to work.

ψ x( ) = exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟

∂
∂x
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= −2x
2b2

exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟
= −x
b2
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟

∂2

∂x2
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= −x
b2

⎡

⎣
⎢

⎤

⎦
⎥

2

exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟
+ −1
b2
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= 1
b2

x2

b2
−1

⎡

⎣
⎢

⎤

⎦
⎥ψ x( )

−!2

2m
1
b2

x2

b2
−1

⎡

⎣
⎢

⎤

⎦
⎥ψ + 1

2
kx2 ⋅ψ = Eψ

−!2

2m
1
b4

+ 1
2
k

⎡

⎣
⎢

⎤

⎦
⎥ x

2 + !2

2m
1
b2

− E
⎡

⎣
⎢

⎤

⎦
⎥ = 0

Quantum Harmonic Oscillator 2
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Set the bracket for the coefficient of x2 to zero:

 

Plug that into the bracket for the coefficient of x0 and set that to zero:

So our guess of   is a Schrodinger solution, 

with  and .

−!2

2mb4
+ 1
2
k

⎡

⎣
⎢

⎤

⎦
⎥ = 0→

!2

mb4
= k→ b2 = !2

km
= !

km

!2

2m
1
b2

− E
⎡

⎣
⎢

⎤

⎦
⎥→

!2

2m
km
!

− E
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0→ E = 1

2
!
k
m

= 1
2
!ω classical

ψ x( ) = exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟

E = 1
2
!
k
m

= 1
2
!ω classical b2 = !

km

Quantum Harmonic Oscillator 3
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For any potential, the lowest energy solution tends to have “one bump.”

Our Gaussian has one bump.  It’s probably the lowest energy solution.

For symmetrical potentials, like this one, solutions are even or odd.
Our Gaussian is even, so the next solution should be odd.

We can try a simple odd function   and take derivativesψ x( ) = x ⋅exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟

∂
∂x
x ⋅exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= 1⋅exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
+ x ⋅ −x

b2
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= 1− x

2

b2
⎡

⎣
⎢

⎤

⎦
⎥exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟

Quantum Harmonic Oscillator 4
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Plug that in to work out the second derivative:

Then plug into Schrodinger and pray

∂2

∂x2
x ⋅exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= ∂
∂x

1− x
2

b2
⎡

⎣
⎢

⎤

⎦
⎥exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟

= −2x
b2

⎡

⎣
⎢

⎤

⎦
⎥exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
+ 1− x

2

b2
⎡

⎣
⎢

⎤

⎦
⎥ ⋅
−x
b2
exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟

= −2x
b2

− x
b2

+ x
3

b4
⎡

⎣
⎢

⎤

⎦
⎥exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= x3

b4
− 3x
b2

⎡

⎣
⎢

⎤

⎦
⎥exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟

= x2

b4
− 3
b2

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ x ⋅exp − x

2

2b2
⎛
⎝⎜

⎞
⎠⎟
= x2

b4
− 3
b2

⎡

⎣
⎢

⎤

⎦
⎥ψ x( )

Quantum Harmonic Oscillator 5
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Plug into Schrodinger:

Divide out ψ and collect powers of x:

Setting the left bracket to zero gives us exactly what we got before for b2:

−!2

2m
∂2ψ
∂x2

+ 1
2
kx2 ⋅ψ = Eψ

−!2

2m
x2

b4
− 3
b2

⎡

⎣
⎢

⎤

⎦
⎥ψ + 1

2
kx2 ⋅ψ = Eψ

−!2

2mb4
+ 1
2
k

⎡

⎣
⎢

⎤

⎦
⎥ x

2 + 3!2

2mb2
− E

⎡

⎣
⎢

⎤

⎦
⎥ = 0

−!2

2mb4
+ 1
2
k

⎡

⎣
⎢

⎤

⎦
⎥ = 0→

!2

mb4
= k→ b2 = !2

km
= !

km

Quantum Harmonic Oscillator 6
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Setting the right bracket to zero gives us

So our second solution is 

with the same  but higher energy ,

compared to  for the first state.  

The energy is higher by .

3!2

2m
⋅ 1
b2

− E
⎡

⎣
⎢

⎤

⎦
⎥ = 0→

3!2

2m
⋅ km
!

− E = 0→ E = 3
2
⋅! k

m
= 3
2
⋅!ω classical

ψ x( ) = x ⋅exp − x
2

2b2
⎛
⎝⎜

⎞
⎠⎟

b2 = !

km
E = 3

2
!
k
m

= 3
2
!ω classical

E = 1
2
!ω classical

ΔE = !ω classical

Quantum Harmonic Oscillator 7
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0 E0 = 0+1 2( )!ω ψ 0 = e
− y

2

2

1 E1 = 1+1 2( )!ω ψ 1 = ye
− y

2

2

2 E2 = 2+1 2( )!ω ψ 2 = y2 −1 2( )e−
y2

2

3 E3 = 3+1 2( )!ω ψ 3 = y3 − 3 2 ⋅ y( )e−
y2

2

4 E4 = 4+1 2( )!ω ψ 4 = y4 − 3y2 + 3 4( )e−
y2

2

y = x
b

b2 = !

km
ω = k

m

More Solutions
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The wavefunctions are 

They are a polynomial Hn

of order n times a Gaussian.

The index n starts at 0.

The polynomials alternate 
between even and odd.

The polynomials have either 
all-even or all-odd powers.

ψ n y( ) = Hn y( ) ⋅exp − y
2

2
⎛
⎝⎜

⎞
⎠⎟

Harmonic Oscillator Wavefunctions
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The polynomials are called the (physicists) Hermite Polynomials.
One normalization convention is for the first coefficient to be 2n.
With this normalization, the “wiggles” in ψ are all about the same size.

Hermite Polynomials
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Questions?
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Midterm today at 5-6 PM, in this room.

Bring 1 page (both sides) of notes, and a calculator.

Homework will be posted tomorrow, due Monday.

Tutorial worksheet on Friday as usual.

Next week will be Lasers and Semiconductors.

For Next Time


