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For an infinitely tall square well of width w, and V = 0 at the bottom, 

the energies are  for n = 1, 2, 3, …. 

 for electrons

The normalized wavefunctions are 

Relative to the potential center at x = 0.5, the lowest wavefunction is even (symmetric),
the second is odd, the third is even, the fourth is odd, etc…
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For a well with finite height V, 
the wavefunction penetrates a bit outside the well.

The energies are a bit lower than the infinite height case,
because the wavelength is a bit longer.

There are only a finite number of bound states, with E < V. 
For E > V, there is a continuum of states.

For a finite square-well potential with V = 0 outside 

and –V inside, the bound states energies are ,

a bit lower due to the penetration out of the well.

There are a finite number of bound states with negative energy.
There is a continuum of states with positive energy.

En ≈ n
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The ground state for a single well with the default dimensions is E = 0.30 eV.

With the default two wells, there are two “ground” states, with E1 = 0.29 eV,
and E2 = 0.31 eV.

The potential is symmetric.

The “odd” state goes to zero
at the middle, so it has a
slightly shorter wavelength,
so a slightly higher energy.

The “even” state has a
slightly lower energy
than the single-well
ground state.

Two Ground States
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(Amost) every state that would exist in the single well (6 in this case)
splits into two states, one going down in energy, one going up.

(With the default potential settings, for the highest state, the one that goes up
is no longer a bound state, it’s a continuum state, and isn’t shown).

All the wavefunctions are either even or odd.

The even state doesn’t go to zero in the middle, so it has a longer wavelength,
and a lower energy.

All the States Split in Two
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In “Superposition State” we can add , which gives an initial state
that adds in the left well and cancels in the right well.

Switch from wavefunction to probability density, and turn on time-stepping.

The probability tunnels from the left to the right, then tunnels back to the left.

  have slightly different energies, so they have slightly different 
frequencies.  Initially they added on the left and cancelled on the right.

But after some time, they add on the right and cancel on the left.

After more time, they go back to adding on the right and cancelling on the left.

ψ 1  and ψ 2

ψ 1  and ψ 2

Single-Well Initial State
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Higher States
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If the separation of the two wells is large enough, the tunnelling is insignificant.

Technically, each level still splits into even and odd wavefunctions,
but the energy differences are insignificant.

But the closer together the wells are, the bigger the splitting gets.

So if there is an electron in the state that goes down in energy, 
the total energy goes down as the wells get closer.

This is the quantum mechanical basis of chemical bonds,
although greatly over-simplified.

Chemical Bonds 1
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The simplest real case is two hydrogen nuclei (protons) and one electron.

If the protons are far apart, we normally think of the electron being attached 
to one proton, and the other proton is naked.  

But in quantum mechanics, we should think of the even wavefunction,
where the electron is attached to both protons with the same sign,
and the odd wavefunction where it’s attached to both with opposite signs.

The sum of even and odd has the electron on one proton, 
the difference has the electron on the other.

Chemical Bonds 2
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Chemical Bonds 3

Left Density

Right Density

Even Density

Odd Density

Avg Density

The “even” wavefunction has the highest probability of finding the electron
between the protons, which allows it to pull them closer together.

The “odd” wavefunction has the lowest probability of finding the electron
between the protons, so the attraction is less (but still non-zero).
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Chemical Bonds 4
If the protons were closer together, the electron density between them 
would get even greater, resulting in more attraction.

But the protons still repel each other, so there would be an equilibrium separation 
where the energy would be minimized.  That sets the bond length.

What about the more common case of both protons having an electron?

Then both electrons can be in the “even” state, attached to both protons, 
and give stronger attraction.   But they have to have their “spins” 
pointed in opposite directions (Pauli Exclusion Principle).

Why can’t 3 hydrogen atoms bond?  There is more electrostatic repulsion 
between the protons, and Pauli would require that the third electron go into the 
“odd” state, where it can’t help much in holding the protons together.  So the 
third atom apparently doesn’t stick.
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Let the left well always have a positive bump, since the overall sign 
of a wavefunction is irrelevant.

The second well could have either sign of bump.
The third well could have either sign of bump.
So it sounds like there are 4 basic “shapes.”

But if the potential is symmetric, so the wavefunction be either even or odd, 
and not all the shapes satisfy that.

Two are symmetric (even).  

The other two are not, but if we add them, we can make a symmetric (odd) state.

Three Potential Wells
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Three Potential Wells 2

Even Even

Not Symmetric Not Symmetric
Sum = Odd

Probably looks like this
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Three Potential Wells 3

The lowest state is even, with no zero crossings and the longest wavelength.
The odd state is higher energy.  The other even state is the highest energy,
with the shortest wavelength.
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Five Potential Wells
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In general, if there are N potential wells, each energy level splits 
into N closely-spaced energy level.

The amount of splitting depends on how close together the wells are, 
and the height of the barriers between them.

The lowest of the split levels is even, with no zero-crossings in the wavefunction,
and is lower than the corresponding energy level of a single well.

Some other levels may be lower than a single well.  Others will be higher.

N Potential Wells
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An infinite number of identical potential wells is called a periodic potential.

A crystal of identical atoms would make
a periodic potential for electrons.

Bloch Theorem:  The Schrodinger solution for a periodic potential has the form
, where  has the same period as the potential.

The  factor is a phase-shift with magnitude 1.  So this says that the 
wavefunction has the same shape at each atom, but with a complex phase-shift.

There is a different  for each K, and they aren’t easy to solve for.

Every K-value corresponds to an electron energy.  

ψ x( ) = uK x( ) ⋅eiKx uK x( )

eiKx

uK x( )

Periodic Potential

452 Chapter 10 Solid State Physics

10-6  Band Theory of Solids 
We have seen that, if the electron gas is treated as a Fermi gas and the electron-lattice 
collisions treated as the scattering of electron waves, the free-electron model gives a 
good account of the electrical and thermal properties of conductors. This simple 
model, however, gives no indication why one material is a good conductor and 
another is an insulator. The conductivity (and its reciprocal, the resistivity) vary enor-
mously from the best insulators to the best conductors. For example, the resistivity of 
a typical insulator (such as quartz) is of the order of 1016 6 � m, whereas that of a 
typical conductor (most metals) is of the order of 10�8 6 � m and that of a supercon-
ductor is less than 10�19 6 � m.

To understand why some materials conduct and others do not, we must refine the 
free-electron model and consider the effect of the lattice on the electron energy levels. 
There are two standard approaches to this problem of determining the energy levels of 
electrons in a crystal. One is to consider the problem of an electron moving in a peri-
odic potential and to determine the possible energies by solving the Schrödinger 
equation. The other is to determine the energy levels of the electrons in a solid by fol-
lowing the behavior of the energy levels of individual atoms as they are brought 
together to form the solid, in much the same way that we did in Section 9-2 in the 
explanation of the covalent bonding in the H2 molecule. Both approaches lead to the 
result that the energy levels are grouped into allowed and forbidden bands. The details 
of the band structure of a particular material determine whether that material is a con-
ductor, an insulator, or a semiconductor. Qualitative discussion of the first of these 
methods is given in this section. The second is described in the More section Energy 
Bands in Solids—An Alternate Approach on the home page.

Kronig-Penney Model
Consider first the problem of an electron moving in a periodic potential. Figure 10-17a 
shows a one-dimensional sketch of the potential energy function for a lattice of posi-
tive ions. The most important feature of this potential is not the shape, but the fact that 
it is periodic. A simpler periodic potential consisting of finite square wells is shown in 
Figure 10-17b. The model based on this potential is called the Kronig-Penney model. 
It has the important feature of periodicity and is easier to treat mathematically; how-
ever, even for this model the mathematical solution of the Schrödinger equation is 
quite involved, and we will only outline it here. For both potential functions shown in 
Figure 10-17, for certain ranges of energy traveling-wave-type solutions of the 

(b)

(a)

FIGURE 10-17 (a) One-dimensional potential energy of an electron in a crystal. U(x) 
approaches �@ at the atom sites. (b) Simplified (Kronig-Penney) model of potential energy of 
an electron in a crystal.

TIPLER_10_427-492hr.indd   452 10/24/11   11:19 AM
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V = 0 for length a, and V = V0 for length b.

For the a zones, 

with .  

For the b zones,  with .  

Boundary conditions give 

where K is the Bloch-Theorem wavenumber.

The right side is limited to –1 to +1,
but for some k-values, the left side isn’t.

So some E-values are not allowed!

ψ x( ) = Aeikx + Be− ikx
k = 2mE !

ψ x( ) = Ce+ ′k x + De− ′k x ′k = 2m ⋅ V0 − E( ) !

′k 2b
2k
sin ka( )+ cos ka( ) = cos Ka( )

Kronig-Penney Model

   11.1 Band Theory of Solids 395

Kronig-Penney Model
An effective way to understand the energy gap in semiconductors is to model the 
interaction between the electrons and the lattice of atoms. This interaction is 
more important in semiconductors than in good conductors, because the much 
higher resistivity implies tighter binding and/or more interaction. R. de L. 
Kronig and W. G. Penney developed a useful one-dimensional model of the 
electron-lattice interaction in 1931.* They assumed that an electron experiences 
the potential shown in Figure 11.4, an infinite one-dimensional array of finite 
potential wells. Each potential well represents an atom in the lattice, so the size 
of the wells must correspond roughly to the lattice spacing.

The Kronig-Penney method for finding the allowed energy levels for 
the electron follows the method we developed to study barrier tunneling in 
Chapter 6. The electrons are not free; therefore we assume that the total energy 
E of an electron is less than the height V0 of each barrier/well in the Kronig-
Penney potential shown in Figure 11.4. The electron is essentially free in the gap 
0 ! x ! a, where it has a wave function of the form

 c " Ae 
i k x # Be$i k x (11.1)

and where the wave number k is given by the usual relation k 
2 " 2m E / U2. In the 

barrier region a ! x ! a # b, however, the electron can tunnel through. As we 

*R. de L. Kronig and W. G. Penney, Proceedings of the Royal Society of London A130, 499 (1931).
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Figure 11.3 The 1s and 2s 
energy-level splittings of 
approaching hydrogen atoms for 
(a) 2 atoms and (b) 11 atoms. 
Notice the splitting of each 
energy level into a nearly continu-
ous band.

Figure 11.4 The Kronig-
Penney square-well potential.
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396 Chapter 11 Semiconductor Theory and Devices

saw in Chapter 6, this means that the wave function loses its sinusoidal character 
and becomes

 c ! C e 
kx " De#kx (11.2)

with k2 ! 2m 1V0 # E 2  / U2.
Next, Kronig and Penney used the procedure of matching wave functions and 

their first derivatives at the various boundaries. The fact that these are finite poten-
tial wells makes the solution a lengthy one, and we shall not present it here. Ap-
plication of the appropriate boundary conditions yields the important relation

 
k2b
2k

  sin 1ka 2 " cos 1ka 2 ! cos 1Ka 2  (11.3)

where K is another wave number. When the left side of Equation (11.3) is plot-
ted against the argument ka (Figure 11.5a), the relation in Equation (11.3) can-
not be satisfied for all values of k and k, because the sine and cosine functions 
are restricted to the range #1 to "1. Because the right side of Equation (11.3) 
has a single cosine term, it can only have values within the range #1 to "1. 
Therefore, the left side of the equation is limited to the same range. This leads 
to forbidden zones for the wave numbers, and hence there are gaps in the cor-
responding energies. Figure 11.5b shows the allowed energy bands with gaps 
between them. The gaps occur regularly at ka ! np, for integer values of n. With 
k ! np/a ! 2p/l, we see that l ! 2a/n. Thus, twice the lattice spacing (2a) 
corresponds to an integer multiple of the free-particle wavelength (nl), and a 
free particle with this wavelength would be reflected by the lattice.

Before proceeding, we note some important differences between this 
simplified Kronig-Penney model and the single potential well studied in Chapter 
6. First, for an infinite lattice the allowed energies within each band are continu-
ous rather than discrete. In a real crystal the lattice is not infinite, but even if 
chains are only thousands of atoms long, the allowed energies are nearly continu-
ous. Second, note that in a real three-dimensional crystal it is appropriate to speak 
of a wave vector k, which includes a direction as well as magnitude. The allowed 
ranges for k constitute what are referred to in solid state theory as Brillouin zones. 
Finally, in a real crystal the potential function is somewhat more complicated than 
the Kronig-Penney squares. As a result, the energy gaps are by no means uniform 
in size. The gap sizes may be changed by the introduction of impurities or imper-
fections of the lattice. These facts concerning the energy gaps are important in 
understanding the electronic behavior of semiconductors.

Forbidden zones

Wave vector
Brillouin zones
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Figure 11.5 (a) Plot of the left 
side of Equation (11.3) versus ka 
for k2ba/2 ! 3p/2. Allowed en-
ergy values must correspond to 
the values of k ! 22mE / U2 for 
which the plotted function lies 
between #1 and "1. Forbidden 
values are shaded in light blue. 
(b) The corresponding plot of 
energy versus Ka for k2ba/2 ! 
3p/2, showing the forbidden en-
ergy zones (gaps).
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If we plot the energy  versus

a + b times Bloch-Theorem K, we find
that the energy is roughly parabolic,
but there are jumps in the energy
whenever .

At those values, the period of the wavefunction (including the phase) 
matches the period of the potential.  

One solution has maxima of the conjugate-square at the low-potential points, 
and the other has maxima at the high-potential points.

E = !
2k 2

2m

a + b( ) ⋅K = nπ

Kronig-Penney Model 2

396 Chapter 11 Semiconductor Theory and Devices
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are N allowed energy levels in each band. Since the number of atoms is very large in 
a macroscopic solid, the energy bands can be considered continuous. Calculations in 
three dimensions are more difficult, of course, but the results are similar. The allowed 
ranges of the wave vector k are called Brillouin zones. Referring to Figure 10-19b, the 
first Brillouin zone has �P�a � k � �P�a, the second has �2P�a � k � �P�a 
and P�a � k � 2P�a, and so on.

Conductors, Insulators, and Semiconductors
Conductors We can now understand why some solids are conductors and others 
are insulators. Consider sodium. There is room for two electrons in the 3s state of 
each atom, but each sodium atom has only one 3s electron. Therefore, when N sodium 
atoms are bound in a solid, the 3s energy band is only half filled. In addition, the 
empty 3p band overlaps the 3s band. The allowed energy bands of sodium are shown 
schematically in Figure 10-21. We can see that many allowed energy states are avail-
able immediately above the filled lower half of the 3s band, so the valence electrons 
can easily be raised to a higher energy state by an electric field. Accordingly, sodium 
is a good conductor. Magnesium, on the other hand, has two 3s electrons, so the 3s 
band is filled. However, like sodium, the empty 3p band overlaps the 3s band, so 
magnesium is also a conductor. The band occupied by the outer, or valence, electrons 
is called the valence band. The next (higher) allowed band is called the conduction 
band. Thus, a conductor is a solid whose valence band is only partly filled or whose 
conduction band overlaps its valence band. There are a few elements, notably anti-
mony, arsenic, and bismuth, whose conduction band overlaps the valence band only 
very slightly, limiting the number of available empty states. These materials are called 
semimetals (see Figures 10-22a and b).

Insulators A solid that has a completely filled valence band is an insulator if the 
energy gap between the valence band and the empty conduction band is larger than 
about 2 eV, as illustrated in Figure 10-22c. For example, ionic crystals are insulators. 
The band structure of an ionic crystal, such as NaCl, is quite different from that of a 
metal. The energy bands arise from the energy levels of the Na� and Cl� ions. Both of 
these ions have a closed-shell configuration, so the highest occupied band in NaCl is 
completely full. The next allowed band, which is empty, arises from the excited states 
of Na� and Cl�. There is a large energy gap between the filled band and this empty 
band. Typical electric fields applied to NaCl will be too weak to excite an electron 
from the upper energy levels of the filled valence band across the large gap into the 
lower energy levels of the empty conduction band, so NaCl is an insulator. When an 
applied electric field is sufficiently strong to cause an electron to be excited to the 
empty band, the phenomenon called dielectric breakdown occurs.

FIGURE 10-20 Probability density (proportional to the charge distribution) for standing waves 
of wave number k � P�a in a one-dimensional crystal. The solid curve U C2 U 2 is a maximum at 
the lattice ion sites and has a lower potential energy than the dashed curve U C1 U 2.

x

��1�2��2�2
Probability
density

a

FIGURE 10-21 Energy-band 
structure of sodium. The 
empty 3p band overlaps the 
half-filled 3s band. Just above 
the filled states are many 
empty states into which 
electrons can be excited by an 
electric field, so sodium is a 
conductor.
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3p

3s
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For any periodic potential, a particle that would be bound in an isolated well 
with discrete energies, can “tunnel” from well to well with a range of energies.

Any value of the Bloch Theorem K is allowed.  And the energy E is roughly
parabolic in K.  But the there are gaps in the E vs K relation.

The allowed energy ranges are called energy bands.

Energy Bands
454 Chapter 10 Solid State Physics

These energy ranges, called bands, are separated by forbidden energy regions called 
energy gaps, in which no traveling wave can exist. Figure 10-19a shows the energy 
versus the wave number k for a completely free electron. This is, of course, merely a 
sketch of E � 62

 k2�2m. Figure 10-19b shows E versus k for an electron in the peri-
odic potential of Figure 10-18. The energy gaps occur at

 ka � {nP 10-41

where n is an integer and a is the lattice spacing.5 We can understand this result in 
terms of the Bragg reflection of the electron waves. Consider E to be small (near zero 
in Figure 10-19b) so that k is small, hence L is large. As E increases, k eventually 
becomes large enough so that L becomes small enough to suffer a Bragg reflection 
(constructive interference) from the lattice (see Section 3-4). Bragg reflection is gov-
erned by the Bragg condition (Equation 3-23)

nL � 2a sin U

In a one-dimensional system such as we are considering here, reflection means U � 90°. 
Since k � 2P�L, Equation 10-41 becomes the condition for Bragg reflection. The 
reason that traveling waves cannot exist for these wave numbers is that the amplitude 
of the reflection from one atom in the chain becomes equal to and in phase with the 
forward electron wave from the preceding atom, so that standing waves are set up. 
Figure 10-20 shows a sketch of the electron probability density U C U 2 for the two types 
of standing waves for the lowest energy gap, where the value k � P�a:

C1 � sin kx � sin 
Px
a   C2 � cos kx � cos 

Px
a

Since C2 gives a higher electron charge density near the ion sites than C1, the potential 
energy is less for C2 than for C1. The difference in the potential energies corresponds 
to the magnitude of the energy gap. Within the allowed energy bands, the energy has 
a continuous range if the number of atoms in the chain is infinite; for N atoms, there 

FIGURE 10-19 (a) Energy 
vs. k for a free electron.
(b) Energy vs. k for a nearly 
free electron in the 
one-dimensional periodic 
potential of Figure 10-18 
with b � 0 and U0 4 @. 
Energy gaps occur at the 
k values that satisfy the Bragg 
scattering condition. In each 
case only the parts with k � 0 
are shown. The complete 
curves are symmetric about 
k � 0.
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Overlapping 
bands

Conduction Band

Valence Band

Lower
Band

24

If crystal atoms were far apart,
they would have the usual
Schrodinger Equation levels,
the same for each atom.

As we move the N atoms closer, 
the levels split more and more.

At the actual separation of atoms,
there are N closely spaced levels
split from the original levels.

There can be energy gaps
between different bands.

Or the splitting can be so
large that the bands overlap.

Level Splitting in Crystals
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If we have N atoms, each level splits into N states.  

The Pauli Exclusion Principle says there can be only 2 electrons per state.

The first 2N electrons go into the lowest band of N states.  
The next 2N electrons go into the next band of N states.
This continues until we have assigned all the electrons.

If a band is not full, there are un-occupied states that electrons can use to move.  
That gives us conductivity.

If a band is fully occupied, there are no empty states for electrons to move into.  
So full bands don’t conduct.

If a band is completely empty, there are no electrons to move.
So that doesn’t conduct either.

Pauli Principle and Conductivity
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Sodium (Z = 11) has a single electron in the 3s level .

For a crystal of N Sodium atoms, there are N electrons in the split 3s level.
But the level could accommodate 2N electrons. So the band is only half full.
So Sodium is a good conductor.

Magnesium (Z = 12) has two electrons in the 3s level.  So the band will be full.
But Magnesium is also a good conductor.  How does that happen?

The 3p energy levels still exist in Mangesium, 
they are just empty in isolated atoms.

But the splitting of the 3s and 3p levels in a Magnesium crystal
causes them to overlap.  So Magnesium is also a conductor.

For nearly every element that can crystallize, the bands overlap
so they are conducting metals.

ℓ = 0, n = 3( )
Conductivity in Metals

 10-6 Band Theory of Solids 455

are N allowed energy levels in each band. Since the number of atoms is very large in 
a macroscopic solid, the energy bands can be considered continuous. Calculations in 
three dimensions are more difficult, of course, but the results are similar. The allowed 
ranges of the wave vector k are called Brillouin zones. Referring to Figure 10-19b, the 
first Brillouin zone has �P�a � k � �P�a, the second has �2P�a � k � �P�a 
and P�a � k � 2P�a, and so on.

Conductors, Insulators, and Semiconductors
Conductors We can now understand why some solids are conductors and others 
are insulators. Consider sodium. There is room for two electrons in the 3s state of 
each atom, but each sodium atom has only one 3s electron. Therefore, when N sodium 
atoms are bound in a solid, the 3s energy band is only half filled. In addition, the 
empty 3p band overlaps the 3s band. The allowed energy bands of sodium are shown 
schematically in Figure 10-21. We can see that many allowed energy states are avail-
able immediately above the filled lower half of the 3s band, so the valence electrons 
can easily be raised to a higher energy state by an electric field. Accordingly, sodium 
is a good conductor. Magnesium, on the other hand, has two 3s electrons, so the 3s 
band is filled. However, like sodium, the empty 3p band overlaps the 3s band, so 
magnesium is also a conductor. The band occupied by the outer, or valence, electrons 
is called the valence band. The next (higher) allowed band is called the conduction 
band. Thus, a conductor is a solid whose valence band is only partly filled or whose 
conduction band overlaps its valence band. There are a few elements, notably anti-
mony, arsenic, and bismuth, whose conduction band overlaps the valence band only 
very slightly, limiting the number of available empty states. These materials are called 
semimetals (see Figures 10-22a and b).

Insulators A solid that has a completely filled valence band is an insulator if the 
energy gap between the valence band and the empty conduction band is larger than 
about 2 eV, as illustrated in Figure 10-22c. For example, ionic crystals are insulators. 
The band structure of an ionic crystal, such as NaCl, is quite different from that of a 
metal. The energy bands arise from the energy levels of the Na� and Cl� ions. Both of 
these ions have a closed-shell configuration, so the highest occupied band in NaCl is 
completely full. The next allowed band, which is empty, arises from the excited states 
of Na� and Cl�. There is a large energy gap between the filled band and this empty 
band. Typical electric fields applied to NaCl will be too weak to excite an electron 
from the upper energy levels of the filled valence band across the large gap into the 
lower energy levels of the empty conduction band, so NaCl is an insulator. When an 
applied electric field is sufficiently strong to cause an electron to be excited to the 
empty band, the phenomenon called dielectric breakdown occurs.

FIGURE 10-20 Probability density (proportional to the charge distribution) for standing waves 
of wave number k � P�a in a one-dimensional crystal. The solid curve U C2 U 2 is a maximum at 
the lattice ion sites and has a lower potential energy than the dashed curve U C1 U 2.
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FIGURE 10-21 Energy-band 
structure of sodium. The 
empty 3p band overlaps the 
half-filled 3s band. Just above 
the filled states are many 
empty states into which 
electrons can be excited by an 
electric field, so sodium is a 
conductor.
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If Sodium loses an electron, the remaining ones form a “closed shell”
that has the electron structure of Neon (although with a positive charge).

If Chlorine gains an electron, its outer electrons form a “closed shell”
that has the electron structure of Argon (although with a negative charge).

The atoms can arrange themselves into a crystal of NaCl (table salt).

The highest occupied energy band is completely full, 
so NaCl is an insulator.

There are unoccupied levels, but they correspond to 
ionizing Neon or Argon.  And they have very high
ionization energies.  

So there is a large energy gap to the higher states,
and very few electrons are thermally excited into them.

Insulators
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Conductor, Insulator, Semiconductor

456 Chapter 10 Solid State Physics

Intrinsic Semiconductors If the gap between a filled valence band and an 
empty conduction band is small, the solid is a semiconductor. Consider carbon, which 
has two 2s electrons and two 2p electrons. We might expect carbon to be a conductor 
because of the four unfilled 2p states. However, the 2s and 2p levels mix when carbon 
forms covalent bonds.6 Figure 10-23 shows the splitting of the eight 2s-2p levels when 
carbon bonds in the diamond structure. This splitting is due to the nature of the cova-
lent bond and is similar to the splitting of the 1s levels in hydrogen discussed in 
Section 9-2. The energy of the levels corresponding to the four space-symmetric wave 
functions (one for the 2s levels and three for the 2p levels) is lowered while the 
energy of the other four levels (one 2s and three 2p) is raised. The valence band there-
fore contains four levels per atom that are filled, and the conduction band is empty. 
At the diamond lattice spacing of about 0.154 nm, the energy gap between the filled 
valence band and the empty conduction band is about 7 eV. Since this gap is large 

FIGURE 10-22 Four possible band structures for a solid. (a) The allowed band is only partially 
full, so electrons can be excited to nearby energy states. At 0 K the Fermi level is at the top 
of the filled states. (a) is a conductor; (b) is a conductor because the allowed bands overlap.
In (c) there is a forbidden band with a large energy gap between the filled band and the next 
allowed band; this is an insulator. (d ) The energy gap between the filled band and the next 
allowed band is very small, so some electrons are excited to the conduction band at normal 
temperatures, leaving holes in the valence band. The Fermi level is approximately in the 
middle of the gap. (d ) is a semiconductor.
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FIGURE 10-23 Splitting of the 2s and 2p 
states of carbon, the 3s and 3p states of 
silicon, or the 4s and 4p states of germanium 
vs. separation of the atoms. The energy gap 
between the four filled states in the valence 
band and the empty states in the conduction 
band is 7 eV for the diamond-lattice 
spacing, RC � 0.154 nm. For the silicon 
spacing RSi � 0.235 nm, the energy gap is 
1.09 eV. The splitting is similar for the 4s 
and 4p levels in germanium, which has an 
atom spacing of 0.243 nm, giving an energy 
gap of only 0.7 eV.
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A conductor has either (a) a half-filled energy band, or (b) overlapping bands.

An insulator has (c) a large energy gap between the highest filled band
and the lowest empty band.  There are negligible thermally excited carriers.

A semi-conductor has (d) a small energy gap between a full and empty band.
A semi-conductor is an insulator, but with a few thermally excited carriers.
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Carbon, Silicon, and Germanium have 4 electrons in their outer shells.

When the atoms are brought close,
half the levels go up, and half go down.

At the actual separation in a crystal,
three electrons are in the three p-states
that go down in energy, and one electron
is in the s-state that goes down.

The s-state that goes up in energy
is slightly higher than the three 
p-states that go down.

The band-gap is 7 eV in Carbon 
(because the atoms are small),
but about 1 eV in Silicon and Germanium.

Level Splitting in Semiconductors

456 Chapter 10 Solid State Physics

Intrinsic Semiconductors If the gap between a filled valence band and an 
empty conduction band is small, the solid is a semiconductor. Consider carbon, which 
has two 2s electrons and two 2p electrons. We might expect carbon to be a conductor 
because of the four unfilled 2p states. However, the 2s and 2p levels mix when carbon 
forms covalent bonds.6 Figure 10-23 shows the splitting of the eight 2s-2p levels when 
carbon bonds in the diamond structure. This splitting is due to the nature of the cova-
lent bond and is similar to the splitting of the 1s levels in hydrogen discussed in 
Section 9-2. The energy of the levels corresponding to the four space-symmetric wave 
functions (one for the 2s levels and three for the 2p levels) is lowered while the 
energy of the other four levels (one 2s and three 2p) is raised. The valence band there-
fore contains four levels per atom that are filled, and the conduction band is empty. 
At the diamond lattice spacing of about 0.154 nm, the energy gap between the filled 
valence band and the empty conduction band is about 7 eV. Since this gap is large 

FIGURE 10-22 Four possible band structures for a solid. (a) The allowed band is only partially 
full, so electrons can be excited to nearby energy states. At 0 K the Fermi level is at the top 
of the filled states. (a) is a conductor; (b) is a conductor because the allowed bands overlap.
In (c) there is a forbidden band with a large energy gap between the filled band and the next 
allowed band; this is an insulator. (d ) The energy gap between the filled band and the next 
allowed band is very small, so some electrons are excited to the conduction band at normal 
temperatures, leaving holes in the valence band. The Fermi level is approximately in the 
middle of the gap. (d ) is a semiconductor.
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between the four filled states in the valence 
band and the empty states in the conduction 
band is 7 eV for the diamond-lattice 
spacing, RC � 0.154 nm. For the silicon 
spacing RSi � 0.235 nm, the energy gap is 
1.09 eV. The splitting is similar for the 4s 
and 4p levels in germanium, which has an 
atom spacing of 0.243 nm, giving an energy 
gap of only 0.7 eV.
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Silicon is the most common semiconductor,
with band gap of 1.1 eV.

A lot of early devices used Germanium
(because people hadn’t learned how to 
purify silicon yet) with bandgap of 0.7 eV.

Compounds of a column 3 element with
a column 5 element are also semiconductors.

They can have much lower band gaps,
or much higher band gaps, than silicon.

Semiconductor Band Gaps

398 Chapter 11 Semiconductor Theory and Devices

The increased number of electrons in excited states explains the tempera-
ture dependence of the resistivity of semiconductors. Only those electrons that 
have jumped from the valence band to the conduction band are available to 
participate in the conduction process in a semiconductor. More and more elec-
trons are found in the conduction band as the temperature increases, and the 
resistivity of the semiconductor therefore decreases.

Although it is not possible to use the Fermi-Dirac factor to derive an exact 
expression for the resistivity of a semiconductor as a function of temperature, we 
can make a couple of observations. First, the energy E in the exponential factor 
makes it clear why the band gap is so crucial. An increase in the band gap by a 
factor of 10 (say from 1 eV to 10 eV) will, for a given temperature, increase the 
value of exp(bE ) by a factor of exp(9bE ). This generally makes the factor FFD so 
small that the material has to be an insulator. Our second observation is that, on 
the basis of this analysis, one may expect the resistance of a semiconductor to 
decrease exponentially with increasing temperature. This is approximately 
true—although not exactly, because the function FFD is not a simple exponen-
tial, and because the band gap varies with temperature (Table 11.2).

A useful empirical expression developed by Clement and Quinnell for the 
temperature variation of standard carbon resistors is

 log R !
K

log R
" A !

B
T

 (11.4)Clement-Quinnell equation

 E g (eV) 

Material T ! 0 K T ! 300 K

Si 1.17 1.11
Ge 0.74 0.66
InSb 0.23 0.17
InAs 0.43 0.36
InP 1.42 1.27
GaP 2.32 2.25
GaAs 1.52 1.43
GaSb 0.81 0.68
CdSe 1.84 1.74
CdTe 1.61 1.44
ZnO 3.44 3.2
ZnS 3.91 3.6

From C. Kittel, Introduction to Solid State Physics, 6th ed., 
New York: Wiley (1986), p. 185.

Tab le  11 .2    Energy Gaps for 
Selected Semiconductor 
Materials at T " 0 K 
and T " 300 K

03721_ch11_392-430.indd   39803721_ch11_392-430.indd   398 9/29/11   2:42 PM9/29/11   2:42 PM
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The highest occupied band is called the valence band,
and the lowest un-occupied band is called the conduction band.

In a (pure) semiconductor (and an insulator), the valence band is full,
and the conduction band is empty, except a few thermally excited electrons.

If an electron somehow gets into the conduction band, it can tunnel
from atom to atom, and there is conductivity.

If an electron is somehow missing from the valence band, that is called a hole.

An electron from a neighboring atom can tunnel across and fill the hole.
But that leaves a hole at the neighbor atom. 

An electron can tunnel across from the next neighbor and fill that hole.

The motion of the hole also contributes to conductivity.

Conductivity in Semiconductors
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Arsenic has almost the same size as Germanium, and has 5 outer electrons, 
vs 4 for germanium or silicon. 

Replacing N atoms of Germanium by Arsenic puts N extra electrons into the 
lattice (balanced by N extra charges from immobile Arsenic atoms).

The “donor levels” are very close to the conduction band, 
so the donor electron is easily thermally excited into the conduction band.

Donor Doping

 42.6  Semiconductors    1455

to go. But if one car is moved to the vacant floor above, it can move freely, just as elec-
trons can move freely in the conduction band. Also, the empty space that it leaves permits 
cars to move on the nearly filled floor, thereby moving the empty space just as holes move 
in the normally filled valence band.

Impurities
Suppose we mix into melted germanium 1Ge, Z = 322 a small amount of arsenic 1As, Z = 332, the next element after germanium in the periodic table. We then allow 
the mixture to cool and crystallize. This deliberate addition of impurity elements is 
called doping. Arsenic is in Group V; it has five valence electrons compared to the four 
valence electrons of germanium. When one of these five valence electrons is removed 
from an arsenic atom, the remaining electron structure is essentially identical to that of 
germanium. The only difference is that it is smaller; the arsenic nucleus has a charge of 
+33e rather than +32e, and it pulls the electrons in a little more. An arsenic atom can 
comfortably take the place of a germanium atom as a substitutional impurity. Four of its 
five valence electrons form the necessary nearest-neighbor covalent bonds.

The fifth valence electron in arsenic is very loosely bound (Fig. 42.26a); it doesn’t 
participate in the covalent bonds, and it is screened from the nuclear charge of +33e 
by the 32 electrons, leaving a net effective charge of about +e. We might guess that the 
binding energy would be of the same order of magnitude as the energy of the n = 4 
level in hydrogen—that is, 11

422113.6 eV2 = 0.85 eV. In fact, it is much smaller than 
this, only about 0.01 eV, because the electron probability distribution actually extends 
over many atomic diameters and the polarization of intervening atoms provides addi-
tional screening.

The energy level of this fifth electron corresponds in the band picture to an isolated 
energy level lying in the gap, about 0.01 eV below the bottom of the conduction band 
(Fig. 42.26b). This level is called a donor level, and the impurity atom that is responsible 
for it is simply called a donor. All Group V elements, including N, P, As, Sb, and Bi, can 
serve as donors. At room temperature, kT is about 0.025 eV. This is substantially greater 
than 0.01 eV , so at ordinary temperatures, most electrons can gain enough energy to jump 
from donor levels into the conduction band, where they are free to wander through the 
material. The remaining ionized donor stays at its site in the structure and does not par-
ticipate in conduction.

Example 42.9 shows that at ordinary temperatures and with a band gap of 1.0 eV, 
only a very small fraction (of the order of 10-9) of the states at the bottom of the 
conduction band in a pure semiconductor contain electrons to participate in intrinsic 
conductivity. Thus we expect the conductivity of such a semiconductor to be about 
10-9 as great as that of good metallic conductors, and measurements bear out this pre-
diction. However, a concentration of donors as small as one part in 108 can increase 
the conductivity so drastically that conduction due to impurities becomes by far the 
dominant mechanism. In this case the conductivity is due almost entirely to negative 
charge (electron) motion. We call the material an n-type semiconductor, with n-type 
impurities.

Adding atoms of an element in Group III (B, Al, Ga, In, Tl), with only three valence 
electrons, has an analogous effect. An example is gallium 1Ga, Z = 312; as a substitu-
tional impurity in germanium, the gallium atom would like to form four covalent bonds, 
but it has only three outer electrons. It can, however, steal an electron from a neighboring 
germanium atom to complete the required four covalent bonds (Fig. 42.27a, next page). 
The resulting atom has the same electron configuration as germanium but is somewhat 
larger because gallium’s nuclear charge is smaller, +31e instead of +32e.

This theft leaves the neighboring atom with a hole, or missing electron. The hole acts as 
a positive charge that can move through the crystal just as with intrinsic conductivity. The 
stolen electron is bound to the gallium atom in a level called an acceptor level about 0.01 eV  
above the top of the valence band (Fig. 42.27b). The gallium atom, called an acceptor, 
thus accepts an electron to complete its desire for four covalent bonds. This extra electron 
gives the previously neutral gallium atom a net charge of -e. The resulting gallium ion is 

(a) A donor (n-type) impurity atom has a fifth
valence electron that does not participate in
the covalent bonding and is very loosely bound.

(b) Energy-band diagram for an n-type semi-
conductor at a low temperature. One donor
electron has been excited from the donor levels
into the conduction band.
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Figure 42.26 An n-type semiconductor:  
germanium (Ge) with an arsenic (As) 
impurity.
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to go. But if one car is moved to the vacant floor above, it can move freely, just as elec-
trons can move freely in the conduction band. Also, the empty space that it leaves permits 
cars to move on the nearly filled floor, thereby moving the empty space just as holes move 
in the normally filled valence band.

Impurities
Suppose we mix into melted germanium 1Ge, Z = 322 a small amount of arsenic 1As, Z = 332, the next element after germanium in the periodic table. We then allow 
the mixture to cool and crystallize. This deliberate addition of impurity elements is 
called doping. Arsenic is in Group V; it has five valence electrons compared to the four 
valence electrons of germanium. When one of these five valence electrons is removed 
from an arsenic atom, the remaining electron structure is essentially identical to that of 
germanium. The only difference is that it is smaller; the arsenic nucleus has a charge of 
+33e rather than +32e, and it pulls the electrons in a little more. An arsenic atom can 
comfortably take the place of a germanium atom as a substitutional impurity. Four of its 
five valence electrons form the necessary nearest-neighbor covalent bonds.

The fifth valence electron in arsenic is very loosely bound (Fig. 42.26a); it doesn’t 
participate in the covalent bonds, and it is screened from the nuclear charge of +33e 
by the 32 electrons, leaving a net effective charge of about +e. We might guess that the 
binding energy would be of the same order of magnitude as the energy of the n = 4 
level in hydrogen—that is, 11

422113.6 eV2 = 0.85 eV. In fact, it is much smaller than 
this, only about 0.01 eV, because the electron probability distribution actually extends 
over many atomic diameters and the polarization of intervening atoms provides addi-
tional screening.

The energy level of this fifth electron corresponds in the band picture to an isolated 
energy level lying in the gap, about 0.01 eV below the bottom of the conduction band 
(Fig. 42.26b). This level is called a donor level, and the impurity atom that is responsible 
for it is simply called a donor. All Group V elements, including N, P, As, Sb, and Bi, can 
serve as donors. At room temperature, kT is about 0.025 eV. This is substantially greater 
than 0.01 eV , so at ordinary temperatures, most electrons can gain enough energy to jump 
from donor levels into the conduction band, where they are free to wander through the 
material. The remaining ionized donor stays at its site in the structure and does not par-
ticipate in conduction.

Example 42.9 shows that at ordinary temperatures and with a band gap of 1.0 eV, 
only a very small fraction (of the order of 10-9) of the states at the bottom of the 
conduction band in a pure semiconductor contain electrons to participate in intrinsic 
conductivity. Thus we expect the conductivity of such a semiconductor to be about 
10-9 as great as that of good metallic conductors, and measurements bear out this pre-
diction. However, a concentration of donors as small as one part in 108 can increase 
the conductivity so drastically that conduction due to impurities becomes by far the 
dominant mechanism. In this case the conductivity is due almost entirely to negative 
charge (electron) motion. We call the material an n-type semiconductor, with n-type 
impurities.

Adding atoms of an element in Group III (B, Al, Ga, In, Tl), with only three valence 
electrons, has an analogous effect. An example is gallium 1Ga, Z = 312; as a substitu-
tional impurity in germanium, the gallium atom would like to form four covalent bonds, 
but it has only three outer electrons. It can, however, steal an electron from a neighboring 
germanium atom to complete the required four covalent bonds (Fig. 42.27a, next page). 
The resulting atom has the same electron configuration as germanium but is somewhat 
larger because gallium’s nuclear charge is smaller, +31e instead of +32e.

This theft leaves the neighboring atom with a hole, or missing electron. The hole acts as 
a positive charge that can move through the crystal just as with intrinsic conductivity. The 
stolen electron is bound to the gallium atom in a level called an acceptor level about 0.01 eV  
above the top of the valence band (Fig. 42.27b). The gallium atom, called an acceptor, 
thus accepts an electron to complete its desire for four covalent bonds. This extra electron 
gives the previously neutral gallium atom a net charge of -e. The resulting gallium ion is 

(a) A donor (n-type) impurity atom has a fifth
valence electron that does not participate in
the covalent bonding and is very loosely bound.

(b) Energy-band diagram for an n-type semi-
conductor at a low temperature. One donor
electron has been excited from the donor levels
into the conduction band.
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Gallium is almost the same size as Germanium, but has 3 outer electrons.

Replacing N atoms of Germanium with Gallium makes the lattice have 
N fewer electrons (balanced by immobile Gallium atoms with fewer protons).

The “acceptor levels” are very close to the valence band, so a valence-band
electron can jump to a Gallium atom, leaving a mobile hole in the valence band.

Acceptor Doping
1456    CHAPTER 42 Molecules and Condensed Matter

not free to move. In a semiconductor that is doped with acceptors, we consider the con-
ductivity to be almost entirely due to positive charge (hole) motion. We call the material 
a p-type semiconductor, with p-type impurities. Some semiconductors are doped with 
both n- and p-type impurities. Such materials are called compensated semiconductors.

   CAUTION    The meaning of “p-type” and “n-type” It’s a common misconception that a p-type 
semiconductor has a net positive charge and an n-type semiconductor has a net negative charge. 
In fact, both types of semiconductors have a net zero charge because they are made up of neutral 
atoms. Instead, “p-type” means that the majority of the mobile carriers of charge within the semi-
conductor are positive (holes), and “n-type” means that the majority of mobile carriers are negative 
(electrons). ❙

We can verify the assertion that the current in n- and p-type semiconductors really is 
carried by electrons and holes, respectively, by using the Hall effect (see Section 27.9). 
The sign of the Hall emf is opposite in the two cases. Hall-effect devices constructed from 
semiconductor materials are used in probes to measure magnetic fields and the currents 
that cause those fields.

TEST YOUR UNDERSTANDING OF SECTION 42.6 Would there be any advantage to adding 
n-type or p-type impurities to copper?

ANSWER

(a) An acceptor (p-type) impurity atom has only
three valence electrons, so it can borrow an
electron from a neighboring atom. The resulting
hole is free to move about the crystal.

(b) Energy-band diagram for a p-type semi-
conductor at a low temperature. One acceptor
level has accepted an electron from the valence
band, leaving a hole behind.
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Figure 42.27 A p-type semiconductor:  
germanium (Ge) with a gallium (Ga) 
impurity.

❙ no Pure copper is already an excellent conductor since it has a partially filled conduction band 
(Fig. 42.19c). Furthermore, copper forms a metallic crystal (Fig. 42.15) as opposed to the covalent 
crystals of silicon or germanium, so the scheme of using an impurity to donate or accept an electron 
does not work for copper. In fact, adding impurities to copper decreases the conductivity because 
an impurity tends to scatter electrons, impeding the flow of current.

42.7  SEMICONDUCTOR DEVICES
Semiconductor devices play an indispensable role in contemporary electronics. In the 
early days of radio and television, transmitting and receiving equipment relied on vacuum 
tubes, but these have been replaced by solid-state devices, including transistors, diodes, 
integrated circuits, and other semiconductor devices. All modern consumer electronic de-
vices use semiconductor devices of various kinds.

One simple semiconductor device is the photocell (Fig. 42.28). When a thin slab of 
semiconductor is irradiated with an electromagnetic wave whose photons have at least 
as much energy as the band gap between the valence and conduction bands, an electron 
in the valence band can absorb a photon and jump to the conduction band, where it and 
the hole it left behind contribute to the conductivity (see Example 42.5 in Section 42.4). 
The conductivity therefore increases with wave intensity, thus increasing the current I 
in the photocell circuit of Fig. 42.28. Hence the ammeter reading indicates the intensity 
of the light.

Detectors for charged particles operate on the same principle. An external circuit 
 applies a voltage across a semiconductor. An energetic charged particle passing through 
the semiconductor collides inelastically with valence electrons, exciting them from the 
valence to the conduction band and creating pairs of holes and conduction electrons. The 
conductivity increases momentarily, causing a pulse of current in the external circuit. 
Solid-state detectors are widely used in nuclear and high-energy physics research.

The p-n Junction
In many semiconductor devices the essential principle is the fact that the conductivity 
of the material is controlled by impurity concentrations, which can be varied within 
wide limits from one region of a device to another. An example is the p-n junction at 
the boundary between one region of a semiconductor with p-type impurities and another 
region containing n-type impurities. One way of fabricating a p-n junction is to deposit 
some n-type material on the very clean surface of some p-type material. (We can’t just 
stick p- and n-type pieces together and expect the junction to work properly because of the 
impossibility of matching their surfaces at the atomic level.)
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Light
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+

I

Figure 42.28 A semiconductor photo-
cell in a circuit. The more intense the 
light falling on the photocell, the greater 
the conductivity of the photocell and 
the greater the current measured by the 
 ammeter (A).
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not free to move. In a semiconductor that is doped with acceptors, we consider the con-
ductivity to be almost entirely due to positive charge (hole) motion. We call the material 
a p-type semiconductor, with p-type impurities. Some semiconductors are doped with 
both n- and p-type impurities. Such materials are called compensated semiconductors.

   CAUTION    The meaning of “p-type” and “n-type” It’s a common misconception that a p-type 
semiconductor has a net positive charge and an n-type semiconductor has a net negative charge. 
In fact, both types of semiconductors have a net zero charge because they are made up of neutral 
atoms. Instead, “p-type” means that the majority of the mobile carriers of charge within the semi-
conductor are positive (holes), and “n-type” means that the majority of mobile carriers are negative 
(electrons). ❙

We can verify the assertion that the current in n- and p-type semiconductors really is 
carried by electrons and holes, respectively, by using the Hall effect (see Section 27.9). 
The sign of the Hall emf is opposite in the two cases. Hall-effect devices constructed from 
semiconductor materials are used in probes to measure magnetic fields and the currents 
that cause those fields.

TEST YOUR UNDERSTANDING OF SECTION 42.6 Would there be any advantage to adding 
n-type or p-type impurities to copper?

ANSWER

(a) An acceptor (p-type) impurity atom has only
three valence electrons, so it can borrow an
electron from a neighboring atom. The resulting
hole is free to move about the crystal.

(b) Energy-band diagram for a p-type semi-
conductor at a low temperature. One acceptor
level has accepted an electron from the valence
band, leaving a hole behind.
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Ea ≅  0.01 eV
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Figure 42.27 A p-type semiconductor:  
germanium (Ge) with a gallium (Ga) 
impurity.

❙ no Pure copper is already an excellent conductor since it has a partially filled conduction band 
(Fig. 42.19c). Furthermore, copper forms a metallic crystal (Fig. 42.15) as opposed to the covalent 
crystals of silicon or germanium, so the scheme of using an impurity to donate or accept an electron 
does not work for copper. In fact, adding impurities to copper decreases the conductivity because 
an impurity tends to scatter electrons, impeding the flow of current.

42.7  SEMICONDUCTOR DEVICES
Semiconductor devices play an indispensable role in contemporary electronics. In the 
early days of radio and television, transmitting and receiving equipment relied on vacuum 
tubes, but these have been replaced by solid-state devices, including transistors, diodes, 
integrated circuits, and other semiconductor devices. All modern consumer electronic de-
vices use semiconductor devices of various kinds.

One simple semiconductor device is the photocell (Fig. 42.28). When a thin slab of 
semiconductor is irradiated with an electromagnetic wave whose photons have at least 
as much energy as the band gap between the valence and conduction bands, an electron 
in the valence band can absorb a photon and jump to the conduction band, where it and 
the hole it left behind contribute to the conductivity (see Example 42.5 in Section 42.4). 
The conductivity therefore increases with wave intensity, thus increasing the current I 
in the photocell circuit of Fig. 42.28. Hence the ammeter reading indicates the intensity 
of the light.

Detectors for charged particles operate on the same principle. An external circuit 
 applies a voltage across a semiconductor. An energetic charged particle passing through 
the semiconductor collides inelastically with valence electrons, exciting them from the 
valence to the conduction band and creating pairs of holes and conduction electrons. The 
conductivity increases momentarily, causing a pulse of current in the external circuit. 
Solid-state detectors are widely used in nuclear and high-energy physics research.

The p-n Junction
In many semiconductor devices the essential principle is the fact that the conductivity 
of the material is controlled by impurity concentrations, which can be varied within 
wide limits from one region of a device to another. An example is the p-n junction at 
the boundary between one region of a semiconductor with p-type impurities and another 
region containing n-type impurities. One way of fabricating a p-n junction is to deposit 
some n-type material on the very clean surface of some p-type material. (We can’t just 
stick p- and n-type pieces together and expect the junction to work properly because of the 
impossibility of matching their surfaces at the atomic level.)
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Figure 42.28 A semiconductor photo-
cell in a circuit. The more intense the 
light falling on the photocell, the greater 
the conductivity of the photocell and 
the greater the current measured by the 
 ammeter (A).
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Doping with electron donors (5 valence electrons) makes what is called 
N-type material, which has mobile electrons and fixed positive charges.

Doping with electron acceptors (3 valence electrons) makes P-type material,
which has mobile holes and fixed negative charges.

Both N-type and P-type materials have zero net electric charge.

It’s best to dope with atoms that are close to the same size as the lattice,
which happens when the doping atoms are in the same periodic table row.

Phosphorous doping makes N-type Silicon.  Boron doping makes P-type silicon.

Arsenic doping makes N-type Germanium.  Gallium doping makes P-type.

N-Type and P-Type
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Start with a pure silicon wafer.  Diffuse some P-type impurity into the whole 
thickness.  Then diffuse enough N-type impurity to reverse the polarity, 
but just of the surface.

The electrons and holes neutralize each other in a thin  depletion layer 
that has the low conductivity of pure silicon.  

The N-region and P-region do conduct.

PN Junction
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The charge flow to form the depletion layer results in a built-in potential 
difference across the junction.

PN Junction 2
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Photons that enter the silicon can detach an electron from an atom, 
leaving a hole behind.

The built-in electric field separates the electron from the hole,  
causing an electric current to flow.  

Solar Cell
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The thickness of the depletion layer can be changed by applying an external 
voltage to the PN junction.  

If a large enough positive voltage is applied to the P-side, the depletion layer 
gets so thin that significant conduction occurs.  This is the standard rectifier.  

For negative voltage, the depletion layer gets thicker.  There is a reverse current 
that is almost independent of voltage, but usually immeasurably small.

For large enough negative voltage, the few charges that cross the depletion 
region get enough energy that they can knock electrons from the valence band
up to the conduction band, causing a large current.  This is reverse breakdown.

Zener diodes are engineered to have a precise reverse breakdown voltage.

Rectifier Diode
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Silicon Diodes
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For voltages greater than the reverse breakdown voltage, the current-voltage 

relationship is described by the Shockley Equation 

At V = 0, the exponential is +1, 
and the current is zero.

 is the saturation current, which is the
current at negative voltage.  It depends on 
the area of the junction, doping level, etc.

 is called the thermal voltage.  

It’s ~25 milliVolts at room temperature.

The n is called the “ideality factor.”  
It’s ~1 for Germanium, ~2 for Silicon.

I V( ) = IS ⋅ exp qVnkBT
−1

⎛

⎝⎜
⎞

⎠⎟

IS

kBT
q

=VT

Shockley Diode Equation
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When a diode is conducting, there are lots of electrons and holes 
in the depletion region.  

They can re-combine, essentially annihilating each other.
That’s a nuisance if you are trying to make a good rectifier.

But the energy of the recombination can turn into a photon.

Light Emitting Diode
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A bipolar transistor has two PN junctions back to back.  It can be NPN or PNP.

The middle region is called the base.  It’s usually made quite thin.

One end is intended to be forward-biased relative to the base, so its voltage is 
normally about 0.6 V different from the base.  It’s called the emitter, because 
that junction emits either electrons or holes into the base region.

The other end is reverse-biased relative to the base and is called the collector.

The collector current would normally be very small.  But the electrons or holes 
from the emitter-base junction in the depletion region allow current to flow.

The emitter-base current controls the collector current.

Bipolar Transistor
414 Chapter 11 Semiconductor Theory and Devices

Because the base-collector combination is essentially a diode connected in re-
verse bias, the voltage on the output side can be made higher than the voltage 
on the input side. Recall that the output and input currents are comparable, so 
the resulting output power (current ! voltage) is much higher than the input 
power.

In the circuit we have just described, the transistor is used as a voltage amplifier. 
The circuit in Figure 11.23a can be modified to serve as a current amplifier by mov-
ing the input signal to a position between the base and ground, as shown in Figure 
11.23b. As we have already shown, a very small current flows in that branch of the 
circuit. Therefore, in this configuration the output current will be much higher 
than the input current. It is also possible to make a pnp-junction transistor (Figure 
11.22d), which may be understood using the same model as we used for the npn 
junction, but with hole conduction taking the place of electron conduction.

As an example of an amplifier circuit, consider Figure 11.24. The voltages Vbb 
and Vcc are fixed. The resistances Rc and Re may in part be separate from the 
transistor, but they must include the intrinsic base-collector and base-emitter 
resis tances, respectively. We wish to amplify a signal Vs. Let us assume that there 
is a current gain b, which means that Ic " bIb. To calculate the voltage gain, we 
first apply Kirchhoff’s loop rule to the left-hand loop to obtain

 Ib "
Vs # Vbb

Rb # 11 # b 2Re
 (11.11)

Then

 Ic " bIb " b 
Vs # Vbb

Rb # 11 # b 2Re
 (11.12)

pnp-junction transistor
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Figure 11.23 (a) The npn transistor in a voltage amplifier circuit. (b) The circuit has been 
modified to place the input between base and ground, thus making a current amplifier. (c) The 
same circuit as in (b) using the transistor circuit symbol.
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Figure 11.22 (a) In the npn transistor, the base is a p-type material, and the emitter and collec-
tor are n-type. (b) The two-diode model of the npn transistor. (c) The npn transistor symbol used 
in circuit diagrams. (d) The pnp transistor symbol used in circuit diagrams.
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Make 2 N-type islands in P-type silicon.  Grow an insulating layer of oxide 
on top.  Etch holes above the N-type islands and deposit metal connecting wires.  
Deposit another metal wire over the region between the N-type islands, 
without a hole.

One of the PN junctions is always reverse-biased, so there is 
normally no current flow between the source and the drain.

But a voltage applied to the gate attracts electrons 
to the region, allowing current to flow.

Since the gate is insulated,
there is negligible gate current,
so MOSFETs are far more
energy-efficient than bipolar
transistors.

Field Effect Transistor
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Homework 4 is due tonight.

Wednesday will be Lasers.

Worksheet on Friday as usual.

Next week will be Schrodinger in 3 dimensions.

For Next Time


