PHYS 250

[ecture 6.1

Schrodinger in 3D



Today

Schrodinger Equation in 3D, xyz version
Free Particle Solutions
Rectangular Box Solutions

Vector Calculus in Spherical Coordinates
Spherical Coordinates Laplacian Operator

Schrodinger for Spherically Symmetric Potential
Separating Spherical Schrodinger

Solving for ¢-dependence

Solving for 6-dependence

(Wednesday we’ll add the r-dependence and do spherical well and Hydrogen)
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Schrodinger in xyz

The wavefunction has 3 space + 1 time argument: ¥ (x,t) — l//(x, y,z,t)

AN

dx>  ox> 9y’ Bz
where V*y is called the Laplacian operator.

The x-derivative becomes

The potential has 3 coordinate arguments: V(x) —> V(x, y,z)

Overall we have

a
az

—hK

2m

l//(x V,Z, t) Vzw(x,y,z,t)+V(x,y,z)l//(x,y,z,t)

or 1n vector notation
0 —h’
ih—
ot l//( ) 2m

Vi (%,t)+V (3w (%,1)
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Free Particle in xyz

0 —h’ .
ih altl//(x t) > Vzl//(x,t)+0

—\2
Solutions are l//()?,t) = exp[i(l?i — a)tﬂ with £ = f—m = % =hw

The k-vector points in the direction the particle 1s moving.

Of course we can still superpose solutions with different k-values
to make wave packets, standing waves, etc.
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Time-Independent xyz Schrodinger

ssume y (£4)= £(2)8(1) 50 5= /(2) 5,8(1) = /- where 7 =55

[ 2 2 2
Also Viy = ?}x{_l_?)y{-l_?)zjzp .g(t)z[sz].g(t)

—h?
2m

Plug into Schrodinger: ifif - g’ = [sz} g+ V()?)f-g

Divide both sides by f - g:
. o _h2 sz . g .
inf-g" _ [ } +V(%)fg
/g 2m  f-g
g(t) _ -1 V' /()
glt) 2m f(%)
The left side doesn’t depend on X, the right side doesn’t depend on ¢,
so both must be equal to some constant we will call E.

ih

+V(5c’)



Time-Independent xyz Schrodinger 2

.. 1d dg E E - Et
One equation 1s ih——g=E%—g=—dt%1ng=. t—> g=exp|—i—

g dt g ih ih K

We get simple complex-exponential time-dependence

The other equation 1s

Just like the 1D version, except with the Laplacian, and vector x as the argument.



Particle in 3D Box

Let V()?)infO<x<a, and 0 < y<b, and 0 <z <c, otherwise V()?)=+c>o

—hK

2m

Vzl//()‘c’)zE-l//()?).

The time-independent equation 1s

This has solutions y (55 ) = sin(kxx) - sin(ky y) - sin(kzz)
The boundary conditions are that the wavefunction must be zero at the walls.
This 1s automatically satisfied at x =0,y =0, and z =0.

e . n. . nn . nrw
Itis satistiedat x=a itk =——,aty=>b1tk = 5 ,andatz=c 1tk =—
a c

Note that there are 3 different n values, which don’t have to be the same.
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1"

-~ 177

Particle 1in 2D Box

N

=== =

N

PHYS 250 Lecture 6.1



Particle in 2D Box 2

A\
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Particle in 3D Box 2

. .. . .| nT .| n .| nm
Writing explicitly l//(x):sm(x—xj-sm[ 2 y]-sm( : Zj,then

A C

5 > o J|.(nnm [ nT (nm
Vy=|—+—5+—5[sin| =—x |-sin| =y |-sin| =z
ox~ dy~ oz a b c
| nTT ) | nr
-sin| =y |-sin| =—z
b ) c
2
4= —=— | sin| =y ||-sin| =z
b b C )

2
niw |nrm
| =] —=— | sSin| =—z
C C

him’

2m a b c 2m

withn ,n ,n >0
X y z

PHYS 250 Lecture 6.1

10



Particle 1n Cubical Box

For the special case that a = b = ¢ = w, the cubical box,
n'm’

2

nx, ny, nz

= [nj +n’ +n2]
Y 2mw

| hz 2
The lowest energy state 1s n=n=n= 1 so Em = [3 ] 2w

The next state will have one n = 2 and the others 1. There are 3 ways to do it.

hZﬂZ h2ﬂ2
2 12 12
E211:E121:E112:[2 +17+1 ]OZmWZ :[6]°2mwz'

These different wavefunctions with the same energy are called degenerate.

The next state will have two n = 2 and one being 1. There are 3 ways to do it.

E221:E122=E212=[2 t2r ] 2mw’ _[9} 2mw®

PHYS 250 Lecture 6.1

41



Particle 1in Cubical Box 2

Another state is all 3 n’s being 2: E,,, = [22 +2% 4 22] — =

2mw 2mw

There 1s only one way to do that.

131 113

ButthereisalsoEm:E =F :[32+12+12] =

These are slightly lower 1n energy than state 222.
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Spherical Symmetry

L —h’ . L
The kinetic energy term > Vi (x) doesn’t depend on direction.
m
1
The Coulomb potential V(r) = 9@ 1 doesn’t depend on direction.
dre, r

The 3D harmonic oscillator potential with all spring constants the same 1s

1 1
V()? ) = E(loc2 +ky” + kzz) = Ekrz and doesn’t depend on direction.

Maybe we can do the separation of variables trick for spherical problems,
so the potential only shows up 1n a radial equation.

— —

We need to figure out V' =V- (V l//) in spherical coordinates.

PHYS 250 Lecture 6.1

12



Spherical Coordinates

This 1s the physics convention

for spherical coordinates.

0 is measured from the +z-axis.

¢ 1s the xy projection of the r vector,

x50, ¢)

r—

measured from the +x axis ~6 :
: y ' : Y
The coordinate “steps™ are o :
ASF — AI/' // E
AS(9 =rA@ X’ A
rsin{)dq)
As, =rsind Ag SiH IS x
rsinf 0\, / - _~dr
‘ 4 :
The volume element looks like this: d} \ o\ ~rdd
/4 (’__',',‘_ /4 "‘.'
- | ‘.' >
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Spherical Gradient

The spherical gradient is straightforward: just plug in the coordinate step A’s

VF—r%§+9éE+¢éE

As, A,
:ﬁ£+é—AF +0 AF

Ar rAQ  rsmb A¢
OF A10F o 1 OF
or rdl  rsinf@ J¢

Note that the angle derivative terms have a factor of 1/7 in them
(all 3 terms have dimensions of 1/r).

Note also that the ¢ derivative term has an extra factor.

sin @
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Spherical Divergence 1

The divergence can be defined as the net flux of a vector function
out of a “cube,” divided by the volume of the “cube.”

Our vector function 1s written

@(r,@,(b) =r-G, (r,9,¢)+ 6- G, (r,9,¢)+¢3-G¢ (r,9,¢).

It has 3 components, in the r, 6, and ¢ directions.

The numerical values of the components can be different functions of r, 6, and ¢.

The flux of the r-component ® through the “inner r” face 1s

the value of the r-component times the surface area perpendicular to it:

'y
rsindd¢

=G -rA@-rsinf Ag
=G r’sin@ AO Ag Jo

/4 rdo

>

rd¢g
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Spherical Divergence 2

We want the net flux of the r-component out of the “cube”
A® =A (G rA0-rsind Ap)=A (G r’sinf A Ag)

The 0 and ¢ values don’t change from one face to the other,
but r varies across the “cube” as well as G,, so we should write this as

A® =A|Gr [sing A Ag

The volume of the “cube” 1s

V=Ar-rA@-rsin@ Ap=ArAO A¢g-r’sin0 = "”
The divergence contribution 1s flux over volume mn/i , ‘\ %T
po  A[Grlsnereas 9G] | A
V. ArA@A¢-risin® > or SRR s

— rd¢
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Spherical Divergence 3
The 6-flux through the red “square” is ®, =G, -A - A s =Gy Ar-rsinf Ag

We want the net 6-flux as we step in 6
A,®@,=A, (G, Ar-rsin® Ag)=A,|sinf G, |rArA¢
The volume 1s the same as before. The divergence contribution 1s

A®, A,|sin6G,|rArAp 1 9[sin6G, ]

V ArA@ A¢p-r’sin@  rsinf 00 X

rsindd¢

J
I

rsiné

||
il &
|

rdé
‘_‘,a(‘,; i

rde¢
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Spherical Divergence 4
The ¢-flux through the red “square” 1s @, =G, -A A, =G, -Ar-r A

We want the net ¢-flux as we step 1n ¢
In this case, only the function changes, not the area

AD,=A,(G, Ar-rsin® Ag)=A [ sing G, [rArag

The volume 1s the same as before. The divergence contribution 1s

AP, A,G, rArA0 1 8G¢

V ArAB A¢-r’sinO " rsind d¢

rsindd¢

J
I

rsiné

||
il &
|

rdé
o, ~

rde¢
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Spherical Divergence 5

The divergence 1s the sum of the 3 terms:

1 a[rzGr]

O d| sinf G 0G
V-G=— + 1 [ 6’]+ 1 ‘
re or rsin@ 00 rsin@ 0¢
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Spherical Laplacian

Recall V2 F =V. (?F ) So we plug the spherical components of VF

which are (?F)r — %_F, (§F) _ la_F (?F)(p 1 O0F

r o 136’ " rsing 00
.o J| r’G d sinf G 0G
into the spherical divergence V.-G = : [ r] + 1 [Sm 9] + 1 ¢
r° or rsin@ 90 rsin@ d¢
That gives ] ) ] ) ) ]
1ar2%F | asine“gg . ,18 %Z
I in
VZF:V(VF): 5 — 7‘_+ : = 4 = } ' _I/'S _
r or rsin@ 00 rsin@ 0Q
We can factor some terms out of the brackets
10| ,0F| 1 9. oF 1 0*F
VIF=——|r'— |+ sinf — |+
r* or _r or | r’sinfdo| 00 | r’sin’@ d¢’
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Spherical Derivatives Summary

- oF ~10F , 1 OF
F=fr—+0——
vE=T or T r 06 +¢rsin9 00

2 .
1 a[r Gr]+ ] 8[s1n9 G9]+ 1 dG,
r> or rsin@ 00 rsin@ 0@

V-G=

1 9| ,0F 1 9 oOF 1 0*F
VF=——|r"— |+ sinf — |+
r° or " o 7> sin@ 06 060 | r’sin’@ 0¢’

22



Spherical Schrodinger

Plug the spherical Laplacian into Schrodinger with a spherical potential

hZ
2M

A |1 9| ,op 1 9| . oy 1 v
Ey =— — 6 %4
LYY {rz or {r or }_ 7’ sin@ 96 {sm d6 }_ r>sin’ 0 0¢’ T (r)l//

El//(r,H,¢)=— Vzw(r,9,¢)+V(r)w(r,9,¢)

Believe it or not, that’s separable into y(r,0,¢)= F(r)G(6) H (¢)

And the G(Q) and H (q)) are the same (set of) functions for any potential,

as long as it’s spherical.

The F(r) functions of course depend on the potential,

and also have some dependence on which ones of G(8) and #(¢) you use.
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Separation 1

2 2
El//z—h {1 8{7/28_1//} 1 a[sinea—w} 1 al/j}ﬂf(r)t//

2M | r* or or | r*sin@ 00 00

Factor 1/r2 out of the bracket

ool ,ow] 1 ol . ow]| 1 dy
Ey =— ad oV v
Yo {Br {r or }L sinf 06 {sm 00 }r sin” @ 0¢” ()

2 Mr?
h2

2 Mr* ol Loy ] 1 af. ow] 1 2wy
E-V =— 0| 5= 0—4
72 [ (r):|l// {ar |:r or :|+ sin@ 06 |:Sm 00 :|+ sin” @ a¢2

Move the term with r-dependence to the left side

2 Mr? Jd| ,0 1 0| . oJy 1 oy
E-V —| = |=— 1 |—
o LEV () s {r 81”} siné?a@{sm ae} sin’ @ 99’
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Separation 2
Lo 2 o st e

Assume y = F(r)G(0)H(¢), plug in, and do derivatives

) — 2
2 Mr [E_V(;»)]FGAHi rziFGH}:— L o {sin@iFGH}— .1 [azFGH}
S1

n’ or|  or sin6 00 90 n’@| d¢
2];’”2 E- V(r)]FGH+%:r2%—ﬂGH = Sﬁlle aae[sine aa—Z}FH— si1112 HE;}FG
Divide by FGH
22{?2 £~ V('”)]Jr%{"z aaﬂjlv - Sir119 aae{sme ?)g} cl; ) si1112 e{aazqﬂ];

Left side has no angles, right side has no r, so both sides equal a constant A

2 Mr? d| ,0F |1 1 0| .  0G|1 1 |°H |1
E-V — = L=— 6 —
L (")]Jrar{r ar}F sineae{sm BH}G sinzé?{aﬁ}]{
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Separation 3

Work on the right-side equation
1 9|. ,0G|1 1 |d0°H|I
A=—— sin @ — —
sinf 96 00 |G sin°0| d¢° |H
Multiply both sides by sin’ 8

2
/”tsin26?=—sin6?i sin@a—G 1_|2a)1]
00 0 |G | 9¢° |H

Put 6-dependence on the left, ¢ dependence on the right

2
ﬂvsi1126?+sin6?i sjnga_G 1__|oH |1

Left side has no ¢, right side has no 6, so both sides equal a constant «

Asin’ -+ sinei{siné? a—G}l — = _[

0O°H |1
00 0 |G

00> |H

PHYS 250 Lecture 6.1
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Separation 4

Work on the right-side equation
_ | 9°H |1
ST 00 |H

Multiply both sides by H and rearrange
O°H
d¢°

That’s an easy one: H(¢) = exp[imq)] will work, if 1= m’.

There 1s also a continuity condition: H (¢ = O) = H (q) = 27:).

That will be satisfied it m =0, =1, £2, etc.

PHYS 250 Lecture 6.1
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Solving for G(0) 1

Work on the left-side equation

/lsin29+sin9% sin 6 ?)g : =u=m’

Move the first term to the right, and multiply by G

ool 0G| L o,
smHa—Q smHa—Q —[m — Asin H]G

Now we plug in a guess for G, and its derivatives,
and see if there is a A that makes it work. We know m can be any integer.

Maybe G =sin6 could work? The double 6-derivative give back sinf.

It’s safer to try G =sin" @, and maybe some M value will make it work.
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Solving for G(0) 2

G(Q) - sin” @ First Guess
J . M1

—: Msin” 0 cosB

06

xsin@: Msin™ 0 cos6

9 : M?*sin” 0 cos* 0 —Msin"" 0
00

xsin@: M?*sin™ 6 cos” 6 —Msin"* 0

Expand: M’(sin" @)-(1-sin*6) —Msin"" 9

Collect:  M?sin" 6 (M + M)sin"" @
Equate: M’sin" §—(M’+ M)sin**>6=(m’ - Asin>6)sin* 0
Result: M’ =m’, A=M"+M=M(M+1)

m must be an integer, so M must be an integer.

Negative M gives infinities at 6 =0 and 8 =7 so M = ‘m‘

29



Solving for G(0) 3

The first few solutions are

G(6) A=M(M+1)

+4
13

+2
+1

PHYS 250 Lecture 6.1

sin” 0

sin”

sin” 6

sin @
|

20
12

6
2
0

There are also solutions with m = negative integer.
The power M of sin(0) is still positive, just abs(m).
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We are trying to solve sinf—

00

We just found that G =sin" 0 is a solution for non-negative integer M.

0

Next Guess

SIn@ —

06

Maybe G =sin" 8 cosé could work?

PHYS 250 Lecture 6.1

_ g

— [m2 ~ Asin’ 9](}
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Solving for G(0) 4

G(Q): sin" @ cosO

Second Guess

i: M sin™' 0 cos* @ —sin”*' @
00
xsin@: Msin™ 6 cos” 6 —sin”** @
a%: M?*sinY '@ cos’@ —Msin""02cos0O —(M+2)sinM“9c:0s9
xsin@: M?*sin¥0cos’@ —Msin"*602cosb —(M+2)sinM+29 cos®
M?sin" 0 cos 6 . .
Expand: , —Msin""* 0 2cosO —(M+2)s1n 260 cos6
x(l—sm 9)
(M2_I_ \
Collect: M?*sin™ 0 cos6 —| 2M + |[sin™** 0 cosb
\M+2)
(Mz + \

Equate: M’sin" 8 cos@ —

2M + |sin™** 0 cosf = (m2 — Asin’ H)SinMH cosf

\M+2)

Result: M°=m", A= M2+3M+2:(M+1)(M+2)

PHYS 250 Lecture 6.1
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Solving for G(0) 5

m G(Q) A= M(M+ 1)
+4 | sin* 0 20

+3 | sin’ @ 12

+2 | sin“ @ 6

+]1 | sin@ 2

0 1 0

m G(6) A=(M+1)(M+2)
+4 | sin® @ cos@ 30
+3 | sin’ @ cos6 20
+2 | sin® @ cos6 12
+1 | sin@ cosB

0 cosf



Solving for G(6) 6

Arrange by m and 4
m=>5 sin” @
m=4 sin‘@  sin*Ocosb
m=73 sin” @ sin” 0cos6
m="2 sin@  sin°@cosf
m=1 sin@ sm6Ocosl
m=0 1 cosO
A=0 A=2 A=6 A=12 A1=20 A =30
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Next Guess

. ol 0G| L o,
We are trying to solve sm@a—e sin 6 S0 |~ [m — Asin H]G

We just found that G =sin" @ cos@ is a solution for non-negative integer M.

We previously found that G =sin" @ is a solution.

Maybe G =sin" 8 cos” 0 could work? We know it works for N=1 and N = 0.
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Solving for G(0) 7

G(Q) . sin™ 60 cos"6 Third Guess

o : M(sinM_1 0 cos™*! 9) —N(sinM+1 0 cos™ ™ 0)

00

X sin@ : M(sinM 0 cos " 9) —N(sinM+2 0 cos" 9)

a M MSinM_IQCOSN+29 N((M+2)SinM+IHCOSN6 A
00 —sin”*'@ Ncos” 0 \—sinM+3 0 (N— l)cosN_2 0

XSs1n o :

Msin™ 0 cosV¥? 0 ((M+ 2)sinM+2 Ocos¥ O
M —N

—sin™** 0 Ncos" 0 \—sinM+4 0 (N — 1)cosN_2 0

MN +

Collect: M*sin” 0 cos"* 06—
N (M + 2)

)SinM+2 0 cos” O+ N(N— l)sinM+4 0 cos"' °0



Solving for G(6) 8

MN +

Collect: M*sin” 0 cos” ™ 60—
N (M + 2)

]sinM+2 0 cos” 0+ N(N— l)sinM+4 0 cos" 6

M*sin" 0cos" 0| [ MN + . sin"** @ cos" ™ 6
Expand: o - sin”** 0 cosN9+N(N—1) ;
><(1—s1n 9) N(M+2) x(l—cos 9)
(MZ_l_ A
MN +

Collect: M* [sinM 0 cos” 9] - [sinM+2 0 cos™ 9} + N(N - 1)[sinM+2 0 cos"? 9}

N(M+2)+
N(N-1)

\ /
Simplify: M| sin" cos" 0 |-(M+ N)(M+N+1)[ sin* 6 cos” 0 |+ N(N —1)[ sin** @ cos" 6|
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Solving for G(6) 9

Try the particular case of N =2
M? sinMHCOSNH—(M+N)(M+N+1)sinM+20cosN9+N(N—1)sinM+29 cos' 20
— M*sin” 0 00520—(M+2)(M+3)sinM+29 cos> @ +2sin”* 0

M?*sin™ 6 cosze—(M+2)(M+3)sinM+29 cos> @ +2sin”? 0= (m2 — A sin? H)SinMH cos” 0

M*=m*, A= (M + 2)(M + 3) almost works, but the red term on the left doesn't match.

PHYS 250 Lecture 6.1
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Next Guess

. ol 0G| L o,
We are trying to solve sm@a—e sin 6 S0 |~ [m — Asin H]G

We found that G =sin" 0 is a solution for non-negative integer M.

We found that G =sin" 0 cos@ is also a solution.

We noted that means G =sin" @ cos” 8 would work for N=1 and N =0.
But we just found that 1t doesn’t work for N = 2.

Most terms have a cos” @ factor, but there’s one term without it.

So try G =sin" 0-( cos* 0+ 4)=sin" 6 cos’ @+ Asin" @

and pray that some A will make 1t work..
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Solving for G(6) 9

Try the particular case of N =2
M? sinMHCOSNH—(M+N)(M+N+1)sinM+20cosN9+N(N—1)sinM+29 cos' 20
— M*sin” 0 00520—(M+2)(M+3)sinM+29 cos> @ +2sin”* 0

M?*sin™ 6 cosze—(M+2)(M+3)sinM+29 cos> @ +2sin”? 0= (m2 — A sin? H)SinMH cos” 0

M*=m*, A= (M + 2)(M + 3) almost works, but the red term on the left doesn't match.

But try G(Q) =sin" Ocos’ O . This gives extra terms on both sides
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We Already Did the Orange Term

G(Q) : sin 6 First Guess
J . M1

—: Msin” 0 cosB

06

xsin@: Msin™ 0 cos6

9 : M?*sin” 0 cos* 0 —Msin"" 0
00

xsin@: M?*sin™ 6 cos” 6 —Msin"* 0

Expand: M’ (sinM 9) - (1 —sin’ 9) —Msin"** 60

Collect: |M?sin™ @ —(M2 + M)sinM+2 0



Solving for G(6) 9

Try the particular case of N =2
M? sinMHCOSNH—(M+N)(M+N+1)sinM+20cosN9+N(N—1)sinM+29 cos' 20
— M*sin” 0 00529—(M+2)(M+3)sinM+29 cos> @ +2sin”* 0

M?*sin™ 6 cosze—(M+2)(M+3)sinM+29 cos> @ +2sin”? 0= (m2 — A sin? H)SinMH cos” 0

M*=m*, A= (M + 2)(M + 3) almost works, but the red term on the left doesn't match.

But try G(Q) =sin" Ocos’ O . This gives extra terms on both sides
M’ sin™ 6 cos® 0—( M +2)( M +3)sin"*"* @ cos* @+ 2sin"* 6 sin™ 0 cos’ 0
=(m* - Asin’ 6)

For sin” @ we need AM* = m°A. The A cancels out, and we already have M~ = m’.

For sin”** 0, we need (2 — AM(M + 1)) =—A A, so we pick A to satisfy it.

2=A(M(M+1)-2)—

PHYS 250 Lecture 6.1
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Solving for G(6) 10

Arrange by m and A
m=4 Sin49
m=3 sin’ @ sin’ @ cos @
m=2 sin” 6 sin” @cos6 sin’ H(cos2 0 — 1/7)
m=1 sin@  sin@cosf siné?(cos2 0 — 1/5)
m=10 1 cos@ cos’6-1/3
A=0 A=2 A=6 A=12 A =20




Solving for G(0) 11

M?* sinMHCosNH—(M+N)(M+N+1)sinM+29005N9+N(N—l)sinM”HcosN_zé?
— M*sin” 0 cos39—(M+3)(M+4)sinM+29 cos’ @+ 6sin’** @ cosb

M?*sin™ 6 00539—(M+3)(M+4)sinM+29 cos’ @ +6sin™? 0 cosf = (m2 — Asin’ G)SinM 0 cos’ 0

M =m*, A= (M + 3)(M + 4) almost works, but the red term on the left doesn't match.

But try G(H) =sin" @cos’ . This gives extra terms on both sides

PHYS 250 Lecture 6.1
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We Already Did the Orange Term

G(6):

d

EYS
Xsineo :
a .
EYS
XsSimae :

Expand:

Collect:

PHYS 250 Lecture 6.1

sin” @ cos@

-  M-1 2
Msin" 60 cos 6

M sin™ 6 cos* 0

2 - M-1 3
M smm" 6cos 6

M?*sin¥ 0 cos’ 0
M?*sin™ 6 cos6
><(1—sin2 9)

M?*sin” 0 cosO

l

Second Guess

—Msin¥" 0 2cos0

—Msin"**02cosb

— Msin¥™? 6 2cos6

(MZ_I_ \
—| 2M + |sin™* 6 cosO

\M+2)

—sin”' @

—sin”* @

—(M+ 2)sinM+1 0 cosb

—(M+2)sinM+2 0 cosb

—(M+ Z)SinM+2 0 cosb
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Solving for G(0) 11

M?*sin" 6 cosNH—(M+N)(M+N+1)sinM+26?cosN9+N(N—l)sinM”HcosN_zH
— M*sin” 0 cos39—(M+3)(M+4)sinM+29 cos’ @+ 6sin’** @ cosb

M?*sin™ 6 cos39—(M+3)(M+4)sinM+29 cos’ @ +6sin™? 0 cosf = (m2 — Asin’ G)SinM 0 cos’ 0

M =m*, A= (M + 3)(M + 4) almost works, but the red term on the left doesn't match.

But try G(H) =sin" @cos’ . This gives extra terms on both sides
M?*sin™ 6 cos®0— (M +3)( M +4)sin**> 0 cos’ @+ 6sin*"* 0 cos 6 sin™ 6 cos’ 0
= (m2 — Asin’ 9)

For sin” 8 cos@ we need AM” = m” A. The A cancels out, and we already have M’ = m".
For sin”** 0 cos’ @, we need (6 — A(M+ 1)(M+ 2)) =—AA, so we pick 4 to satisfy it.
6 —6

6=A((M+1)(M+2)-2)— 4= M2+3M+2—(M2+7M+12):4M+10
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Solving for G(0) 12

Arrange by m and A
m=4 sin* 6
m=3 sin’ @ sin’ @cos6
m=2 sin” 6 sin” Ocos O sin” t9(c:0s2 0—1/ 7)

3
ll

sin@  sinOcosO sinH(cosze—l/S)
m=0| 1 cos@ cos’8-1/3

A=0 A=2 A=06 A=12 A=20



Solving for G(0) 12

Arrange by m and A
m=4 sin* 6
m=3 sin° @ sin’ @cos6
m=2 sin” 6 sin” Ocos O sin” t9(c:0s2 0—1/ 7)
m=1 sin@  sinOcosO siné?(cos2 0 — 1/5) sin@(cos3 0 —3/7cos 9)
m=0| 1 cos@ cos’0—-1/3 cos’@—3/5cosb
A=0 A=2 A=6 A=12 A1=20
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Integer Powers
We already concluded that M 1n G(H) =sin” - Oy u (cos 9)

had to be an integer, because 1t was related to m from the ¢ equation,
and m has to be an integer.

M had to be positive to avoid infinities at 6 =0 and 60 = 7.

If N weren't an integer, the trick of adding terms with lower powers

of cos@ to deal with the extra + 2sin” " @ factor would never terminate.
Negative powers of cos@ would give infinities at 0 = /2 where cos@ =0

So N must also be a positive integer.
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Integer Powers
We already concluded that M 1n G(H) =sin” - Oy u (cos 9)

had to be an integer, because 1t was related to m from the ¢ equation,
and m has to be an integer.

M had to be positive to avoid infinities at 6 =0 and 6 = 7.

If N weren't an integer, the trick of adding terms with lower powers

of cos@ to deal with the extra + 2sin”** @ factor would never terminate.

An 1nfinite series 1sn't necessarily fatal, but negative powers of cos6@

would give infinities at @ = 7/2 where cos6 = 0.

So N must also be a positive integer.
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Associated Legendre Functions

The A value is always (M+N)(M+N+1).
It's convenient to define /= M+ N so A = €(€+ 1).

The G(Q) we have been mventing are called the
Associated Legendre Functions P (6’)

The superscript m 1s the positive or negative m value, not a power.

They are sin" @ times a polynomial 1n cos@ of order ¢ —‘m

5

which 1s the same as my M.
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Associated Legendre Functions 2

It’s conventional to normalize them so

O=rx O=rx

J alcoso)[ P (6)] = [ singas] P (6)] =1
6=0 0=0
m=4 105sin” 6
m=73 —15sin’ 6 —105sin’ @cos O
m="2 3sin” O 15sin” Ocos6 %Ssinz 9(70082 0 — 1)
m=1 —sin® —3sinOcosb —ésinH(Scosze—l) —gsin9(7cos36—3cos(9)
2 2
m=0 | cosf l(3(:082 6 — 1) l(50083 6 — 30039) l(350054 0 —30cos’ 6 + 3)
2 2 8
(=0 /=1 /=2 (=3 /=4




Associated Legendre Functions

—_— Pl“) —_— P3(1) —_— PS(“

-3} —_— Pyt — PalV)

-10 -08 -06 -04 -0.2 00 02 04 06

Associated Legendre functions for m = 1
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20}

— P32

Pal2)

— Pgl2)

Pgl2)

1.0 -1.0 -08 -06 -04 -02 0.0 0.2

0.4

0.6

51 Associated Legendre functions for m = 2

0.8

1.0

&
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Legendre Polynomials

The m = 0 case, which has no sin(6) factor, and changing from cos(0)
to —1 < x < 1 are called the Legendre Polynomials P,(x)

n P, (z)
0 1
1 T
2 % (3:1: — 1)
3 % (5:1: — 333)
4 < (352* — 302 + 3)
3 % (63.’1: — 70> + 15:0)
6 & (2312° — 3152* + 1052% — 5)
7 = (42927 — 693z° + 315z° — 35z)
8 L (64352° — 120129:6 +6930z* — 1260z -+ 35)
9 —= (1215527 — 2574027 + 18018z° — 46202° + 315z)
10 5 (46189z' — 1093952° + 90090z° — 30030z* + 3465z* — 63)

PHYS 250 Lecture 6.1 206



Legendre Polynomials

0.5

-0.5

Po(X)
P1(x)
P2(X)
P3(x)
Pa(X)
Ps(x)
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Spherical Harmonics

G(H) H (¢) =P (9) .e™ always appear together, so there is a standard name:
the Spherical Harmonics Yf (9, ¢) — pfm (3) o™

We found H(¢) and G(60) without any knowledge of the potential. That means
the Spherical Harmonics are always the same, whatever the potential.

m=4 sin* Be*”

m=23 sin’ Oe* sin’ @ cos O™

m="2 sin” @e*” sin” @ cos Oe*” sin’ 9(7 cos” 6 — 1)€2i¢

m=1 sin@e” sin@cosBe” sinH(S cos” 6 — 1) e sin9(7 cos® 0@ —3cos H)ei‘z’

m=0 | cosf 3cos’6—1 5cos’ @ —3cos6 35c0s*@—30cos* 0 +3
=0 /=1 /=2 /=73 (/=4

This 1s not the standard normalization, and there are also solutions for —m.
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Normalized Spherical Harmonics

m=4 + 315 sin® @ "
127
. 1
m=73 —‘/ismm e _ 31 ~ = sin’OcosB &
64rnr 64rx
m=2 + 1> sin’ @ &*" + isinzé?cosé? e*" + 45 31n20(7c0829—1)ezi"’
327t 64rnr 1287
15 / 21 45
m=1 — sin@ e? —,[—sinOcosB e’ — —smH(Scos 6 — 1) — 1n0(7cos 60— 3cos9)
47 8 64r 647T
1 3 5 7 9
m=0 —  +.|—cos0 +‘/ (3COS 6 — 1) +*/ (5cos36 3cost9) + (35cos49—30c0529+3)
T T 167 167 2567
/ 1 21 4
m=—1 + i sin@ e® + —5 sin@cosf e + 1n0(SCos 6 — 1) + 5 1n9(7cos 6 — 30089)
A ST 6471' 647z
15 35 45 .
m=-2 + sin® @ e** + sin@cosf e + sm20(700529—1)e_2’¢
327r 647r 1287
1
m=-3 + 35 sin’ @ e + 3 2 sin’ @cos@ e
647r 647t
m=—4 + 315 sin* @ ¢
5127
(=0 (=1 (=2 (=3 (=4
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Patterns and Jargon

The ¢ values go from O to infinity.

For each ¢ value, the m values go from —/¢ to +/
For / =0 there 1s only m = 0.

For / =1 thereis m =—-1,0 and +1.

For / =2 thereism=-2,—-1,0 +1, and +2.

The ¢ value 1s the the power of sin@ plus the highest power of cos@.

The power of sin@ is ‘m‘

The m value is the integer appearing in e".

¢ =0 are called S-states or S-wave states.
¢ =1 are called P-states or P-wave states.
¢ =2 are called D-states or D-wave states.
¢ =3 are called F-states or F-wave states.
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Visualizing the Spherical Harmonics

The Spherical Harmonics “exist” on the surface of a sphere.

The angular equations didn’t have any explicit i’s, so there are real solutions,

which are way easier to visualize. We get them by
eim¢ n e—imq) eiqu) _mimg .
> = cosm@ and > = sIn mqQ
]

We can then represent the value as a radial distance, with blue for positive
and yellow for negative.
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Visualizing the Spherical Harmonics 2

That 3D picture 1s pretty standard, but I don’t like 1t much, because 1t’s the
radial solution that determines how far the particle 1s from the origin, not the
Spherical Harmonic.

A better picture 1s to paint a sphere with the positive and negative real values.

«

v O

Qe

eceocC

CeO6GO0

You have to rotate the spheres to see everything. If you click the .gif version in

the Canvas Module, you will see the animation. Or you can just go to Wikipedia
where I got it.
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Visualizing the Spherical Harmonics 3

I think the best visualization 1s to use red and blue to represent positive and
negative real values, and plot vs 6 and ¢, so you can see everything at once.
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Observations

The m = 0 harmonics, the middle column, define bands of “latitude,”
independent of “longitude.”

The “maximum |m|” or “|m

= (" harmonics, the diagonal edges,

define bands of “longitude” that are increasingly focused near the “equator.”
The harmonics in between make “checkerboards”™

with fewer “bands” 1n latitude and more bands in “longitude™
as you move away from the center.
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For Next Time

Homework 5 1s due tonight at midnight.
Homework 6 will be posted Tuesday, due Sunday night.

Wednesday the last lecture. We’ll solve the radial Schrodinger equation
for the energies and radial wavefunctions. Particularly for hydrogen.

There will be a tutorial worksheet on Friday, and office hours.
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