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Schrodinger in 3D
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Schrodinger Equation in 3D, xyz version
Free Particle Solutions
Rectangular Box Solutions

Vector Calculus in Spherical Coordinates
Spherical Coordinates Laplacian Operator

Schrodinger for Spherically Symmetric Potential
Separating Spherical Schrodinger
Solving for φ-dependence
Solving for θ-dependence

(Wednesday we’ll add the r-dependence and do spherical well and Hydrogen)

Today
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The wavefunction has 3 space + 1 time argument: 

The x-derivative becomes 

where  is called the Laplacian operator.

The potential has 3 coordinate arguments: 

Overall we have 

or in vector notation

ψ x,t( )→ψ x, y, z,t( )

∂2ψ
∂x2

→ ∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2

= ∇2ψ

∇2ψ

V x( )→V x, y, z( )

i!
∂
∂t
ψ x, y, z,t( ) = −!2

2m
∇2ψ x, y, z,t( )+V x, y, z( )ψ x, y, z,t( )

i!
∂
∂t
ψ !x,t( ) = −!2

2m
∇2ψ !x,t( )+V !x( )ψ !x,t( )

Schrodinger in xyz
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Solutions are  with 

The k-vector points in the direction the particle is moving.

Of course we can still superpose solutions with different k-values
to make wave packets, standing waves, etc.

i!
∂
∂t
ψ !x,t( ) = −!2

2m
∇2ψ !x,t( )+ 0

ψ !x,t( ) = exp i !k ⋅ !x −ωt( )⎡⎣ ⎤⎦ E =
!p2

2m
=
"
!
k( )2
2m

= !ω

Free Particle in xyz
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Assume  , so  where 

Also 

Plug into Schrodinger: 

Divide both sides by :

  

The left side doesn’t depend on , the right side doesn’t depend on t,
so both must be equal to some constant we will call E.

ψ !x,t( ) = f !x( ) ⋅ g t( ) ∂
∂t
ψ = f !x( ) ⋅ ∂∂t g t( ) = f ⋅ ′g ′g = ∂g

∂t

∇2ψ = ∂2 f
∂x2

+ ∂2 f
∂y2

+ ∂2 f
∂z2

⎡

⎣
⎢

⎤

⎦
⎥ ⋅ g t( ) = ∇2 f⎡⎣ ⎤⎦ ⋅ g t( )

i!f ⋅ ′g = −!2

2m
∇2 f⎡⎣ ⎤⎦ ⋅ g +V

"x( ) f ⋅ g
f ⋅ g
i!f ⋅ ′g
f ⋅ g

= −!2

2m
∇2 f⎡⎣ ⎤⎦ ⋅ g
f ⋅ g

+V "x( ) f ⋅ g
f ⋅ g

i!
′g t( )
g t( ) =

−!2

2m
∇2 f "x( )
f !x( ) +V !x( )

!x

Time-Independent xyz Schrodinger
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One equation is 

We get simple complex-exponential time-dependence

The other equation is 

  

Just like the 1D version, except with the Laplacian, and vector  as the argument.

i! 1
g
dg
dt

= E→ dg
g

= E
i!
dt→ ln g = E

i!
t→ g = exp −i Et

!
⎡

⎣
⎢

⎤

⎦
⎥

−!2

2m
∇2 f "x( )
f !x( ) +V !x( ) = E

→ −!2

2m
∇2 f "x( )+V !x( ) ⋅ f !x( ) = E ⋅ f !x( )

→ −!2

2m
∇2ψ !x( )+V !x( ) ⋅ψ !x( ) = E ⋅ψ !x( )

!x

Time-Independent xyz Schrodinger 2
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Let  

The time-independent equation is .  

This has solutions 

The boundary conditions are that the wavefunction must be zero at the walls.

This is automatically satisfied at x = 0, y = 0, and z = 0.

It is satisfied at 

Note that there are 3 different n values, which don’t have to be the same.

V !x( ) = 0 if 0 < x < a, and 0 < y < b,  and 0 < z < c, otherwise V !x( ) = +∞

−!2

2m
∇2ψ !x( ) = E ⋅ψ !x( )

ψ !x( ) = sin kxx( ) ⋅sin ky y( ) ⋅sin kzz( )

x = a if kx =
nxπ
a

, at y = b if ky =
nyπ
b

, and at z = c if kz =
nzπ
c

Particle in 3D Box
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Particle in 2D Box

nx = 1,  ny = 1 nx = 2,  ny = 1

nx = 3,  ny = 1 nx = 2,  ny = 2
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Particle in 2D Box 2

nx = 2, ny = 2

nx = 3,  ny = 3

nx = 3,  ny = 2

nx = 4,  ny = 3
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Writing explicitly , then

 

Then 

ψ !x( ) = sin nxπ
a
x

⎛
⎝⎜

⎞
⎠⎟
⋅sin

nyπ
b
y

⎛

⎝⎜
⎞

⎠⎟
⋅sin

nzπ
c
z

⎛
⎝⎜

⎞
⎠⎟

∇2ψ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
⎡

⎣
⎢

⎤

⎦
⎥sin

nxπ
a
x

⎛
⎝⎜

⎞
⎠⎟
⋅sin

nyπ
b
y

⎛

⎝⎜
⎞

⎠⎟
⋅sin

nzπ
c
z

⎛
⎝⎜

⎞
⎠⎟

= −
nxπ
a

⎛
⎝⎜

⎞
⎠⎟

2

sin
nxπ
a
x

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅sin

nyπ
b
y

⎛

⎝⎜
⎞

⎠⎟
⋅sin

nzπ
c
z

⎛
⎝⎜

⎞
⎠⎟

+sin
nxπ
a
x

⎛
⎝⎜

⎞
⎠⎟
⋅ −

nyπ
b

⎛

⎝⎜
⎞

⎠⎟

2

sin
nyπ
b
y

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⋅sin

nzπ
c
z

⎛
⎝⎜

⎞
⎠⎟

+sin
nxπ
a
x

⎛
⎝⎜

⎞
⎠⎟
⋅sin

nyπ
b
y

⎛

⎝⎜
⎞

⎠⎟
⋅ −

nzπ
c

⎛
⎝⎜

⎞
⎠⎟

2

sin
nzπ
c
z

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= −
nxπ
a

⎛
⎝⎜

⎞
⎠⎟

2

+
nyπ
b

⎛

⎝⎜
⎞

⎠⎟

2

+
nzπ
c

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥
⋅ψ

−!2

2m
∇2ψ !x( ) = E ⋅ψ !x( )→ E =

nx
2

a2 +
ny

2

b2 +
nz

2

c2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ !

2π 2

2m
 with nx , ny , nz > 0

Particle in 3D Box 2
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For the special case that a = b = c = w, the cubical box, 

The lowest energy state is  so 

The next state will have one n = 2 and the others 1.  There are 3 ways to do it.

.

These different wavefunctions with the same energy are called degenerate.

The next state will have two n = 2 and one being 1.  There are 3 ways to do it.

.

Enx , ny , nz = nx
2 + ny

2 + nz
2⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2

nx = ny = nz = 1 E111 = 3⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2

E211 = E121 = E112 = 22 +12 +12⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2
= 6⎡⎣ ⎤⎦ ⋅

!2π 2

2mw2

E221 = E122 = E212 = 22 + 22 +12⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2
= 9⎡⎣ ⎤⎦ ⋅

!2π 2

2mw2

Particle in Cubical Box
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Another state is all 3 n’s being 2: 

There is only one way to do that.

But there is also 

These are slightly lower in energy than state 222.

E222 = 22 + 22 + 22⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2
= 12⎡⎣ ⎤⎦ ⋅

!2π 2

2mw2

E311 = E131 = E113 = 32 +12 +12⎡⎣ ⎤⎦ ⋅
!2π 2

2mw2
= 11⎡⎣ ⎤⎦ ⋅

!2π 2

2mw2

Particle in Cubical Box 2
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The kinetic energy term  doesn’t depend on direction.

The Coulomb potential  doesn’t depend on direction.

The 3D harmonic oscillator potential with all spring constants the same is 

 and doesn’t depend on direction.

Maybe we can do the separation of variables trick for spherical problems, 
so the potential only shows up in a radial equation.

We need to figure out  in spherical coordinates.

−!2

2m
∇2ψ !x( )

V r( ) = qQ
4πε0

1
r

V !x( ) = 12 kx
2 + ky2 + kz2( ) = 12 kr

2

∇2ψ =
!
∇⋅
!
∇ψ( )

Spherical Symmetry
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This is the physics convention 
for spherical coordinates.
θ is measured from the +z-axis.
φ is the xy projection of the r vector,
  measured from the +x axis

The coordinate “steps” are

The volume element looks like this:

Δsr = Δr
Δsθ = rΔθ
Δsφ = r sinθ Δφ

Spherical Coordinates
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The spherical gradient is straightforward: just plug in the coordinate step Δ’s

Note that the angle derivative terms have a factor of 1/r in them
(all 3 terms have dimensions of 1/r).

Note also that the φ derivative term has an extra  factor.

!
∇F = r̂ ΔF

Δsr
+ θ̂ ΔF

Δsθ
+ φ̂ ΔF

Δsφ

= r̂ ΔF
Δr

+ θ̂ ΔF
rΔθ

+ φ̂ ΔF
r sinθ Δφ

= r̂ ∂F
∂r

+ θ̂ 1
r
∂F
∂θ

+ φ̂ 1
r sinθ

∂F
∂φ

1
sinθ

Spherical Gradient
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The divergence can be defined as the net flux of a vector function 
out of a “cube,” divided by the volume of the “cube.”  

Our vector function is written 
.  

It has 3 components, in the r, θ, and φ directions.
The numerical values of the components can be different functions of r, θ, and φ.

The flux of the r-component  through the “inner r” face is 
the value of the r-component times the surface area perpendicular to it:

!
G r,θ ,φ( ) = r̂ ⋅Gr r,θ ,φ( )+ θ̂ ⋅Gθ r,θ ,φ( )+ φ̂ ⋅Gφ r,θ ,φ( )

Φr

Φr = Gr ⋅ Δsθ ⋅ Δsφ
= Gr ⋅rΔθ ⋅r sinθ Δφ

= Gr r
2 sinθ Δθ Δφ

Spherical Divergence 1
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We want the net flux of the r-component out of the “cube”

The θ and φ values don’t change from one face to the other, 
but r varies across the “cube” as well as Gr, so we should write this as

The volume of the “cube” is 

The divergence contribution is flux over volume

ΔrΦr = Δr Gr ⋅rΔθ ⋅r sinθ Δφ( ) = Δr Grr
2 sinθ Δθ Δφ( )

ΔrΦr = Δr Grr
2⎡⎣ ⎤⎦sinθ Δθ Δφ

V = Δr ⋅rΔθ ⋅r sinθ Δφ = ΔrΔθ Δφ ⋅r 2 sinθ

ΔrΦr

V
=
Δr Grr

2⎡⎣ ⎤⎦sinθ Δθ Δφ
ΔrΔθ Δφ ⋅r 2 sinθ

= 1
r 2

∂ r 2Gr⎡⎣ ⎤⎦
∂r

Spherical Divergence 2
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The θ-flux through the red “square” is 

We want the net θ-flux as we step in θ

The volume is the same as before.  The divergence contribution is

Φθ = Gθ ⋅ Δr ⋅ Δφ = Gθ ⋅ Δr ⋅r sinθ Δφ

ΔθΦθ = Δθ Gθ ⋅ Δr ⋅r sinθ Δφ( ) = Δθ sinθ Gθ⎡⎣ ⎤⎦rΔrΔφ

ΔθΦθ

V
=
Δθ sinθ Gθ⎡⎣ ⎤⎦rΔrΔφ
ΔrΔθ Δφ ⋅r 2 sinθ

= 1
r sinθ

∂ sinθ Gθ⎡⎣ ⎤⎦
∂θ

Spherical Divergence 3
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The φ-flux through the red “square” is 

We want the net φ-flux as we step in φ
In this case, only the function changes, not the area

The volume is the same as before.  The divergence contribution is

Φφ = Gφ ⋅ Δr ⋅ Δθ = Gφ ⋅ Δr ⋅r Δθ

ΔφΦφ = Δφ Gφ ⋅ Δr ⋅r sinθ Δφ( ) = Δφ sinθ Gφ
⎡⎣ ⎤⎦rΔrΔφ

ΔφΦφ

V
=

ΔφGφ rΔrΔθ
ΔrΔθ Δφ ⋅r 2 sinθ

= 1
r sinθ

∂Gφ

∂φ

Spherical Divergence 4
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The divergence is the sum of the 3 terms:

!
∇⋅
!
G = 1

r 2
∂ r 2Gr⎡⎣ ⎤⎦

∂r
+ 1
r sinθ

∂ sinθ Gθ⎡⎣ ⎤⎦
∂θ

+ 1
r sinθ

∂Gφ

∂φ

Spherical Divergence 5
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Recall .  So we plug the spherical components of  

which are  

into the spherical divergence 

That gives 

We can factor some terms out of the brackets

∇2F =
!
∇⋅
!
∇F( ) !

∇F
!
∇F( )

r
= ∂F

∂r
,
!
∇F( )

θ
= 1
r
∂F
∂θ
,
!
∇F( )

φ
= 1
r sinθ

∂F
∂φ

!
∇⋅
!
G = 1

r 2
∂ r 2Gr⎡⎣ ⎤⎦

∂r
+ 1
r sinθ

∂ sinθ Gθ⎡⎣ ⎤⎦
∂θ

+ 1
r sinθ

∂Gφ

∂φ

∇2F =
!
∇⋅
!
∇F( ) = 1r 2

∂ r 2 ∂F
∂r

⎡
⎣⎢

⎤
⎦⎥

∂r
+ 1
r sinθ

∂ sinθ 1
r
∂F
∂θ

⎡
⎣⎢

⎤
⎦⎥

∂θ
+ 1
r sinθ

∂ 1
r sinθ

∂F
∂φ

⎡
⎣⎢

⎤
⎦⎥

∂φ

∇2F = 1
r 2

∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂F
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2F
∂φ 2

Spherical Laplacian
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!
∇F = r̂ ∂F

∂r
+ θ̂ 1
r
∂F
∂θ

+ φ̂ 1
r sinθ

∂F
∂φ

!
∇⋅
!
G = 1

r 2
∂ r 2Gr⎡⎣ ⎤⎦

∂r
+ 1
r sinθ

∂ sinθ Gθ⎡⎣ ⎤⎦
∂θ

+ 1
r sinθ

∂Gφ

∂φ

∇2F = 1
r 2

∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂F
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2F
∂φ 2

Spherical Derivatives Summary
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Plug the spherical Laplacian into Schrodinger with a spherical potential

Believe it or not, that’s separable into 

And the  are the same (set of) functions for any potential, 
as long as it’s spherical.

The  functions of course depend on the potential, 
and also have some dependence on which ones of  you use.

Eψ r,θ ,φ( ) = − !
2

2M
∇2ψ r,θ ,φ( )+V r( )ψ r,θ ,φ( )

Eψ = − !
2

2M
1
r 2

∂
∂r

r 2 ∂ψ
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2ψ
∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
+V r( )ψ

ψ r,θ ,φ( ) = F r( )G θ( )H φ( )

G θ( )  and H φ( )

F r( )
G θ( )  and H φ( )

Spherical Schrodinger
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Factor 1/r2 out of the bracket

Move V to the left, and multiply both sides by 

Move the term with r-dependence to the left side

Eψ = − !
2

2M
1
r 2

∂
∂r

r 2 ∂ψ
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2ψ
∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
+V r( )ψ

Eψ = − !2

2Mr 2
∂
∂r

r 2 ∂ψ
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
sin2θ

∂2ψ
∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
+V r( )ψ

2Mr 2

!2

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ψ = − ∂

∂r
r 2 ∂ψ

∂r
⎡

⎣
⎢

⎤

⎦
⎥ +

1
sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
sin2θ

∂2ψ
∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ψ + ∂

∂r
r 2 ∂ψ

∂r
⎡

⎣
⎢

⎤

⎦
⎥ = − 1

sinθ
∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ −

1
sin2θ

∂2ψ
∂φ 2

Separation 1



PHYS 250 Lecture 6.1 25

Assume , plug in, and do derivatives

Divide by FGH

Left side has no angles, right side has no r, so both sides equal a constant λ

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ψ + ∂

∂r
r 2 ∂

∂r
ψ⎡

⎣
⎢

⎤

⎦
⎥ = − 1

sinθ
∂
∂θ

sinθ ∂
∂θ

ψ⎡

⎣
⎢

⎤

⎦
⎥ −

1
sin2θ

∂2

∂φ 2
ψ

⎡

⎣
⎢

⎤

⎦
⎥

ψ = F r( )G θ( )H φ( )

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦FGH + ∂

∂r
r 2

∂
∂r
FGH

⎡

⎣
⎢

⎤

⎦
⎥ = − 1

sinθ
∂
∂θ

sinθ ∂
∂θ
FGH

⎡

⎣
⎢

⎤

⎦
⎥ −

1
sin2θ

∂2

∂φ 2
FGH

⎡

⎣
⎢

⎤

⎦
⎥

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦FGH + ∂

∂r
r 2

∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥GH = − 1

sinθ
∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥FH − 1

sin2θ
∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥FG

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ +

∂
∂r

r 2
∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥
1
F
= − 1
sinθ

∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

− 1
sin2θ

∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ +

∂
∂r

r 2
∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥
1
F
= λ = − 1

sinθ
∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

− 1
sin2θ

∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

Separation 2
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Work on the right-side equation

Multiply both sides by 

Put θ-dependence on the left, φ dependence on the right

Left side has no φ, right side has no θ, so both sides equal a constant μ

λ = − 1
sinθ

∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

− 1
sin2θ

∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

sin2θ

λ sin2θ = −sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

− ∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

λ sin2θ + sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

= − ∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

λ sin2θ + sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

= µ = − ∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

Separation 3
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Work on the right-side equation

Multiply both sides by H and rearrange

That’s an easy one:  will work, if .

There is also a continuity condition: .
That will be satisfied if m = 0, ±1, ±2, etc.

µ = − ∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

∂2H
∂φ 2

= −µH

H φ( ) = exp imφ⎡⎣ ⎤⎦ µ = m2

H φ = 0( ) = H φ = 2π( )

Separation 4
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Work on the left-side equation

Move the first term to the right, and multiply by G

Now we plug in a guess for G, and its derivatives, 
and see if there is a λ that makes it work.  We know m can be any integer.

Maybe  could work?  The double θ-derivative give back .

It’s safer to try , and maybe some M value will make it work.

λ sin2θ + sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

= µ = m2

sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ = m2 − λ sin2θ⎡⎣ ⎤⎦G

G = sinθ sinθ

G = sinM θ

Solving for G(θ) 1
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Solving for G(θ) 2
G θ( ) : sinM θ First Guess

∂
∂θ

: M sinM−1θ cosθ

×sinθ : M sinM θ cosθ
∂
∂θ

: M 2 sinM−1θ cos2θ −M sinM+1θ

×sinθ : M 2 sinM θ cos2θ −M sinM+2θ

Expand: M 2 sinM θ( ) ⋅ 1− sin2θ( ) −M sinM+2θ

Collect: M 2 sinM θ − M 2 + M( )sinM+2θ

  Equate:   M 2 sinM θ − M 2 + M( )sinM+2θ = m2 − λ sin2θ( )sinM θ

  Result:    M 2 = m2 ,   λ = M 2 + M = M M +1( )
  m must be an integer, so M  must be an integer.

  Negative M  gives infinities at θ = 0 and θ = π  so M = m
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Solving for G(θ) 3
The first few solutions are

There are also solutions with m = negative integer. 
The power M of sin(θ) is still positive, just abs(m).

m G θ( ) λ = M M +1( )
±4 sin4θ 20
±3 sin3θ 12
±2 sin2θ 6
±1 sinθ 2
0 1 0
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We are trying to solve 

We just found that  is a solution for non-negative integer M.

Maybe  could work?

sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ = m2 − λ sin2θ⎡⎣ ⎤⎦G

G = sinM θ

G = sinM θ cosθ

Next Guess



PHYS 250 Lecture 6.1 32

Solving for G(θ) 4
G θ( ) : sinM θ  cosθ Second Guess

∂
∂θ

: M sinM−1θ cos2θ −sinM+1θ

×sinθ : M sinM θ cos2θ −sinM+2θ
∂
∂θ

: M 2 sinM−1θ cos3θ −M sinM+1θ 2cosθ − M + 2( )sinM+1θ cosθ

×sinθ : M 2 sinM θ cos3θ −M sinM+2θ 2cosθ − M + 2( )sinM+2θ cosθ

Expand:
M 2 sinM θ cosθ
× 1− sin2θ( )

⎛

⎝
⎜

⎞

⎠
⎟ −M sinM+2θ 2cosθ − M + 2( )sinM+2θ cosθ

Collect: M 2 sinM θ cosθ −
M 2 +
2M +
M + 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

sinM+2θ cosθ

  Equate:   M 2 sinM θ cosθ −
M 2 +
2M +
M + 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

sinM+2θ cosθ = m2 − λ sin2θ( )sinM θ cosθ

  Result:    M 2 = m2 ,   λ = M 2 + 3M + 2 = M +1( ) M + 2( )
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Solving for G(θ) 5
m G θ( ) λ = M M +1( )
±4 sin4θ 20
±3 sin3θ 12
±2 sin2θ 6
±1 sinθ 2
0 1 0

m G θ( ) λ = M +1( ) M + 2( )
±4 sin4θ cosθ 30

±3 sin3θ cosθ 20

±2 sin2θ cosθ 12
±1 sinθ cosθ 6
0 cosθ 2
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Solving for G(θ) 6
Arrange by m and λ

m = 5 sin5θ
m = 4 sin4θ sin4θ cosθ
m = 3 sin3θ sin3θ cosθ
m = 2 sin2θ sin2θ cosθ
m = 1 sinθ sinθ cosθ
m = 0 1 cosθ

λ = 0 λ = 2 λ = 6 λ = 12 λ = 20 λ = 30
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We are trying to solve 

We just found that  is a solution for non-negative integer M.

We previously found that  is a solution.

Maybe  could work?  We know it works for N = 1 and N = 0.

sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ = m2 − λ sin2θ⎡⎣ ⎤⎦G

G = sinM θ cosθ

G = sinM θ

G = sinM θ cosN θ

Next Guess
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Solving for G(θ) 7
G θ( ) : sinM θ  cosNθ Third Guess

∂
∂θ

: M sinM−1θ cosN+1θ( ) −N sinM+1θ cosN−1θ( )
×sinθ : M sinM θ cosN+1θ( ) −N sinM+2θ cosN−1θ( )
∂
∂θ

: M
M sinM−1θ cosN+2θ
−sinM+1θ N cosN θ

⎛

⎝⎜
⎞

⎠⎟
−N

M + 2( )sinM+1θ cosN θ

−sinM+3θ N −1( )cosN−2θ

⎛

⎝
⎜

⎞

⎠
⎟

×sinθ : M
M sinM θ cosN+2θ
−sinM+2θ N cosN θ

⎛

⎝⎜
⎞

⎠⎟
−N

M + 2( )sinM+2θ cosN θ

−sinM+4θ N −1( )cosN−2θ

⎛

⎝
⎜

⎞

⎠
⎟

Collect:  M 2 sinM θ cosN+2θ −
MN +
N M + 2( )

⎛

⎝⎜
⎞

⎠⎟
sinM+2θ cosN θ + N N −1( )sinM+4θ cosN−2θ
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Solving for G(θ) 8
Collect:  M 2 sinM θ cosN+2θ −

MN +
N M + 2( )

⎛

⎝⎜
⎞

⎠⎟
sinM+2θ cosN θ + N N −1( )sinM+4θ cosN−2θ

Expand:  
M 2 sinM θ cosN θ
× 1− sin2θ( )

⎛

⎝
⎜

⎞

⎠
⎟ −

MN +
N M + 2( )

⎛

⎝⎜
⎞

⎠⎟
sinM+2θ cosN θ + N N −1( ) sinM+2θ cosN−2 θ

× 1− cos2θ( )
⎛

⎝
⎜

⎞

⎠
⎟

Collect:   M 2 sinM θ cosN θ⎡⎣ ⎤⎦ −

M 2 +
MN +
N M + 2( )+
N N −1( )

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

sinM+2θ cosN θ⎡⎣ ⎤⎦ + N N −1( ) sinM+2θ cosN−2θ⎡⎣ ⎤⎦

Simplify:  M 2 sinM θ cosN θ⎡⎣ ⎤⎦ − M + N( ) M + N +1( ) sinM+2θ cosN θ⎡⎣ ⎤⎦ + N N −1( ) sinM+2θ cosN−2θ⎡⎣ ⎤⎦
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Solving for G(θ) 9
Try the particular case of N = 2

M 2 sinM θ cosN θ − M + N( ) M + N +1( )sinM+2θ cosN θ + N N −1( )sinM+2θ cosN−2θ

→ M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ = m2 − λ sin2θ( )sinM θ cos2θ

M 2 = m2 ,   λ = M + 2( ) M + 3( )  almost works, but the red term on the left doesn't match.

But try G θ( ) = sinM θ cos2θ + AsinM θ .  This gives extra terms on both sides

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

+A M 2 sinM θ − M M +1( )sinM+2θ⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= m2 − λ sin2θ( ) sinM θ cos2θ

+AsinM θ
⎡

⎣
⎢

⎤

⎦
⎥

For sinM θ  we need AM 2 = m2A.  The A cancels out, and we already have M 2 = m2.

For sinM+2θ , we need 2− AM M +1( )( ) = −λA, so we pick A to satisfy it.

2 = A M M +1( )− λ( )→ A = 2
M 2 + M − M 2 +5M + 6( ) =

−2
4M + 6
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We are trying to solve 

We found that  is a solution for non-negative integer M.

We found that  is also a solution.

We noted that means  would work for N = 1 and N = 0.

But we just found that it doesn’t work for N = 2.

Most terms have a  factor, but there’s one term without it.

So try  
and pray that some A will make it work..

sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ = m2 − λ sin2θ⎡⎣ ⎤⎦G

G = sinM θ

G = sinM θ cosθ

G = sinM θ cosN θ

cos2θ

G = sinM θ ⋅ cos2θ + A( ) = sinM θ cos2θ + AsinM θ

Next Guess



PHYS 250 Lecture 6.1 164

Solving for G(θ) 9
Try the particular case of N = 2

M 2 sinM θ cosN θ − M + N( ) M + N +1( )sinM+2θ cosN θ + N N −1( )sinM+2θ cosN−2θ

→ M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ = m2 − λ sin2θ( )sinM θ cos2θ

M 2 = m2 ,   λ = M + 2( ) M + 3( )  almost works, but the red term on the left doesn't match.

But try G θ( ) = sinM θ cos2θ + AsinM θ .  This gives extra terms on both sides

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

+A M 2 sinM θ − M M +1( )sinM+2θ⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= m2 − λ sin2θ( ) sinM θ cos2θ

+AsinM θ
⎡

⎣
⎢

⎤

⎦
⎥

For sinM θ  we need AM 2 = m2A.  The A cancels out, and we already have M 2 = m2.

For sinM+2θ , we need 2− AM M +1( )( ) = −λA, so we pick A to satisfy it.

2 = A M M +1( )− λ( )→ A = 2
M 2 + M − M 2 +5M + 6( ) =

−2
4M + 6
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We Already Did the Orange Term
G θ( ) : sinM θ First Guess

∂
∂θ

: M sinM−1θ cosθ

×sinθ : M sinM θ cosθ
∂
∂θ

: M 2 sinM−1θ cos2θ −M sinM+1θ

×sinθ : M 2 sinM θ cos2θ −M sinM+2θ

Expand: M 2 sinM θ( ) ⋅ 1− sin2θ( ) −M sinM+2θ

Collect: M 2 sinM θ − M 2 + M( )sinM+2θ

  Equate:   M 2 sinM θ − M 2 + M( )sinM+2θ = m2 − λ sin2θ( )sinM θ

  Result:    M 2 = m2 ,   λ = M 2 + M = M M +1( )
  m must be an integer, so M  must be an integer.

  Negative M  gives infinities at θ = 0 and θ = π  so M = m
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Solving for G(θ) 9
Try the particular case of N = 2

M 2 sinM θ cosN θ − M + N( ) M + N +1( )sinM+2θ cosN θ + N N −1( )sinM+2θ cosN−2θ

→ M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ = m2 − λ sin2θ( )sinM θ cos2θ

M 2 = m2 ,   λ = M + 2( ) M + 3( )  almost works, but the red term on the left doesn't match.

But try G θ( ) = sinM θ cos2θ + AsinM θ .  This gives extra terms on both sides

M 2 sinM θ cos2θ − M + 2( ) M + 3( )sinM+2θ cos2θ + 2sinM+2θ

+A M 2 sinM θ − M M +1( )sinM+2θ⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= m2 − λ sin2θ( ) sinM θ cos2θ

+AsinM θ
⎡

⎣
⎢

⎤

⎦
⎥

For sinM θ  we need AM 2 = m2A.  The A cancels out, and we already have M 2 = m2.

For sinM+2θ , we need 2− AM M +1( )( ) = −λA, so we pick A to satisfy it.

2 = A M M +1( )− λ( )→ A = 2
M 2 + M − M 2 +5M + 6( ) =

−2
4M + 6
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Solving for G(θ) 10
Arrange by m and λ

m = 4 sin4θ
m = 3 sin3θ sin3θ cosθ
m = 2 sin2θ sin2θ cosθ sin2θ cos2θ −1 7( )
m = 1 sinθ sinθ cosθ sinθ cos2θ −1 5( )
m = 0 1 cosθ cos2θ −1 3

λ = 0 λ = 2 λ = 6 λ = 12 λ = 20
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Solving for G(θ) 11
For the N = 3 case

M 2 sinM θ cosN θ − M + N( ) M + N +1( )sinM+2θ cosN θ + N N −1( )sinM+2θ cosN−2θ

→ M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ

M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ = m2 − λ sin2θ( )sinM θ cos3θ

M 2 = m2 ,   λ = M + 3( ) M + 4( )  almost works, but the red term on the left doesn't match.

But try G θ( ) = sinM θ cos3θ + AsinM θ cosθ .  This gives extra terms on both sides

M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ

+A M 2 sinM θ cosθ − M +1( ) M + 2( )sinM+2θ cosθ⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= m2 − λ sin2θ( ) sinM θ cos3θ

+AsinM θ cosθ
⎡

⎣
⎢

⎤

⎦
⎥

For sinM θ cosθ  we need AM 2 = m2A.  The A cancels out, and we already have M 2 = m2.

For sinM+2θ cos3θ , we need 6− A M +1( ) M + 2( )( ) = −λA, so we pick A to satisfy it.

6 = A M +1( ) M + 2( )− λ( )→ A = 6
M 2 + 3M + 2− M 2 + 7M +12( ) =

−6
4M +10
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We Already Did the Orange Term
G θ( ) : sinM θ  cosθ Second Guess

∂
∂θ

: M sinM−1θ cos2θ −sinM+1θ

×sinθ : M sinM θ cos2θ −sinM+2θ
∂
∂θ

: M 2 sinM−1θ cos3θ −M sinM+1θ 2cosθ − M + 2( )sinM+1θ cosθ

×sinθ : M 2 sinM θ cos3θ −M sinM+2θ 2cosθ − M + 2( )sinM+2θ cosθ

Expand:
M 2 sinM θ cosθ
× 1− sin2θ( )

⎛

⎝
⎜

⎞

⎠
⎟ −M sinM+2θ 2cosθ − M + 2( )sinM+2θ cosθ

Collect: M 2 sinM θ cosθ −
M 2 +
2M +
M + 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

sinM+2θ cosθ

  Equate:   M 2 sinM θ cosθ −
M 2 +
2M +
M + 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

sinM+2θ cosθ = m2 − λ sin2θ( )sinM θ cosθ

  Result:    M 2 = m2 ,   λ = M 2 + 3M + 2 = M +1( ) M + 2( )
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Solving for G(θ) 11
For the N = 3 case

M 2 sinM θ cosN θ − M + N( ) M + N +1( )sinM+2θ cosN θ + N N −1( )sinM+2θ cosN−2θ

→ M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ

M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ = m2 − λ sin2θ( )sinM θ cos3θ

M 2 = m2 ,   λ = M + 3( ) M + 4( )  almost works, but the red term on the left doesn't match.

But try G θ( ) = sinM θ cos3θ + AsinM θ cosθ .  This gives extra terms on both sides

M 2 sinM θ cos3θ − M + 3( ) M + 4( )sinM+2θ cos3θ + 6sinM+2θ cosθ

+A M 2 sinM θ cosθ − M +1( ) M + 2( )sinM+2θ cosθ⎡⎣ ⎤⎦

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= m2 − λ sin2θ( ) sinM θ cos3θ

+AsinM θ cosθ
⎡

⎣
⎢

⎤

⎦
⎥

For sinM θ cosθ  we need AM 2 = m2A.  The A cancels out, and we already have M 2 = m2.

For sinM+2θ cos3θ , we need 6− A M +1( ) M + 2( )( ) = −λA, so we pick A to satisfy it.

6 = A M +1( ) M + 2( )− λ( )→ A = 6
M 2 + 3M + 2− M 2 + 7M +12( ) =

−6
4M +10
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Solving for G(θ) 12
Arrange by m and λ

m = 4 sin4θ
m = 3 sin3θ sin3θ cosθ
m = 2 sin2θ sin2θ cosθ sin2θ cos2θ −1 7( )
m = 1 sinθ sinθ cosθ sinθ cos2θ −1 5( ) sinθ cos3θ − 3 7cosθ( )
m = 0 1 cosθ cos2θ −1 3 cos3θ − 3 5cosθ

λ = 0 λ = 2 λ = 6 λ = 12 λ = 20
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Solving for G(θ) 12
Arrange by m and λ

m = 4 sin4θ
m = 3 sin3θ sin3θ cosθ
m = 2 sin2θ sin2θ cosθ sin2θ cos2θ −1 7( )
m = 1 sinθ sinθ cosθ sinθ cos2θ −1 5( ) sinθ cos3θ − 3 7cosθ( )
m = 0 1 cosθ cos2θ −1 3 cos3θ − 3 5cosθ

λ = 0 λ = 2 λ = 6 λ = 12 λ = 20
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Integer Powers
We already concluded that M  in G θ( ) = sinM θ ⋅QN , M cosθ( )
had to be an integer, because it was related to m from the φ  equation,
and m has to be an integer.  
M  had to be positive to avoid infinities at θ = 0 and θ = π .

If N  weren't an integer, the trick of adding terms with lower powers

of cosθ  to deal with the extra + 2sinM+2θ  factor would never terminate.

Negative powers of cosθ  would give infinities at θ = π 2  where cosθ = 0.

So N  must also be a positive integer.
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Integer Powers
We already concluded that M  in G θ( ) = sinM θ ⋅QN , M cosθ( )
had to be an integer, because it was related to m from the φ  equation,
and m has to be an integer.  
M  had to be positive to avoid infinities at θ = 0 and θ = π .

If N  weren't an integer, the trick of adding terms with lower powers

of cosθ  to deal with the extra + 2sinM+2θ  factor would never terminate.

An infinite series isn't necessarily fatal, but negative powers of cosθ  
would give infinities at θ = π 2  where cosθ = 0.

So N  must also be a positive integer.
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Associated Legendre Functions
The λ  value is always M + N( ) M + N +1( ).  
It's convenient to define ℓ = M + N  so λ = ℓ ℓ+1( ).

The G θ( )  we have been inventing are called the 

Associated Legendre Functions Pℓ
m θ( ).

The superscript m is the positive or negative m value, not a power.

They are sin m θ  times a polynomial in cosθ  of order ℓ− m ,  

which is the same as my N .



PHYS 250 Lecture 6.1 204

Associated Legendre Functions 2
It’s conventional to normalize them so

d cosθ( ) Pℓm θ( )⎡⎣ ⎤⎦
2

θ=0

θ=π

∫ = sinθ dθ Pℓ
m θ( )⎡⎣ ⎤⎦

2

θ=0

θ=π

∫ = 1

m = 4 105sin4θ
m = 3 −15sin3θ −105sin3θ cosθ

m = 2 3sin2θ 15sin2θ cosθ 15
2
sin2θ 7cos2θ −1( )

m = 1 −sinθ −3sinθ cosθ − 3
2
sinθ 5cos2θ −1( ) − 5

2
sinθ 7cos3θ − 3cosθ( )

m = 0 1 cosθ 1
2
3cos2θ −1( ) 1

2
5cos3θ − 3cosθ( ) 1

8
35cos4θ − 30cos2θ + 3( )

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
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Associated Legendre Functions
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Legendre Polynomials
The m = 0 case, which has no sin(θ) factor, and changing from cos(θ)
to –1 < x < 1 are called the Legendre Polynomials Pn(x)
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Legendre Polynomials
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 always appear together, so there is a standard name: 
the Spherical Harmonics 

We found H(φ) and G(θ) without any knowledge of the potential. That means 
the Spherical Harmonics are always the same, whatever the potential.

This is not the standard normalization, and there are also solutions for –m.

G θ( ) ⋅H φ( ) = Pℓm θ( ) ⋅eimφ
Yℓ
m θ ,φ( ) = Pℓm θ( ) ⋅eimφ

m = 4 sin4θe4iφ

m = 3 sin3θe3iφ sin3θ cosθe3iφ

m = 2 sin2θe2iφ sin2θ cosθe2iφ sin2θ 7cos2θ −1( )e2iφ
m = 1 sinθeiφ sinθ cosθeiφ sinθ 5cos2θ −1( )eiφ sinθ 7cos3θ − 3cosθ( )eiφ
m = 0 1 cosθ 3cos2θ −1 5cos3θ − 3cosθ 35cos4θ − 30cos2θ + 3

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

Spherical Harmonics
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Normalized Spherical Harmonics
m = 4 + 315

512π
sin4θ e4iφ

m = 3 − 35
64π

sin3θ e3iφ − 315
64π

sin3θ cosθ e3iφ

m = 2 + 15
32π

sin2θ e2iφ + 35
64π

sin2θ cosθ e2iφ + 45
128π

sin2θ 7cos2θ −1( )e2iφ

m = 1 − 3
4π
sinθ eiφ − 15

8π
sinθ cosθ eiφ − 21

64π
sinθ 5cos2θ −1( )eiφ − 45

64π
sinθ 7cos3θ − 3cosθ( )eiφ

m = 0 1
4π

+ 3
4π
cosθ + 5

16π
3cos2θ −1( ) + 7

16π
5cos3θ − 3cosθ( ) + 9

256π
35cos4θ − 30cos2θ + 3( )

m = −1 + 3
4π
sinθ e− iφ + 15

8π
sinθ cosθ e− iφ + 21

64π
sinθ 5cos2θ −1( )e− iφ + 45

64π
sinθ 7cos3θ − 3cosθ( )e− iφ

m = −2 + 15
32π

sin2θ e−2iφ + 35
64π

sin2θ cosθ e−2iφ + 45
128π

sin2θ 7cos2θ −1( )e−2iφ

m = −3 + 35
64π

sin3θ e−3iφ + 315
64π

sin3θ cosθ e−3iφ

m = −4 + 315
512π

sin4θ e−4iφ

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
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The  values go from 0 to infinity.

For each  value, the m values go from –  to +
For  there is only m = 0.
For  there is m = –1, 0 and +1.
For  there is m = –2, –1, 0 +1, and +2.

The  value is the the power of  plus the highest power of .

The power of  is .

The m value is the integer appearing in .

 are called S-states or S-wave states.
 are called P-states or P-wave states.
 are called D-states or D-wave states.
 are called F-states or F-wave states.

ℓ

ℓ ℓ ℓ
ℓ = 0
ℓ = 1
ℓ = 2

ℓ sinθ cosθ

sinθ m

eimφ

ℓ = 0
ℓ = 1
ℓ = 2
ℓ = 3

Patterns and Jargon
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The Spherical Harmonics “exist” on the surface of a sphere. 

The angular equations didn’t have any explicit i’s, so there are real solutions,
which are way easier to visualize.  We get them by

  and 

We can then represent the value as a radial distance, with blue for positive
and yellow for negative.

eimφ + e− imφ

2
= cosmφ eimφ − e− imφ

2i
= sinmφ

Visualizing the Spherical Harmonics
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That 3D picture is pretty standard, but I don’t like it much, because it’s the 
radial solution that determines how far the particle is from the origin, not the 
Spherical Harmonic.

A better picture is to paint a sphere with the positive and negative real values.

You have to rotate the spheres to see everything.  If you click the .gif version in 
the Canvas Module, you will see the animation.   Or you can just go to Wikipedia 
where I got it.

Visualizing the Spherical Harmonics 2
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I think the best visualization is to use red and blue to represent positive and 
negative real values, and plot vs θ and φ, so you can see everything at once.

Visualizing the Spherical Harmonics 3
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The m = 0 harmonics, the middle column, define bands of “latitude,”
independent of “longitude.”

The “maximum ” or “ ” harmonics, the diagonal edges,
define bands of “longitude” that are increasingly focused near the “equator.”

The harmonics in between make “checkerboards” 
with fewer “bands” in latitude and more bands in “longitude”
as you move away from the center.

m m = ℓ

Observations
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Homework 5 is due tonight at midnight.

Homework 6 will be posted Tuesday, due Sunday night.

Wednesday the last lecture.  We’ll solve the radial Schrodinger equation
for the energies and radial wavefunctions.  Particularly for hydrogen.

There will be a tutorial worksheet on Friday, and office hours.

For Next Time


