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Student rating of professors is open.

• Students will be using the online system, Blue by Explorance, specifically 
designed to deliver and complete course surveys. The system is housed on a 
secure server located in Canada.

• You can log into Blue via Canvas during the survey period to check your 
response rates.  

Suggestions for increasing response rate: 
• Consider letting students know how the survey responses are used at UBC 

so they are aware that their input can make a difference, such as by 
providing feedback that you can use to make improvements in the future.

• Assure students that the surveys are confidential. You will receive a 
summary report only after all grades are submitted and finalized. There is no 
risk of repercussions to students for giving honest, constructive feedback.

• Where feasible, provide 10-15 minutes in class for students to complete the 
survey using their devices to log into Canvas.

Rate Me

https://seoi.ubc.ca/surveys
https://seoi.ubc.ca/surveys
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 where  is called the Laplacian operator.

Schrodinger:   

                           

Free-Particle:   with 

ψ x,t( )→ψ x, y, z,t( ) =ψ !x,t( ) V x( )→V x, y, z( ) =V !x,t( )

∂2ψ
∂x2

→ ∂2ψ
∂x2

+ ∂2ψ
∂y2

+ ∂2ψ
∂z2

= ∇2ψ ∇2ψ

−!2

2m
∇2ψ !x,t( )+V !x( )ψ !x,t( ) = i! ∂∂tψ

!x,t( )
−!2

2m
∇2ψ !x( )+V !x( ) ⋅ψ !x( ) = E ⋅ψ !x( )

ψ !x,t( ) = exp i !k ⋅ !x −ωt( )⎡⎣ ⎤⎦ E =
!p2

2m
=
"
!
k( )2
2m

= !ω

Schrodinger in xyz
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Boundary conditions:  at all 6 faces

Solutions: 

Energies: 

Note that there are 3 different n values in 3D (there was only 1 in 1D)

There could be more than one wavefunction with the same energy.
These are called degenerate states.

V !x( ) = 0 if 0 < x < wx , and 0 < y < wy ,  and 0 < z < wz , otherwise V !x( ) = +∞

ψ !x( ) = 0

ψ nx , ny , nz
!x( ) = sin

nxπ
wx
x

⎛

⎝⎜
⎞

⎠⎟
⋅sin

nyπ
wy
y

⎛

⎝
⎜

⎞

⎠
⎟ ⋅sin

nzπ
wz
z

⎛

⎝⎜
⎞

⎠⎟
 with nx , ny , nz > 0

Enx , ny , nz =
nx
2

wx
2 +
ny
2

wy
2 +
nz
2

wz
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
⋅ !

2π 2

2m

Particle in Rectangular Box
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This is the physics convention 
for spherical coordinates.
θ is measured from the +z-axis.
φ is measured from the +x axis,
and on the xy projection of the r vector.

The coordinate “steps” are

The volume element looks like this:

Δr = Δr,  Δθ = rΔθ ,  and Δφ = r sinθ Δφ

Spherical Coordinates
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Gradient:         

Divergence:  

Laplacian:     

!
∇F = r̂ ∂F

∂r
+ θ̂ 1
r
∂F
∂θ

+ φ̂ 1
r sinθ

∂F
∂φ

!
∇⋅
!
G = 1

r 2
∂ r 2Gr⎡⎣ ⎤⎦

∂r
+ 1
r sinθ

∂ sinθ Gθ⎡⎣ ⎤⎦
∂θ

+ 1
r sinθ

∂Gφ

∂φ

∇2F = 1
r 2

∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂F
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2F
∂φ 2

Spherical Derivatives
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Equation: 

Separable into 

Separate r:  

Separate θ and φ: 

Solve φ:  with m = 0, ±1, ±2, etc.

− !
2

2M
1
r 2

∂
∂r

r 2 ∂ψ
∂r

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sinθ

∂
∂θ

sinθ ∂ψ
∂θ

⎡

⎣
⎢

⎤

⎦
⎥ +

1
r 2 sin2θ

∂2ψ
∂φ 2

⎧
⎨
⎩

⎫
⎬
⎭
+V r( )ψ = Eψ

ψ r,θ ,φ( ) = F r( ) ⋅G θ( ) ⋅H φ( )

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ +

∂
∂r

r 2
∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥
1
F
= λ = − 1

sinθ
∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

− 1
sin2θ

∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

λ sin2θ + sinθ ∂
∂θ

sinθ ∂G
∂θ

⎡

⎣
⎢

⎤

⎦
⎥
1
G

= µ = − ∂2H
∂φ 2

⎡

⎣
⎢

⎤

⎦
⎥
1
H

H φ( ) = exp imφ⎡⎣ ⎤⎦  with µ = m2

Spherical Schrodinger
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Associated Legendre Functions
Solutions for θ are the Legendre Functions  with 

These are normalized so

Pℓ
m θ( ) λ = ℓ ℓ+1( )

m = 4 105sin4θ
m = 3 −15sin3θ −105sin3θ cosθ

m = 2 3sin2θ 15sin2θ cosθ 15
2
sin2θ 7cos2θ −1( )

m = 1 −sinθ −3sinθ cosθ − 3
2
sinθ 5cos2θ −1( ) − 5

2
sinθ 7cos3θ − 3cosθ( )

m = 0 1 cosθ 1
2
3cos2θ −1( ) 1

2
5cos3θ − 3cosθ( ) 1

8
35cos4θ − 30cos2θ + 3( )

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4

d cosθ( ) Pℓm θ( )⎡⎣ ⎤⎦
2

θ=0

θ=π

∫ = sinθ dθ Pℓ
m θ( )⎡⎣ ⎤⎦

2

θ=0

θ=π

∫ = 1
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Spherical Harmonics
 always appear together, so there is a standard name: 

the Spherical Harmonics 

We found H(φ) and G(θ) without any knowledge of the potential. That means 
the Spherical Harmonics are always the same, whatever the (spherical) potential.

This is not the standard normalization, and there are also solutions for –m.

G θ( ) ⋅H φ( ) = Pℓm θ( ) ⋅eimφ
Yℓ
m θ ,φ( ) = Pℓm θ( ) ⋅eimφ

m = 4 sin4θe4iφ

m = 3 sin3θe3iφ sin3θ cosθe3iφ

m = 2 sin2θe2iφ sin2θ cosθe2iφ sin2θ ⋅ 7cos2θ −1( )e2iφ
m = 1 sinθeiφ sinθ cosθeiφ sinθ ⋅ 5cos2θ −1( )eiφ sinθ ⋅ 7cos3θ − 3cosθ( )eiφ
m = 0 1 cosθ 3cos2θ −1 5cos3θ − 3cosθ 35cos4θ − 30cos2θ + 3

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
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Normalized Spherical Harmonics
m = 4 + 315

512π
sin4θ e4iφ

m = 3 − 35
64π

sin3θ e3iφ − 315
64π

sin3θ cosθ e3iφ

m = 2 + 15
32π

sin2θ e2iφ + 35
64π

sin2θ cosθ e2iφ + 45
128π

sin2θ 7cos2θ −1( )e2iφ

m = 1 − 3
4π
sinθ eiφ − 15

8π
sinθ cosθ eiφ − 21

64π
sinθ 5cos2θ −1( )eiφ − 45

64π
sinθ 7cos3θ − 3cosθ( )eiφ

m = 0 1
4π

+ 3
4π
cosθ + 5

16π
3cos2θ −1( ) + 7

16π
5cos3θ − 3cosθ( ) + 9

256π
35cos4θ − 30cos2θ + 3( )

m = −1 + 3
4π
sinθ e− iφ + 15

8π
sinθ cosθ e− iφ + 21

64π
sinθ 5cos2θ −1( )e− iφ + 45

64π
sinθ 7cos3θ − 3cosθ( )e− iφ

m = −2 + 15
32π

sin2θ e−2iφ + 35
64π

sin2θ cosθ e−2iφ + 45
128π

sin2θ 7cos2θ −1( )e−2iφ

m = −3 + 35
64π

sin3θ e−3iφ + 315
64π

sin3θ cosθ e−3iφ

m = −4 + 315
512π

sin4θ e−4iφ

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4
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The  values go from 0 to infinity.

For each  value, the m values go from –  to +
For  there is only m = 0.
For  there is m = –1, 0 and +1.
For  there is m = –2, –1, 0 +1, and +2.

The  value is the the power of  plus the highest power of .

The power of  is .

The m value is the integer appearing in .

 are called S-states or S-wave states.
 are called P-states or P-wave states.
 are called D-states or D-wave states.
 are called F-states or F-wave states.

ℓ

ℓ ℓ ℓ
ℓ = 0
ℓ = 1
ℓ = 2

ℓ sinθ cosθ

sinθ m

eimφ

ℓ = 0
ℓ = 1
ℓ = 2
ℓ = 3

Patterns and Jargon
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Visualizing the Spherical Harmonics 3
I think the best visualization is to use red and blue to represent positive and 
negative real values, and plot vs θ and φ, so you can see everything at once.
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Radial Schrodinger Equation
The radial Schrodinger Equation is 

Capital M to avoid confusion with little m from the Spherical Harmonics.

Multiply both sides by  and re-arrange to get

This looks a little like the 1D Schrodinger equation, except for the red stuff.

2Mr 2

!2
E −V r( )⎡⎣ ⎤⎦ +

∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥
1
F
= λ = ℓ ℓ+1( )

!2

2Mr 2
F r( )

− !2

2Mr 2
∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥ + V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥F r( ) = EF r( )
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Radial Schrodinger Equation 2
One new term comes in like a correction to the potential:

The term  is the kinetic energy due to angular momentum, 

which classically is  with 

So angular momentum is  (almost).

There is also a transformation that gets rid of the extra factors of .

V r( )→V r( )+ !
2λ

2Mr 2
=V r( )+ !

2ℓ ℓ+1( )
2Mr 2

!2ℓ ℓ+1( )
2Mr 2

porbital
2

2M
=
r ⋅ porbital( )2
2Mr 2

= L2

2Mr 2
L2 = !2ℓ ℓ+1( )

L = !ℓ

r 2
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Radial Schrodinger Equation 3

Substitute 

into 

and we get

Now do the derivative to get

Do the cancellation

F r( ) = U r( )
r

  and  ∂F
∂r

=
r ∂U
∂r

−U

r 2

− !2

2Mr 2
∂
∂r

r 2 ∂F
∂r

⎡

⎣
⎢

⎤

⎦
⎥ + V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥F r( ) = EF r( )

− !
2

2M
1
r 2

∂
∂r

r ∂U
∂r

−U
⎛
⎝⎜

⎞
⎠⎟
+ V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥
U
r
= EU

r

− !
2

2M
1
r 2

∂U
∂r

+ r ∂
2U
∂r 2

− ∂U
∂r

⎛
⎝⎜

⎞
⎠⎟
+ V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥
U
r
= EU

r

− !
2

2M
1
r 2

r ∂
2U
∂r 2

⎛
⎝⎜

⎞
⎠⎟
+ V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥
U
r
= EU

r
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Radial Schrodinger Equation 4

Multiply both sides by r to get 

This is exactly the same form as the 1D Schrodinger Equation, 
except for the extra term due to angular kinetic energy.

But , so if  is finite at r = 0, we get infinite .

So unlike 1D Schrodinger, we have the condition that  at r = 0.

In order for the wavefunction to be normalizable, we must have 
as  faster than .  That implies  faster than .

− !
2

2M
1
r 2

r ∂
2U
∂r 2

⎛
⎝⎜

⎞
⎠⎟
+ V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥
U
r
= EU

r

− !
2

2M
∂2

∂r 2
U r( )+ V r( )+ !

2λ
2Mr 2

⎡

⎣
⎢

⎤

⎦
⎥U r( ) = EU r( )

F r( ) = U r( )
r

U r( ) F 0( )

U r( ) = 0

F r( )→ 0
r→∞ 1 r 2 U r( )→ 0 1 r
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The Form of Spherical Solutions
The full wavefunction is 

The same  appears in both  and 

The U-function satisfies the radial Schrodinger equation:

This must be solved for 

Each  has an energy .  Since m doesn’t appear in the radial 
equation, the different m states for given  have the same energy.

ψ kℓm r,θ ,φ( ) = Ukℓ r( )
r

⋅Yℓ
m θ ,φ( )

ℓ Ukℓ r( ) Yℓ
m θ ,φ( )

− !
2

2M
∂2Ukℓ

∂r 2 + V r( )+ !
2ℓ ⋅ ℓ+1( )
2Mr 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Ukℓ = EUkℓ   with  Ukℓ 0( ) = 0

ℓ = 0, then ℓ = 1, then ℓ = 2, etc.

ψ kℓm r,θ ,φ( ) Ekℓ
k  and ℓ
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Quantum Indices
Solutions to 1D Schrodinger have 1 quantum index, usually called n.

Solutions to xyz Schrodinger have 3 quantum indices nx, ny, nz.

The spherical wavefunction  has 3 indices 

The  function has 1 quantum index m.

The  function has 2 quantum indices  and the same m.

The Spherical Harmonics  have 2 quantum indices:  and m.

The  radial function has 2 quantum indices: k, and the same  as 

ψ kℓm r,θ ,φ( ) = Ukℓ r( )
r

⋅Yℓ
m θ ,φ( )

Hm φ( ) = eimφ

Pℓ
m θ( ) ℓ

Yℓ
m θ ,φ( ) ℓ

Ukℓ r( ) ℓ Yℓ
m θ ,φ( )
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Energy vs k  and ℓ
The lowest k value is set by convenience: 0 some potentials, 1 for others. 

The lowest value for  is always zero, which gives the lowest potential correction

The lowest energy will be for  and whatever the smallest k value is.

Increasing k for a given  will increase the energy.

Increasing  for a given k will increase the energy.

It turns out for a 1/r potential (and only 1/r), increasing k by 1 at fixed 
gives exactly the same energy as increasing  by 1 at fixed k.

So we talk about .  But only for 1/r potentials!  In general, it’s k and .

 ℓ

!2ℓ ℓ+1( )
2Mr 2

= 0

 ℓ = 0

 ℓ

 ℓ

 ℓ
 ℓ

n = k + ℓ  ℓ
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Infinite Spherical Square Well
The potential is zero inside a sphere with radius R, and infinite outside.

The reduced radial equation inside is 

The U function must be zero at r = 0 (so U/r is not infinite), and zero at radius R.

If , it’s just 

The equation and boundary conditions are exactly the same as for the infinite 
square well in 1D.  So the solutions are the same:

and energies                         

− !
2

2M
∂2U
∂r 2

+
!2ℓ ℓ+1( )
2Mr 2

U = EU

 ℓ = 0 − !
2

2M
∂2U
∂r 2

+ 0 = EU

Uk0 r( ) = sin kπr
R

 with k = 1, 2, 3, ...

Ek0 = k
2 !

2π 2

2MR2



PHYS 250 Lecture 6.2 21

Infinite Spherical Square Well 2
For ψ, we divide by r, and multiply by the Spherical Harmonic.
Since ,  only m = 0 is possible.  That Spherical Harmonic is constant.
So the complete wavefunctions (not normalized) for  are

 ℓ = 0
 ℓ = 0

ψ k00 =
1
r
sin kπr

R
⋅Y0

0 θ ,φ( ) = 1r sin
kπr
R

r R
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Infinite Spherical Square Well 3
When , the effective potential looks like .  

The solutions are Bessel functions, and we won’t do them here.

ℓ > 0 1 r 2
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Infinite Spherical Square Well 4

Increasing k (going up at fixed ) increases the energy.
Increasing  at fixed k (diagonal) increases the energy.  But nothing lines up.

 ℓ
 ℓ

Phys 330 Lecture 18

Infinite Spherical Square Well
This has zero potential inside a sphere, and infinite potential 
outside.  It can be solved in spherical coordinates, using 
spherical Bessel functions and spherical harmonics.

There is no relation of energy levels for different   

 

# values.

0
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Spherical Shell Potential

The reduced radial equation inside is

same as before: 

The U function must go to zero at R and R + ΔR.

For ,  

So the solutions are

and energies                         

V = 0  for  R < r < R + ΔR,   V = ∞ elsewhere

− !
2

2M
∂2U
∂r 2

+
!2ℓ ℓ+1( )
2Mr 2

U = EU

 ℓ = 0 − !
2

2M
∂2U
∂r 2

+ 0 = EU

Uk0 r( ) = sin
kπ ⋅ r − R( )

ΔR
 with k = 1, 2, 3, ...

Ek0 = k
2 !2π 2

2M⋅ ΔR( )2

R
ΔR



PHYS 250 Lecture 6.2 25

Spherical Shell Potential 2

If , the extra term is essentially constant.

So the energy goes up by   for 

Since we assumed , this is much less than 

We can combine these into 

− !
2

2M
∂2U
∂r 2

+
!2ℓ ℓ+1( )
2Mr 2

U = EU

ΔR≪ R

!2ℓ ℓ+1( )
2Mr 2

→
!2ℓ ℓ+1( )

2M ⋅ R + ΔR 2( )2
→
!2ℓ ℓ+1( )
2MR2

ΔEℓ ≈
"2ℓ ℓ+1( )
2MR2

ℓ > 0

ΔR≪ R Ek0 = k
2 !2π 2

2M⋅ ΔR( )2

Ekℓ ≈
"2π 2

2M⋅ ΔR( )2
⋅ k 2 +

ℓ ⋅ ℓ+1( )
π 2 ⋅ ΔR

2

R2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

R
ΔR
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Spherical Shell Potential 3

For , the bracket factor is 1 for k = 1
and 4 for k = 2, an increase of 3.

What  value makes  be as large as ?

If , the right side is 2961 so .

There are  allowed m-values for each  value, 
so there are about  different k = 1 states below the first k = 2 state.

Ekℓ ≈
"2π 2

2M⋅ ΔR( )2
⋅ k 2 +

ℓ ⋅ ℓ+1( )
π 2 ⋅ ΔR

2

R2
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

ℓ = 0

ℓ E1ℓ E20

ℓ ⋅ ℓ+1( )
π 2 ⋅ ΔR

2

R2
= 3→ ℓ ⋅ ℓ+1( ) = 3⋅ πR

ΔR
⎛
⎝⎜

⎞
⎠⎟

2

R = 10 ⋅ ΔR ℓ ≈ 54

2ℓ+1 ℓ
552 = 3025

R
ΔR
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Rotating Molecules
We could change the radial potential from a square well to something 

more realistic, like an offset harmonic oscillator: .

That would be a decent model of the potential for small vibrations
of a molecule made of 2 atoms with average separation R.

That molecule could also rotate. 

There could easily be hundreds or thousands or rotational states
between successive radial states.

This is the origin of “molecular absorption bands.”

V r( ) = 12 k ⋅ r − R( )2



PHYS 250 Lecture 6.2 28

Radial Equation for Coulomb Potential
We plug in the Coulomb potential  to get

Put the derivative on one side, and everything else on the other side

Multiply by 

V r( ) = − q2

4πε0r

− !
2

2M
∂2U
∂r 2

+ − q2

4πε0r
+
!2ℓ ℓ+1( )
2Mr 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
U = EU r( )

− !
2

2M
∂2U
∂r 2

= E + q2

4πε0r
−
!2ℓ ℓ+1( )
2Mr 2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
U r( )

− 2M
!2

∂2U
∂r 2

= − 2M
!2
E − 2Mq

2

4π!2ε0

1
r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥U r( )
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Radial Equation for Coulomb Potential 2

Define  and  to save some writing

At large radius, this is approximately .

X is positive, but we expect the bound state energies to be negative.

So the second derivative is proportional to the function, with a plus sign.
So the solutions should be exponential at large radius.

∂2U
∂r 2

= − 2M
!2
E − 2Mq

2

4π!2ε0

1
r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥U r( )

X = 2M
!2

Y = Mq2

2π!2ε0

∂2U
∂r 2

= −XE −Y 1
r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥U r( )

∂2U
∂r 2

= −X ⋅E ⋅U r( )
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First Guess
A decaying exponential satisfies the boundary condition as ,
but violates the condition that .  Let’s try 

Plug into  which gives

r→∞
U r = 0( ) = 0
U r( ) = r n ⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

∂U
∂r

= nrn−1 ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟
− r

n

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

∂2U
∂r 2

= n n−1( )r n−2 ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟
− nr

n−1

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟
− nr

n−1

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟
+ r

n

b2
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

= n n−1( ) 1
r 2

− 2n
b
1
r
+ 1
b2

⎡

⎣
⎢

⎤

⎦
⎥r

n exp − r
b

⎛
⎝⎜

⎞
⎠⎟

∂2U
∂r 2

= −XE −Y 1
r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥U r( )

n n−1( ) 1
r 2

− 2n
b
1
r
+ 1
b2

⎡

⎣
⎢

⎤

⎦
⎥r

n exp − r
b

⎛
⎝⎜

⎞
⎠⎟
= −XE −Y 1

r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥r

n exp − r
b

⎛
⎝⎜

⎞
⎠⎟
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First Guess 2

Divide out  and rearrange the terms

For this to be true at all r, we need 

The Bohr Model radius is  so .

n n−1( ) 1
r 2

− 2n
b
1
r
+ 1
b2

⎡

⎣
⎢

⎤

⎦
⎥r

n exp − r
b

⎛
⎝⎜

⎞
⎠⎟
= −XE −Y 1

r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥r

n exp − r
b

⎛
⎝⎜

⎞
⎠⎟

r n exp −br( )
n n−1( ) 1

r 2
− 2n
b
1
r
+ 1
b2

⎡

⎣
⎢

⎤

⎦
⎥ = ℓ ℓ+1( ) 1

r 2
−Y 1
r
− XE⎡

⎣
⎢

⎤

⎦
⎥

2n
b

= Y→ b = 2n
Y

= 2n ⋅
2π!2ε0
Mq2

= n ⋅
4π!2ε0
Mq2

a0 =
4π!2ε0
q2M

b = na0
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First Guess 3
We also need 

Those are exactly the Bohr Model energies!

We also need .  This requires .

The lowest , so the lowest power n in  is n = 1.

1
b2

= −X ⋅E→ E = − 1
b2
1
X

= 1
n
Mq2

4π!2ε0

⎛

⎝⎜
⎞

⎠⎟

2

⋅ !
2

2M
= − 1

n2
M
2

q2

4π!2ε0

⎛

⎝⎜
⎞

⎠⎟

2

n n−1( ) = ℓ ℓ+1( ) n = ℓ+1

ℓ = 0 r n ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟
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First Few  SolutionsU (r)

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

n = 4 r 4 exp − r
4a0

⎛

⎝⎜
⎞

⎠⎟

n = 3 r3 exp − r
3a0

⎛

⎝⎜
⎞

⎠⎟

n = 2 r 2 exp − r
2a0

⎛

⎝⎜
⎞

⎠⎟

n = 1 r exp − r
a0

⎛

⎝⎜
⎞

⎠⎟
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Observations
In the Bohr Model, the lowest state has angular momentum = .

In Schrodinger, the lowest state has , which means zero angular momentum.

In the Bohr Model, an atom is planar, no matter what the angular momentum.

In Schrodinger, atoms are not flat.  

The  states are spherical, because that Spherical Harmonic is uniform.

The states with  are neither spherical nor flat.  They are the product
of a radial wavefunction and a non-uniform Spherical Harmonic.

We will see soon that the r-dependence of the wavefunction can get complicated.

!

ℓ = 0

ℓ = 0

ℓ > 0
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First Few  SolutionsU (r)

The peaks are at 1, 4, 9, and 16, which is how the Bohr orbit radius depends on n.
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First Few  SolutionsF(r)
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Another Guess
Let’s guess that the solutions are polynomials in r times exponentials.
The simplest is a 2-term polynomial.

U r( ) = r n + Arn−1⎡⎣ ⎤⎦ ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟

∂U
∂r

= nrn−1 + A n−1( )r n−2⎡⎣ ⎤⎦ ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟
− r

n + Arn−1

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

∂2U
∂r 2

= n n−1( )r n−2 + A n−1( ) n− 2( )r n−3⎡⎣ ⎤⎦ ⋅exp − r
b

⎛
⎝⎜

⎞
⎠⎟
−
nrn−1 + A n−1( )r n−2

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

−
nrn−1 + A n−1( )r n−2

b
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟
+ r

n + Arn−1

b2
⋅exp − r

b
⎛
⎝⎜

⎞
⎠⎟

= A n−1( ) n− 2( )r n−3 + bn n−1( )− 2A n−1( )
b

rn−2 + −2bn+ A
b2

r n−1 + 1
b2
r n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
exp − r

b
⎛
⎝⎜

⎞
⎠⎟
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Another Guess 2
Expand the right-hand side of the reduced radial Schrodinger Equation:

So the total equation is 

Match coefficients of : .  This requires . 

Match coefficients of :  .  The same result as the first guess.

−XE −Y 1
r
+ ℓ ℓ+1( ) 1

r 2
⎡

⎣
⎢

⎤

⎦
⎥ r

n + Arn−1⎡⎣ ⎤⎦exp − r
b

⎛
⎝⎜

⎞
⎠⎟

= −XErn −Yrn−1 + ℓ ℓ+1( )r n−2 − AXErn−1 − AYrn−2 + Aℓ ℓ+1( )r n−3⎡⎣ ⎤⎦exp − r
b

⎛
⎝⎜

⎞
⎠⎟

A n−1( ) n− 2( )r n−3 + bn n−1( )− 2A n−1( )
b

rn−2 + −2bn+ A
b2

r n−1 + 1
b2
r n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
exp − r

b
⎛
⎝⎜

⎞
⎠⎟

= −XErn −Yrn−1 + ℓ ℓ+1( )r n−2 − AXErn−1 − AYrn−2 + Aℓ ℓ+1( )r n−3{ }exp − r
b

⎛
⎝⎜

⎞
⎠⎟

r n−3 A n−1( ) n− 2( ) = Aℓ ℓ+1( ) n = ℓ+ 2

r n −XE = 1
b2
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Another Guess 3

Match coefficients of :  .  

Plug  into the above: .  

Do some cancellations and , same as the first guess.

A n−1( ) n− 2( )r n−3 + bn n−1( )− 2A n−1( )
b

rn−2 + −2bn+ A
b2

r n−1 + 1
b2
r n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
exp − r

b
⎛
⎝⎜

⎞
⎠⎟

= −XErn −Yrn−1 + ℓ ℓ+1( )r n−2 − AXErn−1 − AYrn−2 + Aℓ ℓ+1( )r n−3{ }exp − r
b

⎛
⎝⎜

⎞
⎠⎟

r n−1 −2bn+ A
b2

= −Y − AXE

−XE = 1
b2

−2bn+ A
b2

= −Y + A
b2

−2n
b

= −Y→ b = 2n
Y

= na0
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Another Guess 4

Match coefficients of : 

Plug  and  into right, and expand: 

               

Do some cancellations : 

A n−1( ) n− 2( )r n−3 + bn n−1( )− 2A n−1( )
b

rn−2 + −2bn+ A
b2

r n−1 + 1
b2
r n

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
exp − r

b
⎛
⎝⎜

⎞
⎠⎟

= −XErn −Yrn−1 + ℓ ℓ+1( )r n−2 − AXErn−1 − AYrn−2 + Aℓ ℓ+1( )r n−3{ }exp − r
b

⎛
⎝⎜

⎞
⎠⎟

r n−2

bn ⋅ n−1( )− 2A ⋅ n−1( )
b

= ℓ ⋅ ℓ+1( )− AY

n ⋅ n−1( )− 2A ⋅ n−1( )
b

= ℓ ⋅ ℓ+1( )− AY
n = ℓ+ 2→ ℓ = n− 2 Y = 2n

b

n2 − n− 2nA
b

+ 2A
b

= n− 2( ) ⋅ n−1( )− 2nAb = n2 − 3n+ 2− 2nA
b

2
b
A = 2− 2n→ A = 2− 2n

2
b = 1− n

b
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Another Guess 5

Plug in  to get 

A should have dimensions of length for .

A = 1− n
b

b = na0 A = n ⋅ 1− n( )a0

Unℓ r( ) = r n + Arn−1⎡⎣ ⎤⎦exp − r
b

⎛
⎝⎜

⎞
⎠⎟
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Another Guess 6
 with , meaning the minimum .

The values of , the same as the first guess.

The values of , the same as the first guess.

The value of .  

So we can write 

Unℓ r( ) = r n + Arn−1⎡⎣ ⎤⎦exp − r
b

⎛
⎝⎜

⎞
⎠⎟

n = ℓ+ 2 n = 2

b = 2n
Y

= n ⋅
4π!2ε0
Mq2

= na0

En = − 1
b2
1
X

= − 1
n2
M
2

q2

4π!2ε0

⎛

⎝⎜
⎞

⎠⎟

2

A = n ⋅ 1− n( )a0

Unℓ r( ) = r n + n 1− n( )a0r n−1⎡⎣ ⎤⎦exp − r
na0

⎛

⎝⎜
⎞

⎠⎟



PHYS 250 Lecture 6.2 43

Next Few  SolutionsU (r)
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Both Sets of U-Functions

The n value is in the denominator of the exponential, and the highest power of r.

But remember the actual wavefunction has a factor of 

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

n = 4 r 4 −12a0r
3( )e

−r
4a0 r 4e

−r
4a0

n = 3 r3 − 6a0r
2( )e

−r
3a0 r3e

−r
3a0

n = 2 r 2 − 2a0r( )e
−r
2a0 r 2e

−r
2a0

n = 1 re
−r
a0

1
r
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Observations
We have found 2 solutions (so far) with the same n and different , for any n > 0.

For both our first guesses and second guesses, the energy depended only on n,
and not also on .

That turns out to be true for all solutions (but ONLY for the Coulomb potential).

I’ve done the solution in terms of n, because that’s cleaner.

But the n value does NOT tell you whether you are in a state 
with high k and low  , or a state with low k and high .

ℓ

ℓ

ℓ ℓ
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Next Few  SolutionsF(r)
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Observations
Our first  functions 
looked like this.

They have a single peak
that moves out in radius.

The new  functions 
look like this.

They have a positive peak
and a negative peak.

Probability vs r has 2 peaks, 
and a zero between them.

F r( )

F r( )
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More Guesses
We continue adding a coefficient times a lower power of r: 

This time, as well as solving for b, n vs , E, and A, we have to solve for B.

This time we get .  

We continue to get , and .

This can be continued indefinitely.

U r( ) = r n + Arn−1 + Brn−2{ }exp − r
b

⎛
⎝⎜

⎞
⎠⎟

ℓ

n = ℓ+ 3

E = − M
2

q2

4π!ε0

⎛

⎝⎜
⎞

⎠⎟

2
1
n2

b = na0
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Fill In a Blank
It’s pretty hard to find tables of Hydrogen  functions past n = 3,
although it’s all been tabulated.  So I’ll just fill in the n = 3,  space,
with the normalization convention I’ve been using.

U r( )
ℓ = 0

ℓ = 0 ℓ = 1 ℓ = 2

n = 3 r3 − 9a0r
2 + 27

2
a0
2r

⎛
⎝⎜

⎞
⎠⎟
e

−r
3a0 r3 − 6a0r

2( )e
−r
3a0 r3e

−r
3a0

n = 2 r 2 − 2a0r( )e
−r
2a0 r 2e

−r
2a0

n = 1 re
−r
a0
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Normalized Hydrogen Wavefunctions
The most common thing are wavefunctions  

that have been normalized, and the polynomial has been made dimensionless.

ψ nℓm r,θ ,φ( ) = Unℓ r( )
r

⋅Yℓ
m θ ,φ( )

±
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Normalized Hydrogen Wavefunctions

±

±

±
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Patterns
The n value appears in the denominator of the exponential.

The n value is one more than the highest power of r in the polynomial.

n = k +  so k = n – 

The  value is the sum of the power of  and the highest power of .

The m value appears in the complex exponential, and |m| is the power of sinθ.

ℓ ℓ

ℓ sinθ cosθ



PHYS 250 Lecture 6.2 53

We found all the k = 1 states first.  There were of the form .

Then we found the k = 2 states, of the form .

I just wrote down a k = 3 state, of the form .

Increasing  by 1 at fixed k giving the same energy change as increasing k by 1 
at fixed  is exact for the Coulomb potential in the non-relativistic Schrodinger 
Equation.  But it’s not true for any other potential.

r n exp −r
na0

⎛

⎝⎜
⎞

⎠⎟

r n + Arn−1( )exp −r
na0

⎛

⎝⎜
⎞

⎠⎟

r n + Arn−1 + Brn−2( )exp −r
na0

⎛

⎝⎜
⎞

⎠⎟

 ℓ
 ℓ

Comments
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Hydrogen Energy Levels

–1

–1/4

–1/9

–1/16

Energy
13.6 eV

k = 2, n = 3

4s

3s

2s

1s

2p

3p 3d

4p 4d 4f

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3
0

–1/25 5s 5p 5d 5f 5g

ℓ = 4

The energy levels depend on n = k + ℓ

k = 2, n = 2

k = 1, n = 1

k = 1, n = 2

k = 3, n = 1 k = 1, n = 3

k = 1, n = 4k = 2, n = 4k = 3, n = 4k = 4, n = 4
k = 1, n = 5
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k

0
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Atomic Energy Levels

4s

3s

2s

1s

2p

3p

3d4p
4d

4f

ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3

6 electrons

2 electrons

10 electrons

5s
5p

5d

14 electrons

The number of electrons allowed depends on ℓ
Ne− allowed = 2 ⋅ 2ℓ+1( )

6s

6p

The energy levels depend on k and  separatelyℓ
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Visualizing the Probabilitiesxz Plane Complex
s

Radial Scale Not Constant !
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Better Arrangement
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The probability density is independent of φ for the complex spherical harmonics, 
so the probability density in the xz plane tells most of the story.  

1S is a small round cloud.
2S is larger with a radial zero-crossing.
3S is larger with 2 zero-crossings.

2P is about the size of 2S,
and the zero-crossing is the
xy-plane. 

3P has both radial and xy plane
zero-crossings.

3D has zero-crossings in two 
cones that meet at the origin.

Visualizing the Probabilities
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Last WebWork is posted, due Sunday night.

There is a tutorial worksheet on Friday.  There will still be office hours.

Final exam is 3:30-6 on Monday June 23 in BIOL 1000.

Two pages (both sides) of notes.  Group notes are allowed.
Any calculator.  But no tablets, laptops, phones, or wireless devices.

Some old finals are posted.  Solutions will be posted Thursday morning.

Good luck!

For Next Time


