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Rate Me

Student rating of professors is open.

Students will be using the online system, Blue by Explorance, specifically
designed to deliver and complete course surveys. The system 1s housed on a

secure server located 1n Canada.
You can log into Blue via Canvas during the survey period to check your

response rates.

Suggestions for increasing response rate:

Consider letting students know how the survey responses are used at UBC
so they are aware that their input can make a difference, such as by
providing feedback that you can use to make improvements in the future.
Assure students that the surveys are confidential. You will receive a
summary report only after all grades are submitted and finalized. There is no
risk of repercussions to students for giving honest, constructive feedback.
Where feasible, provide 10-15 minutes in class for students to complete the
survey using their devices to log into Canvas.
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https://seoi.ubc.ca/surveys
https://seoi.ubc.ca/surveys

Schrodinger in xyz

l//(x,t) — l//(x,y,z,t) = l//()_c',t) V(x) — V(x,y,z) = V()_c',t)

2 2 2 2
oYy Jy Jdy Jdy_ o

—— > > w where V*y is called the Laplacian operator.
ox ox~ dy~ o0z

Schrodinger:

Free-Particle: l//()_c’,t) = exp[i(lg ‘X — a)t)] with £ = f—m =



Particle in Rectangular Box

V(X’):O 1f0<x<w,and 0<y< W, and 0 <z <w_, otherwise V()?):+oo

Boundary conditions: ¥ (55 ) =0 at all 6 faces

w w w

X y z

. . .| nT .| n7 .| nT .
Solutions: ¥ - (x) = sm(x—x]-sm(y—yj-sn{ : z) with n_, n,n >0

- , -
. n. n, n | wn’

Energies: £ =~ =|—5+—5+—|
S w, ow, w, | 2m

Note that there are 3 different n values in 3D (there was only 1 1n 1D)

There could be more than one wavefunction with the same energy.
These are called degenerate states.
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Spherical Coordinates

This 1s the physics convention
for spherical coordinates.
0 i1s measured from the +z-axis.

x50, ¢)

r—

¢ 1s measured from the +x axis, | |
and on the xy projection of the r vector. ~6 :
s 5 y

. Q=77
The coordinate “steps™ are // are
A =Ar, Ay=rA0, and A  =rsmn6 A¢p X

A
rsin{)dq)
rsind 6 ™\ dr

The volume element looks like this: v A —
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Spherical Derivatives

Gradient: ﬁsza—F+éla—F+q3 L oF
or radf rsin@ 0¢
.. d| G d| sinf G 0G
Divergence: V-G = : [ r]+ 1 [ le 1 .
r° o or rsin@ 00 rsin@ 0@
. 1ol ,0F| 1 9| . oF] 1 OF
Laplacian: V’F=——|r’— |+ sin@ — |+
P r? or _r dr | r’sin@ 90| 00 | r’sin’@ d¢’
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Spherical Schrodinger

2 2
Equation: " |1 9] 0w L PPl L oWl v(\y=E
! ZM{I”Z or {r or T > sin@ 06 Ry, T r*sin’ 0 d¢° (r)w 4

Separable into l//(r,@,¢) = F(r) - G(H) - H(¢)

2
Separate 7= 2Mr” o d| ,dF lzﬂ,:—l J .QaG 1 1 |0H|I
P w LEV S 5 sn@d0| 96 |G sin’6| 99> |H

2
Separate 6 and ¢: /’tsin29+sin98%{sin9—}%:‘u:_{a H} I

H

Solve ¢: H(q)) = exp[im(b] with = m’ withm =0, 1, +2, etc.
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Associated Legendre Functions
Solutions for 6 are the Legendre Functions P” (0) with A =/ (Z + 1)

m=4 105sin" 6
m=73 —15sin° 0 —105sin’ Ocos b
m="2 3sin” @ 15sin” O cosb 175si1126?(700529—1)
m=1 —sin® —3sinfcosb —%sin@(Scoszé?—l) —%sin9(7cos39—3cos¢9)
m=0 1 cosf l(3(:082(9—1) l(5(:0536?—300s6?) l(3500349—3000329+3)
2 2 8
(=0 (=1 =2 /=3 Py
These are normalized so
O=r O=r
J d(coso) £ (6)] = | sinoao[ £7(0)] =1
0=0 6=0



Spherical Harmonics

G(H) H ((b) =P (9) . always appear together, so there is a standard name:
the Spherical Harmonics Y;“ (9, ¢) — pgm (Q) oM

We found H(¢) and G(6) without any knowledge of the potential. That means
the Spherical Harmonics are always the same, whatever the (spherical) potential.

m=4 sin” Qe™*”

m=3 sin” O™ sin’ @ cos fe™”

m=2 sin” Ge** sin” @ cosBe”” sin” @ (7 cos” 0 — l)em

m=1 sinfe” sinf@cosfe” sin6- (5 cos’ 6 — l)e"” sin@ - (7 cos’ 8 —3cos H)ei‘/’

m=0| 1  cos® 3cos’O-1 5cos’ @ —3cos6 35c0s* @ —30cos’ O +3
=0 =1 (=2 (=3 (=4

This 1s not the standard normalization, and there are also solutions for —m.
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Normalized Spherical Harmonics

m=4 + 315 sin® @ "
127
. 1
m=73 —‘/ismm e _ 31 ~ = sin’OcosB &
64rnr 64rx
m=2 + 1> sin’ @ &*" + isinzé?cosé? e*" + 45 31n20(7c0829—1)ezi"’
327t 64rnr 1287
15 / 21 45
m=1 — sin@ e? —,[—sinOcosB e’ — —smH(Scos 6 — 1) — 1n0(7cos 60— 3cos9)
47 8 64r 647T
1 3 5 7 9
m=0 —  +.|—cos0 +‘/ (3COS 6 — 1) +*/ (5cos36 3cost9) + (35cos49—30c0529+3)
T T 167 167 2567
/ 1 21 4
m=—1 + i sin@ e® + —5 sin@cosf e + 1n0(SCos 6 — 1) + 5 1n9(7cos 6 — 30089)
A ST 6471' 647z
15 35 45 .
m=-2 + sin® @ e** + sin@cosf e + sm20(700529—1)e_2’¢
327r 647r 1287
1
m=-3 + 35 sin’ @ e + 3 2 sin’ @cos@ e
647r 647t
m=—4 + 315 sin* @ ¢
5127
(=0 (=1 (=2 (=3 (=4
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Patterns and Jargon

The ¢ values go from O to infinity.

For each ¢ value, the m values go from —/¢ to +/
For / =0 there 1s only m = 0.

For / =1 thereis m =—-1,0 and +1.

For / =2 thereism=-2,—-1,0 +1, and +2.

The ¢ value 1s the the power of sin@ plus the highest power of cos@.

The power of sin@ is ‘m‘

The m value is the integer appearing in e".

¢ =0 are called S-states or S-wave states.
¢ =1 are called P-states or P-wave states.
¢ =2 are called D-states or D-wave states.
¢ =3 are called F-states or F-wave states.
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Visualizing the Spherical Harmonics 3

I think the best visualization is to use red and blue to represent positive and
negative real values, and plot vs 6 and ¢, so you can see everything at once.
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Radial Schrodinger Equation

The radial Schrodinger Equation 1s

h2

M pr(r)]

Jd| ,dF

1

—| r
or or

F

=A=0(¢+1)

Capital M to avoid confusion with little m from the Spherical Harmonics.

h2
2 Mr?

Multiply both sides by

0

M Or

This looks a little like the 1D Schrodinger equation, except for the red stuif.
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JOF

]/'_

or |

)

V(r)+

2 Mr?

F (r) and re-arrange to get

F(r)=EF(r)

13



Radial Schrodinger Equation 2

One new term comes in like a correction to the potential:

B2 e f+1
() (r) o)
ne(e+1) o
The term Ve 1s the kinetic energy due to angular momentum,

2
which classically is 22t 7 P ;”) =—— with I’ =1*(((+1)
2M  2Mr 2 Mr

So angular momentum 1s L = 7/ (almost).

There is also a transformation that gets rid of the extra factors of 7°.
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14



Radial Schrodinger Equation 3

raU 9
Ulr .
Substitute F(r): ( ) and oF _ 8r2
r or 7
into
ool ,oF | | nA
B e V F\r|=EF
2 Mr* or _r Br_+ (r)+2Mr2_ (r) (r)
and we get
P 1 9( oU i i1 lu U
- —-U V — F—
2MI/’2 ar(l" ar j_'__ (r)_I_ZMI”z_I” »
Now do the derivative to get
2 ) - _—
~ 12 aU""”a(zj—aU + V(r)+ hlz U:Eg
2M r*\ or or” dr ) | 2Mr? |7 3

Do the cancellation

» 1 2du) | wA U U
2M r*\ or’

PHYS 250 Lecture 6.2



Radial Schrodmger Equatlon 4

2 2
L 8 + V(r)+ A = Eg
M P Br 2Mr® |7 r

Multiply both sides by r to get _ _

h* 0 )
_2M o U(r)+ V(r)+ > U(r):EU(r)

This 1s exactly the same form as the 1D Schrodinger Equation,
except for the extra term due to angular kinetic energy.

But F(r)= ulr) ,s0 if U(r) is finite at 7 = 0, we get infinite 7(0).
r

So unlike 1D Schrodinger, we have the condition that U (r) =0atr=0.

In order for the wavefunction to be normalizable, we must have F (r) —0

as r — oo faster than 1/ . That implies U (r) — 0 faster than 1/7.
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The Form of Spherical Solutions

The full wavefunctionis v, (r, 0, ¢) = Vi (r) Y (9, (b)
r

The same / appears in both U, (r) and Y, (9, ¢)

The U-function satisfies the radial Schrodinger equation:

n* J°U,

oM or’

_|_

V(r)+

ne-(0+1)

2 Mr?

U, =EU,, with U, (0)=0

This must be solved for /=0, then ¢ =1, then / =2, etc.

Eachy (r, 0, ¢) has an energy E,,. Since m doesn’t appear in the radial

equation, the different m states for given £ and / have the same energy.
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Quantum Indices

Solutions to 1D Schrodinger have 1 quantum index, usually called n.

Solutions to xyz Schrodinger have 3 quantum indices ny, ny, n;.

The spherical wavetunction y (r, 0, ¢) = Uki(r) Y (9, ¢) has 3 indices

The H_ ((b) = ¢™ function has 1 quantum index m.
The P" (9) function has 2 quantum indices ¢ and the same m.
The Spherical Harmonics Y, (6, ¢) have 2 quantum indices: ¢ and m.

The U » (r) radial function has 2 quantum indices: k, and the same / as ng (9, q))
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Energy vs k and /

The lowest £ value 1s set by convenience: 0 some potentials, 1 for others.

The lowest value for /¢ 1s always zero, which gives the lowest potential correction

me(0+1)
2 Mr?

=0

The lowest energy will be for /=0 and whatever the smallest k value i1s.
Increasing k for a given ¢ will increase the energy.
Increasing / for a given k will increase the energy.

It turns out for a 1/r potential (and only 1/7), increasing k£ by 1 at fixed /
gives exactly the same energy as increasing ¢ by 1 at fixed k.

So we talk about n=k+ /. But only for 1/r potentials! In general, it’s k and /.
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Infinite Spherical Square Well

The potential 1s zero inside a sphere with radius R, and infinite outside.

. B U R+
The reduced radial equation inside 1s — —+ —U=FEU
2M or 2 Mr

The U function must be zero at r = 0 (so U/r 1s not infinite), and zero at radius R.

2 2
If /=0,1t’s just — L al2]+O:EU
2M or

The equation and boundary conditions are exactly the same as for the infinite
square well in 1D. So the solutions are the same:

kar
Uy (r)=sin=2m with k=1,2,3, ..

hem’
2MR’

. 1.2
and energies E =k
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Infinite Spherical Square Well 2

For vy, we divide by r, and multiply by the Spherical Harmonic.

Since /=0, only m =0 1s possible. That Spherical Harmonic i1s constant.

So the complete wavefunctions (not normalized) for /=0 are

1 . knmr 1 . knmr
W, = —SIn—— -~ (9, (,b) = —sIn——
v R v R
| I I [ N
ps1 100 ——
i psi 200 ]
0.8 psi 300 ———
ps1 400
0.6
04
02
-0.2 .
04 | | | |
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Infinite Spherical Square Well 3

When /7 > 0, the effective potential looks like 1/ re.

30 tl | I | |
| glo
| 20
25 + E;y —
\ L=1 V(r)
L=2 V(r)
0\ L=3 V(1)
15
10
5 L B——
0 | | | | —
0 0.2 04 0.6 0.8

The solutions are Bessel functions, and we won’t do them here.
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Infinite Spherical Square Well 4

10

AAAAAAAAAAAAAAAAAAAAAAAAAA

Increasing k (going up at fixed /) increases the energy.
Increasing /¢ at fixed k (diagonal) increases the energy. But nothing lines up.
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Spherical Shell Potential

V=0 for R<r<R+AR, V = elsewhere

The reduced radial equation inside 1s

2 2 he(0+1
same as before: — h”_ 0 (2]+ ( > )U=EU
2M Or 2 My

The U function must go to zero at R and R + AR.

2 2
For 1=0, ——9Y 1o kU
2M or

So the solutions are

Uko(r):sinkﬂ.(r_R)

withk=1,2,3, ...

and energies E =k’
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Spherical Shell Potential 2

2 5 AN
— n”_ o l2]+ ( > )U=EU
2M or 2 Mr

If AR < R, the extra term 1s essentially constant.

me(0+1) \ ne(0+1) \h2€(€+1)
2 My? /ZM-(R+AR/2)2 " 2MR?

ne(0+1)

NV for />0

So the energy goes up by AE, =

him?

Since we assumed AR < R, this is much less than E, =k’

2 M-(AR)
We can combine these into £, = Wr . N g'(fjl) , AR;
2 M-(AR) 1 R




E -~ hem’ N k2+€.(€2+1)-AR22
2M(AR) T R

For ¢/ =0, the bracket factoris 1 for k=1
and 4 for k = 2, an increase of 3.

What / value makes £, be as large as £ ?

2
g'(gjl)-AR; :395-(“1):3-(@)
T R AR

If R=10-AR, the right side 1s 2961 so / = 54.

There are 2/ +1 allowed m-values for each ¢ value,
so there are about 55° = 3025 different k = 1 states below the first k = 2 state.
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Rotating Molecules

We could change the radial potential from a square well to something

|
more realistic, like an offset harmonic oscillator: V(r) = 5 k - (r — R)Z.

That would be a decent model of the potential for small vibrations
of a molecule made of 2 atoms with average separation R.

That molecule could also rotate.

There could easily be hundreds or thousands or rotational states
between successive radial states.

This 1s the origin of “molecular absorption bands.”

PHYS 250 Lecture 6.2
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Radial Equation for Coulomb Potential

We plug in the Coulomb potential V(r) . S get
dre,r
h* o* 2 ne(0+1
- 8(2]+— A ( 2)U:EU(r)
2M or dmer  2Mr

Put the derivative on one side, and everything else on the other side

2 52 2 (1)
—halzsz+q — (Z)U(r)
2M Or dme r 2 Mr
2M
Multiply by — 2
U | oM 2Mg? 1 1
0 (2]: - —+0(0+1)= |U(r)
or I h 4rh’e, r re
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Radial Equation for Coulomb Potential 2

‘U 2M 2Mag* 1 ]
’ y | T T2 - 2q _+€(€+1)_2 U(r)
or I h 4drh'e, r re
2M Mg’
Define X =——and ¥ = qz to save some writing
h 2mh £,
’U | ] 1|
=|-XE-Y—+/0/+]1)— |U\r
ey e ot

0°U

2
v

At large radius, this 1s approximately =—X-£E-U (r)

X 1s positive, but we expect the bound state energies to be negative.

So the second derivative 1s proportional to the function, with a plus sign.
So the solutions should be exponential at large radius.
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First Guess

A decaying exponential satisties the boundary condition as » — oo,
but violates the condition that U (r = O) =0. Let’s try

PHYS 250 Lecture 6.2

U(r)=r -exp(—%]

r" r
el
r "
exp(—gj— b ~exp(
—+i r”exp(—zj

bz_ b

r

U(r) which gives

1

r

—XE-Y=+(((+1)

b2

r" (
+—-exp

r" eXp[

;

r

b

J
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First Guess 2

1 2nl 1 v 1 1
nn—-1)——-———+—1{r"exp| —— |=| -XE-Y—+/(/+1)—
i ( )r2 b r bz_ I{: bj i r ( )r2
[Hvkkzoutr”exp(—br)andmeanangethetenns
| 1 2n1 1] | 1 1 )
nn—-1)l—-—-——+—=|=(l{{+])5—-Y——XE
i ( )192 b r bz_ i ( )r2 r ]
For this to be true at all r, we need
2 2rh’e Arh’e
gzzYéebz—E=2n- =1 —
b Y Mq Mg
Arh’e
The Bohr Model radius is a, = 50 b=na,.
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First Guess 3

We also need

2
] 1 1 1 Mqg* h
— =X E E=———= 1
b b X narh’e,

Those are exactly the Bohr Model energies!

We also need n(n— 1) = €(€+ 1). This requires n= ¢ +1.

r

1sn=1.
bj

The lowest /=0, so the lowest power n in " -exp(——
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1M

2

q

oM 22

|

Amh’e,

|
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First Few U(r) Solutions

/=0 /=1 V=2 /=3
n= roexp| ———
4a0
"= 3 exp| ———
b 3a0
n= reexp| ———
2a0
( r
n= rexp| ——




Observations

In the Bohr Model, the lowest state has angular momentum = 7.

In Schrodinger, the lowest state has ¢ =0, which means zero angular momentum.
In the Bohr Model, an atom 1s planar, no matter what the angular momentum.

In Schrodinger, atoms are not flat.

The ¢ =0 states are spherical, because that Spherical Harmonic is uniform.

The states with £ > 0 are neither spherical nor flat. They are the product
of a radial wavefunction and a non-uniform Spherical Harmonic.

We will see soon that the r-dependence of the wavefunction can get complicated.
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First Few U(r) Solutions

: | ' I exp(-r/ I)
09 11 ' r‘;rexpp(-r/ 22) ]
0.8 i+ | r, exp(-r/ 3ag) -
07 IL r exp(-r/ 4a,) _
0.6 1
05
04
0.3
02 H
0.1

0 |

0 10 20 30 40 50 60

r/ag
The peaks are at 1,4, 9, and 16, which 1s how the Bohr orbit radius depends on n.
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0.8 |-

0.6 |-

04 |

0.2

PHYS 250 Lecture

First Few F(r) Solutions

I I I I

exp(-r/
Eexp( r/2
ry exp(- r/3a0

)
ag)
)
r exp( -1 /4a,)

0 10 20 30 40 50

r/ag

6.2

60
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Another Guess

Let’s guess that the solutions are polynomials in r times exponentials.
The simplest 1s a 2-term polynomial.

ool
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1

r

So the total equation 1s

/\

.

A(n— 1)(71— 2)7/”_3 +

~XE-Y—+(((+1)

Another Guess 2

Expand the right-hand side of the reduced radial Schrodinger Equation:

_%j

1
”

bn(n—1)-24(n-1)

[r” + Ar’”]exp(

— [_ XEr" = Yr" ' + 0(0+1)r" — AXEr"™ — AYr"™ + AL(0+ 1)r”3]exp(

b

v

n—2

—2bn+ A

_|_

b2

o1
T —

b2

N

J

= {—XEr” Y+ Z(f + 1)7/”‘2 — AXEr" — AYr" T + A€(€ + l)r”_3}exp

Match coefficients of »": A(n — 1)(n — 2) = Aé(f + 1). This requires n=/0+2.
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Match coefficients of 7": —XE = —

b

The same result as the first guess.

_%)
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Another Guess 3

bn(n—1)-24(n-1) 2bn+ 4,

9 A(n—l)(n—2)r”_3+ b rt+ = ) 1+%r" >exp(—%j

-

={=XEr" = Yr"™ + 0(0+1)r" — AXEr™ — AYr"™ + AL(0+1)r" fexp —fj

—2bn+ A
Match coefficients of 7" & =—Y— AXE.

b2

1
Plug — XE = 5 into the above: % 7

. —2n 2n .
Do some cancellations and e ==Y > b= 72 = na,, same as the first guess.
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Another Guess 4

bn(n—l)—2A(n—1)rn_2+_zbn+Arn_l+irn

b b’ b’

4 A(n— 1)(71— 2)r”_3 +

={=XEr" = Yr"™ + 0(0+1)r" — AXEr™ — AYr"™ + AL(0+1)r" fexp

Match coefficients of »"*:

bn-(n—l)—zA'(”_l) :g.(g+1)—AY

=(-(0+1)-AY

2
Plugn=/(+2—>/(=n—-2and Y = 7’1 into right, and expand:

? ond 24 (n—2)-(n—1)—%:n2—3n+2—%
b b

n—-—n———+—=

b

Do some cancellations : %A =2-2n— A= 2 —22n b= I—Tn




Another Guess 5

Plug in b = na, to get A:n-(l—n)a

0

A should have dimensions of length for U | (r) = [r” + Ar™ }exp(—%)




Another Guess 6

U, (r) = [r" + Ar”l]exp(—g

v

) with n=/+ 2, meaning the minimum »n = 2.

2 4rh’e .
The values of b=~ = - — = na,, the same as the first guess.
Y Mg
11 1M ¢ )
The valuesof £ =———=—— c > , the same as the first guess.
! b- X n~ 2\ 4nh’e,

The value of 4 = n-(l—n)a

So we can write U | (I”) = [’”n T n(l_ n)aornl]exp(—Lj
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Next Few U(r) Solutions

( ) exp(-1/2a,)
(Jg -6a0a(r)£) exp(-r/ 3:8)
(r -12a0r ) exp(-r/4a)

50

r/ag
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60

43



Both Sets of U-Functions

(=0 (= (=2 (=3
n=4 (r4—12a0r3)e;° ot
n=3 (r3—6a0r2)e3_‘; o

n=2 (rz—ZaOr)ezcz’ 27

p=1 | re®

The n value 1s 1n the denominator of the exponential, and the highest power of r.

. 1
But remember the actual wavefunction has a factor of —

r
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Observations

We have found 2 solutions (so far) with the same n and different 7, for any n > 0.

For both our first guesses and second guesses, the energy depended only on 7,
and not also on /.

That turns out to be true for all solutions (but ONLY for the Coulomb potential).
I’ve done the solution in terms of n, because that’s cleaner.

But the n value does NOT tell you whether you are in a state
with high £ and low /¢ , or a state with low k and high /.

PHYS 250 Lecture 6.2
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Next Few F(r) Solutions

-3 F 5r-2a0) exp(-r/2a,)
3(r' -6a0§) exp(-r/3a,)
’ | | | (r -12a0r| )exp(-r/4a|0)

0 10 20 30 40 50
r/ag
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Observations

Our first F (r) functions 1 T~ .
looked like this.

They have a single peak
that moves out in radius.

| exp(-r/ al)) _—
Eexp(-r 2a)

r exp(-r/3ay) ———

r- exp(-r/4a,)

60
The new F (r) functions | | | | |
look like this. 0 o~
They have a positive peak ' [ 7
and a negative peak. 2 _

. -3 H gr-ZaO) exp(-1/2ap) ———
Probability vs r has 2 peaks, {r°-6agy) exp(-r/3a)

A 1 1 (r -lZaOrl )exp(-r/4alo) —

and a zero between them. 0 0 20 0 10 50 0

r/a,
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More Guesses

We continue adding a coefficient times a lower power of r:

U(r) = {r” + Ar" + Br”z}exp(—%j

This time, as well as solving for b, n vs £, E, and A, we have to solve for B.

This time we get n=(+3.

M( ¢ )i
We continue to get £ =— ( 1 ) —,and b=na,.

2 \ 4nmhe, | n*°

This can be continued indefinitely.
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Fill In a Blank

It’s pretty hard to find tables of Hydrogen U (r) functions past n = 3,

although it’s all been tabulated. So I’ll just fill in the n = 3, / =0 space,

with the normalization convention I’ve been using.

/=0 /=1 /=2

7 -r -r -r

n=>73 (r —9ar +—a r)e 0 r3—6a0r2)e3% pie%
n=2 r2—2a0r)eza0 rzea
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Normalized Hydrogen Wavetunctions
(r0.0)=21) v,

r
that have been normalized, and the polynomial has been made dimensionless.

The most common thing are wavefunctions ¥/

nfm

n ¢ m, Y, (r.0,0)
1T 0 0 1s I P
\/;a“.z:z
2 0 0 2s l 2 - [
4\/50”3"2 o a,
l o ina,
¢ 10 4 27ra“ " a, ’ coso
r e +io
2 11 2p 8\/—% ¢ sinfe
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Normalized Hydrogen Wavetunctions

PHYS 250 Lec

ture 6.2

n

3

4

0

m,

0

3s

3p

3p

3d

3d

3d

\.Pn/m;(r’e’(p)
I ) -ri3ag
| 27 > e
31 37[(10 i a, a, N
\/5 i r | r —r '3a
31 6 — cos6
Ta, |  a, | a(,
] r r —l‘ 3a, (o]
—| 6— sin Be™
8 I\/na“ - a, a(,

% (3cos*0-1)

2
81\/ ra,”* a,’

r -ri/3a, *iQ

o

sin@cosBe™
8 1J_ ra,” a,’

2
/ -r 3a, +i20

sin’ Qe*
162 \/— ra,”’ a,

51



Patterns

The n value appears 1n the denominator of the exponential.

The n value 1s one more than the highest power of r in the polynomial.
n=k+/(sok=n-1/

The ¢ value 1s the sum of the power of sinf and the highest power of cosé.

The m value appears in the complex exponential, and |ml is the power of sinf.
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Comments

We found all the k = 1 states first. There were of the form »” exp(_—r).
na
0
Then we found the k£ = 2 states, of the form (r” + Ar™! )exp(_—r).
na
0
I just wrote down a k = 3 state, of the form (r” + Ar" + Br" )exp(_—r].
na
0

Increasing ¢ by 1 at fixed k giving the same energy change as increasing k by 1
at fixed ¢ 1s exact for the Coulomb potential in the non-relativistic Schrodinger
Equation. But it’s not true for any other potential.
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Hydrogen Energy Levels

/=0 =
v 5 5 54 5 5
~1/25 S P f g
4S 4p 4d 4f k=1,l’l=5
-1/16 k:4’n=4 k:3,7’l:4 k:2,l’l:4 k:1,n=4
k=3,n=1 k=2,n=3 k=1,n=3
_1/4 2 2p
k=2,n=2 k=1,n=2
Energy
13.6 eV
The energy levels depend on n =k + /
ls
-1
k=1,n=1
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Not Everything Is Hydrogen!

For a random central potential, the energy level depends on both
the angular momentum quantum number ¢, and the radial
excitation quantum number k and there may be no pattern

3D Harmonic Oscillator Spherical Square Well

100,

—_——

Tg 80 —
60} —
40+

— 20¢ —
s

0 1 2 3

e
Different pattern No particular pattern
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Atomic Energy Levels

PHYS 250 Lecture 6.2

(=0
6p
«— 5 4f
6s 55 —
— - — Ad 14 electrons
5s T —>
T P e 34
S
V\ 10 electrons
3p
3s /
\ .
2 / 6 electrons
A
The energy levels depend on k and ¢ separately
The number of electrons allowed depends on ¢
e— allowed = 2 . (2£ + 1)
Ls

2 electrons
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Q Hydrogen Wave Functions
Probability density plots.

(2,0,0) (3,0,0) i )_\"(n;) T D P 0 Yin0.9)
—
s de) -
-
(3,1,0) (3,1,1)
= 2% e ¢
(3,2,0) (3,2,1) (3,2,2)
o ’ 'no‘
- (») e 13
o~ . =¢
(4,0,0) (4,1,0) (4,1,1) (4,2,0) (4.2,1)

\r

(4,2,2) (4,3,0) (4,3,1) (4,3,2) (4,3,3)

£5
a's
20
2%
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Visualizing the Probabilities

The probability density 1s independent of ¢ for the complex spherical harmonics,
so the probability density in the xz plane tells most of the story.

1S 1s a small round cloud.
2S is larger with a radial zero-crossing.
3S is larger with 2 zero-crossings.

2P 1s about the size of 2S,
and the zero-crossing 1s the
xy-plane.

3P has both radial and xy plane
ZETO-Crossings.

3D has zero-crossings in two
cones that meet at the origin.
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For Next Time
Last WebWork 1s posted, due Sunday night.

There 1s a tutorial worksheet on Friday. There will still be office hours.
Final exam 1s 3:30-6 on Monday June 23 in BIOL 1000.

Two pages (both sides) of notes. Group notes are allowed.
Any calculator. But no tablets, laptops, phones, or wireless devices.

Some old finals are posted. Solutions will be posted Thursday morning.

Good luck!
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