PHYS 301: Electricity and Magnetism
Term 1, 2023/24
Second MIDTERM EXAM, November 16, 2023
Time: 60 min

NAME: Student Number:

This is a closed book exam. Calculators are allowed but not needed. Show all your work as
partial credit will be given only if your reasoning is clear. Possibly useful formulae follow:
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Problem 1: Consider a long cylinder made out of, for example, teflon. The cylinder has
radius a. Imagine that we could set up a permanent polarization P(s, ¢, z) = ks = kss,
where s is the usual cylindrical radial vector from the z-axis, and k is a constant). Neglect
end effects, the cylinder is long.

(a) [2 pts] Find the bound charges opoung (on the outer surface) and ppouna (in the interior of
the cylinder).

(b) [1 pts] What are the units of the constant k?

(c) [3 pts] Find the displacement field D and the electric field E everywhere, i.e. for s < a
(inside the cylinder) and s > a (outside the cylinder).

(d) [2 pts] How do D and E change everywhere if you cover this dielectric cylinder with a
conducting cylindrical shell with surface charge density equal to gpoung?



Problem 2: A solid insulating sphere of radius R carries charge density p = ar?sin(26).
The following trigonometric functions/integrals may be helpful.
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(a) [1 pt] Sketch the charge distribution (using 4+ and —) on the surface of the sphere in the
graph below.




(b) [2 pts] What is the total charge on the entire sphere?

(c) [5 pts] What is the approximate potential on the positive z-axis far away from the
sphere? The first non-zero term is sufficient.



Problem 3: A sperical shell of radius R has a known voltage at its surface:
V(r=R,0) = Vy(1+ cos(h)).

There are no other charges anywhere, and we can assume V(r = oo) = 0.
(a) [6 pts] Find the potential V(r,#) both inside and outside of the shell.



(b) [2 pts] Find the surface charge density o(6) on the sphere.



