Physics 301 - Homework #1 - Solutions

1. Curvilinear coordinate systems

(a) Since the components of v(r) are constant, the simplest way to transform the field to spherical
coordinates is to express X and z in terms of 1, 8, and ¢. From the back cover of Griffiths, we find

fc:sin9003<pf‘+cos€cosg0é—sincpc,b
y:sinﬁsingpf'—i—cosGsingoé—i—coscpc,b
7 =cosOt —sinf 0. (1)

Substituting this in to the expression for v(r) and collecting terms, we get

A~

v(r) = (Iz sin€ cosp + 1, cosf) r + (I cosf cosp — 1, sinf) O — (I, sinp) ¢. (2)

A complementary approach is as follows. In general, we can expand the field in terms of any basis
set by taking the dot product of the field with each of the (position-dependent) unit vectors. In spherical
coordinates, this would be

v(r) = [v(r) -] F + [v(r) - 8]0 + [v(r) - P p = v, F + 190 + v, (3)

Back cover of Griffiths’ book gives the spherical coordinate unit vectors in terms of the Cartesian unit
vectors as

' =sinf cospX +sinf sinpy + cosf 2z

0 = cos b cospX + cosf sinpy —sinfz

@p=—sinpX+cospy. (4)
Therefore,
vp=v-T=(lx+1,2) (sinf cospx +sinf sinpy + cosf z)
=, sinf cosp + 1, cosf
vg=v-0=(l,%+1,2) - (cosf cos X+ cosf sinpy — sinfz)
=1y cosf cosp — [, sinf
Vo=V -@=(x+1,2) (—sinpXx+cospy)
= —l, sin . (5)
Thus
v(r) = (Ip sinf cos g + L, cos0) & + (I, cosf cosp — L, sin0) O — (I, sing) @, (6)

in agreement with the above result.
Let’s make sure this result makes sense by checking the limits along the Cartesian axes. Along the x
axis, we have ¢ =0, 0 =7/2, + =X, 0 = —z, and ¢ = —y, so that

v(r) = lp % + L. 2. (7)



Along the y axis, we have p =7/2, 0 =7/2, ¢ =y, 0 = —2, and ¢ = —%, so that
v(r) = lzx+ 1, 2. (8)

Finally, along the z axis, we have § = 0 and t = 2, but ¢ is undefined, so our result should be independent
of ¢ along this direction. Per equation 4 along the z axis we have 8 — cospX 4+ sinpy and ¢ —
—singpX 4 cos ¢y, so that

A

v(r) = 1,z + 1, (cos? ¢ + sin? ) % + I, (cos psin p — cos psin )y = l, X + 1, 2. (9)

(b) A particle follows a trajectory r(¢) and we wish to write an expression for the velocity v(t) = dr/dt
in both cylindrical and spherical coordinates. Remember that in both these coordinate systems the basis
vectors, in general, change direction as the particle moves through space. Cartesian coordinate system
has fixed unit vectors, and thus can serve as a convenient starting point. A straightforward approach
would be to express the particle’s velocity as

v=2x+9y+ 2z, (10)
“translate” &,y, Z and X,y,z to the desired coordinate system, and combine terms.

Cylindrical coordinates. Here x = scosp, y = ssiny and z = z, so that £ = Scosp — spsiny and

Y= $sinp + spcosp. We use x = x(§,¢,2) and y = y(8, ¢, 2) from the back cover of Griffiths to get:

I = (Scosp — psiny)(scosp — spsinp) + (Ssinp + @ cosp)($sing + sp cos ) + 22
= [5(sin% o + cos? @) + s¢(sin @ cos p — sin @ cos )]§
+ [s¢(sin® @ 4 cos? ) + 5(sin g cos ¢ — sin p cos )P + 22,

(11)

which reduces to

=58+ spp+iz| (12)

Spherical coordinates. Similarly, we write x = rsinfcosy, y = rsinflsiny and z = rcosf, and
compute
& = 7sin 6 cos ¢ + Or cos 0 cos ¢ — prsin Osin @,
§ = 7sin @ sin ¢ + Or cos O sin ¢ + Hrsin d cos p,
2 =rcos — Orsing. (13)

We substitute these expressions into Eq.(10) along with X = %(¢,0, @), y = y(&,0, $) and z = (&, )
form the back cover of Griffiths, and after some song and dance we get:

P =7F+ 700+ rsinfpp, (14)

where we used sin? § 4 cos? f = 1 and careful account of like terms, many of which cancel.



2. Dirac delta functions

We will need two basic properties of delta functions: the first is that

b
[ o @)oo = { GO el (15)

and the second is
§"(ax) = 6(x)/|al™ (16)

(a) With these properties in hand, and recalling that ¢ = 3, we have

1
/da:\:v—c|2 (22) /d:z:|a?—c|2 7) = 5;0-&:%. (17)

(b) Let’s see how to scale a factor out of delta function in higher dimensions. Let r = & + yj + 2Z;
then 2r = 222 + 2yy + 222. We know that 63(r) = 6(2)6(y)d(2), hence, §2(2r) = 6(22)6(2y)5(22). Now
let’s compute the integral:

/Vdv' lr —c*63(2r) = /// dx dy dz |r — c|* 6(2x) 6(2y) 6(22)

///d:cdydz\r—& (2) 8(y) 8(2)

== TIT — C23
—s/vd‘ 25 (). (18)

This is consistent with general equation (16), according to which, after scaling 1/2 out of each integral,
we get a pre-factor 1/8. Now:

1 1 1 2
/ dr|r —c|*83(2r) = / drir—c|*83(r) =<0 —¢|* = = (3 +4%) = —5 (19)
v 8 Jy 8 8 8

(c) For the last integral, we follow Example 1.16 in Griffiths.

(1) Using divergence theorem. In this approach, the goal is to use integration by parts to move the
derivative to (1 4+ e™"), which is a smooth differentiable function. To do that, we use Product Rule (5)
from the front cover of Griffiths, which we rearrange

f(V-A)=V-(fA) - A (V]). (20)

Integrating this over volume and applying the Divergence Theorem to the term V - (fA) gives:

I—/fVA /A Vde+]{fAda (21)

where S is the closed surface that bounds V (see equation (1.59) in Griffiths). We then make the
identifications
f=1+e" Vf=—€eTF, (22)

and .
r
7

A - da= (tr%sin 6 df dyp) = sin 6 df dp, (23)



where in the last line, we have used the fact that the bounding surface is a sphere with area element
da = tr?sinf df dp. The requisite integration measures are then

R 27 s
/ dr — / 42 dr and ?{ A -da— / dgp/ sin 0 do, (24)
v 0 S 0 0

R e~ 2T T
I :/ 4r2dr +/ dgo/ sinfdf (1 +e )
0 0 0

so that

2
= —471'677”‘1% +4r(1+e B
0
= —4me R 4y + 4 + dwe™E, (25)

(26)

(2) Using delta function. Here we simply rewrite the divergence as a delta function:

V.= =478 (). (27)

r

r2
Then, since the integration limits (a sphere of radius R centered at the origin) includes r = 0, we have,
in full agreement with the first approach:

/ dr (14 ) dm 8%(r) = (1 4 1) = 8. (28)
1%

3. Gradient and Separation vector

Let’s think about the qualitative result before we start to calculate anything. The function we’re
taking the gradient of is f(r) = 1/|r — 1’|, which is always decreasing away from the “source” point, r’.
So we should expect the gradient, which always points in the direction of steepest increase, to be directed
anti-parallel to r — r’. If our answer does not have that property, we have likely done something wrong.

The brute force approach is to work in Cartesian coordinates, where the gradient operator has com-
ponents

V = [0z, 0y, 0], (29)

where 0, = 0/0z, and similarly for y and z. The Cartesian components all have the same functional
form, so we only need to evaluate one derivative, e.g., x,

Oy <‘r _1 r’|> =0y ([(w _ x’)2 F(y— y/)2 Iy Z’)Q]_1/2>
= —(I—x’) [(x_x/)2+(y_y/)2+(z_2/)2]73/27 (30)

and similarly for y and z. Therefore

1 r—r d
(7=m1) = =vp =P (31)

where d = r — r’ is the displacement vector. Note that this gradient always points towards the source
point, ', as expected, and falls off like 1/|d|?.




4. Field of a dipole

There are many ways to solve this problem. For example, we can compute curl of (m x #)/r? using
Product Rule (8) from the cover of Griffith’s book, with A = m and B = ¢/r%:

r r r r r
Vx(mxr2>:<rz-V)m—(m~V)r2+m<V'Tz>—ﬂ(V-m). (32)
Since m = const, the first and the last terms are equal to zero. In the third term we use
r
V- 2= 4o(r) =0 (33)
(since we are told to disregard the point r = 0, the delta-function reduces to zero). Hence:
& A
V x mx =—(m-V)=. (34)

Now we will make use of the definition of the dot product in Cartesian components:

V x (mxr> :—(m‘V);2

r2

= - mﬁ+m2—|—m£ XYy + a2
o T ox Yoy 20z (22 4+ y2 + 22)3/2

[:3 _ 39,2 3 3
L e —52x%r  —52xyr  —52xar,
e r6 + oY + o2 (35)
- 732933/7’)2 n 3 — %ngr R 7%23/27“ R
Y r6 76 r6
[_3 3 3_ 39,2,
- —§2xzr§( —§2yzry e —522°r
r6 r6 r6
The three terms proportional to r3/r6 combine into —m,X/r® — m,y/r3 — m,2/r3 = —m/r3. What
remains is:
3 3 3 ~3(m-1) T
5 Malt + T5MyYr + T5Maet = r—5(m ‘T)r = 3 (36)
Hence,
m X r C
Vx|C =—=B3(m-r)r—m 37
(™) =SB rom (1

5. Vector calculus practice

(a) Let us work in Cartesian coordinates. Using the definitions of divergence and curl, we get:

L0 (o w0 (D 0\ 0 (0u O
V-(va)—&r(ay 8z>+8y<8z 8x>+8z<8$ 8y>‘ (38)




We know that the order of taking the partial derivative does not matter, i.e. for any scalar function ¢

Ft >t
0xdy — Oydx’ ¢

te. (39)

Now we notice that the 1st term in Eq.(38) cancels with the 4th, the 2nd term cancels with the 5th,
and the 3rd with the 6th. Hence, V- (V x v) = 0.

(b) Again, let us work in Cartesian coordinates. The gradient of ¢ is:

o ot ot

Taking the curl of it gives:
0ot 0 0t . 0ot 0ot . oot 0 ot\ .

since each vector component of this expression is zero by virtue of Eq.(39).
6. Taylor’s expansion and Approximations

(a) To compute the integral, we will use the substitution y = (2’ — z)/R. The result is:

I(z,L,R

dy :m[ (L—2°+ R+ (L—2) ()

) L ds (L—2)/R
_/o \/(z—z’)2+R2_/—z/R Vy2+1 Vz22+ R?— 2
Now let us see what we get in two limiting cases, R > z, L and z > R, L.

(b) Assume R > z, L. We start with making appropriate approximations in the integrand. Note
that we can also claim that R > 2’ (since 0 < 2z’ < L). Neglecting (z — 2')? in comparison with R, i.e.
keeping only the largest term in the denominator of the integrand, we immediately get:

(43)

L / L /
d d L
1@;@—/ : RVJ/Z_.
o V(iEz—-2)2+R> Jo R R
Now let’s see if we can get the same result from our general answer, (42). If we simply neglect
everything but R in the argument of the logarithm, we will get:

(L—2)24+ R*>+ (L —2) R
Ny ] ~ In <R> =0, (44)

which means that this approximation is too crude, and we need next terms (beyond R) in the function
we take the logarithm of. We will use the expansion

I(z,L,R) =In

(1+;1:)°‘%1+a:13+aja(a—l)—l—fa(a—l)(a—%... (45)

with @ = 1/2, and x being the small parameter. To “organize” it, we pull the large thing, R, out of the
square roots. Then for the first square root the small parameter is x = (z/R)?, for the second square root



z = ((L — 2)/R)?, and we keep only linear terms in the expansion (45). We get, keeping terms O(z) and
neglecting terms O(z2/R) and smaller:

52\ /2 22
VZ22+R?—z=R|(1+ = -z~ R+ —=—-z~R-z2,

R? 2R

L—\2\" (L — 22
\/(Lz)2+R2+(Lz):R<1+( 7 >) +(L—-2)rR+-—F5—+(L—-2)=R+(L-2).

2R
(46)
From here we get, with the accuracy up to O(z/R), in full agreement with (43):
R+L—=z L L
I L) ~In (222" 2) —m (1 N I
R e = R S = RIS er)
(47)

L p I\ L
N1n<1+R(1+R)>~1n<1+R>NR.

(c) Now assume z > L, R. Again, we start with making appropriate approximations in the integrand.
Here we can neglect 0 < 2z’ < L in comparison with z in (2 — 2’)2, and then neglect R? in comparison
with z2. The integral reduces to

(48)

L / L /
dz dz L
IZ,L,R:/ %/ — = —.
( ) 0 (z—2)2+ R? 0o Z z

Now let’s get the same result from our general answer, (42). Note that the “crudest” approximation
(i.e. keeping only z in the argument of the logarithm in (42) and neglecting everything else) gives an
uncertainty of the type “zero over zero”, so we will have to use Taylor’s expansion again.

Let us try to restrict ourselves by the linear term in the expansion (45). Again, we “organize” the
small parameter in each square root by pulling out the large thing:

2\ 1/2 2 2
V22 4+ R? — 2 :z<1+1;> —z%z+£—z:R—

2z 2z’

o\ 1/2
VE—L2+R—(2—L) :(z—L)<1+<L}EZ>> (- 1L) (49)

R? R? R? L
z(z—L)—}—M—(Z—L):Ml_L/Z)x%(l—I—Z)

after which we get, in agreement with (48):

2 J—
I(z> R,L)~1 R/2z<1+z> 1+ 5L (50)
: &)= R2/2z - z) "z
k kok



If you opt for pulling not (z — L) but z out of the second square root, you should be careful with
keeping terms up to the correct order. Let us briefly go through it, since it is the place where many people
repeatedly make mistakes. So, instead of the second of the expansions (49) we will have:

2 2\ 1/2
\/(z—L)2+R2—(z—L):z(1—2§—|—L:2R) — (2 —L). (51)
We cannot drop (L?+ R?)/z? in the bracket and use linear approximation with x = —2L/z, for if we do it,
we will get zero. Note that we absolutely cannot drop (L?+4 R?)/2? and then go for the quadratic expansion
with —2L/z, since then we will keep the terms of the same order as those that we have discarded! So
let’s do quadratic approximation properly.
The quadratic term in Taylor’s expansion (45) is —x2/8, with

r=-2- = (52)
Hence,
[ 1/ L L2+R\ 1/ L L*+R*\’
VEILPTRE—(-L) ~ 2|1+ 22+ 2T 2 o2 TV
(z—L)?24+R*>—(z2—1L) z +2< ~t > 8( Tt > (z—1L)
([ L\ L*+R 4I2 .
e G I el (- L
Z< z>+ 222 8 22 O(r’/= )] (2 )
R? 3.3
(53)

and we are very disappointed to see that this is not enough, since the numerator of our logarithm in this
approximation is equal to its denominator, and the result is In(1) = 0! Therefore, to get the leading term
of this logarithm we need to include the cubic term in Taylor’s expansion (45), +23/16...

Fortunately, we are still reasonably close to the end. We write:

\/m—(z—L):z[l—i—<—2§+Lz+Rz>r/2—(z—L)

22
o fre L (R EEEY L(LE BERY L (LE BERY
= z:1+;<—2§+L2;R2>—;<41Z;22—4L(L2Z§_Rﬂ)+0<§j>>+11€3(—8?—!—0(?;))] —(#—1L)
%(Z—L)+;%Z2+L(L2+2§22)_L3—(z—L):];j<1+§>,

which — finally! — gives us the correct answer (48).

I typed all this story here to highlight two things:

e Flipping the order in which you make an approximation and integrate might help to simplify the
calculations (but should be done with care);

e Keeping correct-order terms in Taylor’s expansion might be a non-trivial task, and requires a lot of
your attention. A strange or a trivial answer invites you to check your approximations.



7. Vector calculus practice

(a) The equality that we want to prove looks exactly as the Divergence Theorem written for a scalar
in place of a vector. To prove it, let’s take an arbitrary constant vector c, and consider c - fv drVf =
fv drc - Vf (the equality holds since ¢ = const). To reduce this integral to something similar to the
Divergence Theorem, we use Product Rule (5) from Griffiths’ front page to get:

c-(Vf)=V-(fc) = f(V-<). (55)

Hence:

c-/VdTVf:/VdTV-(fc)—/Vde(V-c). (56)

Since ¢ = const, V - ¢ = 0. By applying the Divergence Theorem to fv drV - (fc), we get:

c-/VdTszjifc-da:c-jgfda, (57)

where the last step is justified since ¢ = const. Finally, since ¢ is an arbitrary constant vector, we must

have
/VdTVf:?ifda. (58)

(b) Here we have a volume integral in the left-hand side, so we can think about using the Divergence
Theorem. The issue is that the Divergence Theorem is about integrating over volume a divergence of a
vector, not its curl. Since divergence is a scalar quantity, let’s, again, take an auxiliary constant vector c
and consider its dot product with the left-hand side, which would produce a scalar:

c~/dT(va):/ch-(va):? (59)
1% 1%
Let’s use Product Rule (6) from the front cover of Griffiths’s book to get: ¢-(Vxv)=V-(vxc)+v-

(Vxc)=-V-(cxv) (here V x ¢ =0 since ¢ = const). This way we get a divergence of a vector field
integrated over volume. Now let’s apply the Divergence Theorem:

c-/VdT(va):—/VdT(V-(cxv)):—f(cxv)-da. (60)

S

At this point we will use Triple Product (1) again, this time as follows:
(cxv)-da=c-(vxda), (61)
and pull ¢ out of the integral (which we can do since it is a constant vector). This leaves us with:

c~/vdT(V><v):—c-£v><da, (62)

and since c is an arbitrary constant vector, we get:

/VdT(va):—%gvxda. (63)

Bingo.



8. Divergence and curl

Let the horizontal direction be x, the vertical direction be y. For each panel, we estimate the divergence
from the drawing using the formulae

_ Qv Ovy  10(svs)  10v,

V-v—% dy s Os s Op’

(64)

and the curl using the formulae

(O O, L (Osve)  Ous
V><v—<am 8y>z_s< Js Do % (65)

choosing the one that corresponds to the symmetry of the field: Cartesian coordinates for B and D, and
cylindrical coordinated for A and C.

A. This field has only a ¢ component which is an increasing function of s: v = v,(s) ¢. Thus dv,/ds > 0
and dv,/0p = 0, so that V- v =0 and V x v > 0 everywhere.

B. This field has only an X component which is an increasing function of y: v = v, (y) x. Thus dv,/0x =0
and Jv,/Jy > 0 so that V-v =0 and V x v < 0 everywhere.

C. This field has only an § component which is an increasing function of s: v = vs(s) 8. Thus dvs/0ds > 0
and Jvg/0p = 0, so that V-v > 0 and V x v = 0 everywhere.

D. This field has only a § component which is an increasing function of y: v = vy(y),y. Thus dv,/0x =0
and dvy /0y > 0 so that V- v > 0 and V x v = 0 everywhere.
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