Physics 301 - Homework #3 - Solutions

1. Conducting sphere with two cavities

a) To find charges on the surfaces of the two cavities, we enclose each cavity in a Gaussian surface that
entirely lays inside the conductor. It should not necessarily be a spherical surface — any surface inside
the conductor would do, since we are going to use the fact that under electrostatic equilibrium, E = 0
inside the conductor’s interior. Hence, the electric flux through any Gaussian surface inside a conductor
at equilibrium is &g = fs E - da = 0. Then by Gauss’s law any such Gaussian surface must enclose zero
net charge, thus the charge on the surface of cavity 1 is —¢q, and the surface of cavity 2 is not charged.

Another property of conductors in electrostatic equilibrium is that the charge inside them is always
equal to zero (all the external charge goes to conductor’s surfaces). We know that the net charge of the
conductor is +¢, and that —g has been attracted to the surface of cavity 1 by the charge +¢ in the cavity.
Using charge conservation we conclude that the charge on the outer surface is +2q.

cavity 1 cavity 2

conductor

The charge on the surface of cavity 1 is distributed non-uniformly, since the right side of the cavity
interacts with the point charge +q stronger than its left side. On the contrary, the charge on the outer
surface of the shell has a uniform distribution, since the cavity, and everything that happens inside it, is
screened from the outer space by the region E = 0 inside the conductor, and “knows nothing” about the
charge distribution in the cavity.

b) The volume charge inside a conductor at electrostatic equilibrium is equal to zero. Always. We
already used it in part a). As for how it is distributed — well, it does not make any sense to discuss a



distribution of something that does not exist!

¢) The density of electric field lines is proportional to the charge density, and the field lines are

perpendicular to the surface of the conductor:

2. On the definition of electric energy

a) We have a charge ¢; at position r; = (0,0,0) and a charge g2 at position ro = (0,0,7). The work

we must do to bring these two charges together is simply
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This will be positive work if the two charges have the same sign, and vice versa.
b) The total energy stored in the field produced by this pair of point charges is

W= 60/ E(r)|* dr.
2 all space

The field from the pair of point charges may be written as
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We could simplify this further, but we already know that the answer will be W = oo (see below), so there

is little point.



c) We can expand the E field as
|E1 +Ezf* = [Ei|* + 2E; - Ez + [Eof%, (5)

and then evaluate the integral of the cross term separately. Note that, with r1 = 0, and |r| = r, we have
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Figure 1: Geometry for calculating the interaction energy term, < E; - Eso.
Now, referring to Figure [1} note that r - ro = rlcos and |r — ra|? = 72 4 12 — 2rlcosf, so that
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Our expression for the interaction energy, Wiy, then becomes
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At this point, it is convenient to swap the order of the r and 6 integrals, and to make the substitution of
variables, w = cos 6, dw = — sin 6d#f, so that
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Now make the variable substitution, ' = r — lw, dr’ = dr, so that r2 + 1% — 2rlw = "? + 1*(1 — w?), so



that
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in agreement with part a).

So we interpret the terms proportional to |E1|> and |Ez|? as the (infinite) self-energy of the point
charges, and the term proportional to E; - Es as the work required to place the two point charges a
distance [ apart.

3. Four point charges

a) We begin by finding the lowest-order, non-zero multipole moments for this set of charges. Clearly
the monopole moment is zero since () = +3g — 3 - ¢ = 0. The dipole moment is
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so the leading term in the multipole expansion of the potential is the dipole term,
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b) We follow the treatment in class by computing E(r) = —VV (r) explicitly. Recall that in spherical
coordinates,
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Only the first two derivatives are non-zero for this dipole field. Specifically,
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To sketch this field, we can use the VectorPlot function from Wolfram Alpha. For that, we need to
split E into Cartesian components:
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with sinf = z/vx? 4+ 22 and cosf = z/vx? + 22. Here is the plot generated with these data:
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This plot reminds us of the electric field of a “pure” dipole (Griffiths, Figure 3.37a). No surprise, since
Eq. is exactly Eq.(3.103) from Griffiths, which expresses the field of a dipole when all higher terms
in the multipole expansion of the potential are dropped — this is exactly what we did here, replacing our
charge distribution with an ideal (“pure”) dipole 4¢b.

Let us find out how good this approximation is (not a part of the assignment, but still important to
know). We can use Python’s streamplot function El The exact field lines of the four charges are shown
in the figure below. The left panel shows a close-up at a region around the charges, over the range of
—4 < x,z < +4, assuming a = 1, b = 2. The positive charge (¢ = +3) is shown in red, and the negative
charges (¢ = —1) are shown in blue. The middle panel zooms out and shows the field lines of this system
of charges in the range of —40 < z, z < 440, together with the field lines of an ideal dipole 4¢b (shown in
green). You can see that dipole approximation is reasonably accurate at large distances from the charge
system, and is not reliable close to it (right panel, showing both exact and approximate field lines over
the range of —10 < z,z < +10).
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Figure: Electric field lines of exact charge configuration (black) and dipole approximation (green). Left:
zooming in onto exact filed lines. Middle: reasonable agreement between the exact solution and the dipole
approximation at a large distance from the charges. Right: this agreement brakes closer to the charge
system. See text for more details on the parameters used.

"https://scipython.com/blog/visualizing-a-vector-field-with-matplotlib/
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4. Non-uniformly charged sphere

Let us start with computing the monopole moment of the sphere:
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due to integration over r: R — 2R(R?/2) = 0. Since the net charge on the sphere is zero, its monopole
term in the potential expansion is equal to zero:

Vo(r) = 0. (21)

Now let us look at its dipole moment:
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From here we can find p, by replacing r in the integrand with rsin @ cos ¢, after which the integral
over ¢ gives zero. The same happens for p,, with r, = rsinfsin¢. Finally, for p, we have r, = rcosf,
and this component vanishes, too, since

/ sin? § cos 0df = 0, (23)
0
so that

Vi(r) = 0. (24)

Therefore, we need to find the quadrupole term. Instead of calculating the tensor @);;, let us use the
equation for Va(r), which we get directly from Taylor’s expansion of 1/|r — r/|:
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Here I set 6 = 6 for the term in brackets, since the observation point is on the z-axis, and we have
r || 2, so tha the polar angles for r and r are equal. We get:

Va(r) (26)
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5. Multipole expansion.

a) The monopole moment of one charge is simply @ = ¢, and its dipole moment is p = ¢sz. We have
for the first two terms (the upper index (a) refers to part a) of this question):
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Let’s find the tensor of the quadrupole moment, Q;; = ¢/2(3r;r; —7“25,-j). Here 72 = 52 and contributes

to the diagonal terms of @);;, and the only non-vanishing contribution from 3r;r; is 322 fori=7j=3. We
find that all off-diagonal terms of @);; are zero by virtue of x = y = 0, and

Qzz = Quy = q(0 — 32)/2 = —q32/2, Q.. = q(3$2 — 32)/2 = ¢s°. (28)



Now (we have to account for only diagonal elements with j = 7):
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We can finally brush it up using sin? = 1 — cos? @ to get:
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Note that here we could find V, without computing @;;. Let’s rotate the z-axis so that it passes
through the observation point P. Now the point charge has coordinates (' = 5,6’ = 0,¢' = 0), with ¢’
being the angle between r’ and the z-axis, and 6 being the angle between r and the z-axis. The volume
charge density in spherical coordinates now writes: E|
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Using the expression for the quadrupole potential with ¢’ being the polar angle by construction
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and with dr’ = (dr'")(r’ sin #'d0’)(r'd¢’), we arrive at (30)) in one step.

b) For two +¢ charges sitting on the z-axis symmetrically about the origin, we find @Q = 2¢ and p =0
(since the position vectors of the two identical charges are pointing in the opposite directions). Hence,
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These two charges contribute equally into the quadrupole tensor (since its diagonal terms are quadratic
with respect to z, and its off-diagonal terms are equal to zero), so we simply need to double @Q);; from the
part a). Hence,
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c¢) Finally, let us shift the origin to the location of the second charge, initially placed at (0,0, —s). The
charge sitting at the origin will contribute to the monopole, but not to higher moments of charge density,
since for it r' = 0. Hence, for V; and V5 we can use the results of part a) with the replacement s — 2s,
since the first charge is now at a distance 2s from the new origin. We get:
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Comparing our answers to parts b) and ¢) we notice a strange thing: Vl(b) = 0, while Vl(c) is not. Is it
okay that terms in the multipole expansion appear and disappear when we simply shift the origin of the
coordinate system, which is not supposed to affect the properties of the physical system?
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To make sure that physical reality does not change when we make a different choice of the coordinate
system, let us see how these two answers compare. What changes when we displace a coordinate system
is the definition of the vector r to the observation point. In our equations we simply used a notation r,
but it is now time to look at it more carefully.

This picture shows two position vectors, r, and r., for the two coordinate systems that we have used
in parts b) and c). Using cosine law and Taylor’s expansion up to terms linear in s/r., we have:

ry = \/12 — 2res cos b, + 52 & . (1 — 2 cos «90> . (36)
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Now let’s use this in the equation for the monopole potential from part b):
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Now it is enough to open the brackets and recognize that the first term is the monopole form part ¢), and
the second term is the dipole from part c) so that

Vi (rn) = Vi (re) + 1 (xe), (38)

so that the dipole term “appears” from the monopole if we redefine the position vector. We could have
compared also the quadrupole terms, but for that we would need to keep higher terms in the Taylor’s
expansion of 1, and the calculation becomes considerably more cumbersome. Let us simply agree that
now it is easier to believe that both approaches are consistent, and let’s stop here with a light heart.

6. Dipole moment for a sphere of charge
We have a sphere of radius R with a uniform surface charge density +o( over the northern hemisphere

and —o( over the southern hemisphere (o( is a positive constant). There are no other charges present
inside or outside the sphere. The dipole moment of this charge distribution may be expressed as

p= / p(x) ' dr’ — / o(r')r' dd’. (39)
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Now we need to compute Cartesian components of vector p (I hope that you remember and can explain
why we are computing Cartesian — not spherical — components of p!). To do that, we write:

r' =2'%+9y'y+ 72 =Rsin® cos¢’ x + Rsin®’ sin¢’'y + Rcos ¢’ z. (41)



We see that p, = p, = 0, since f027r d¢' cos ¢’ = 027r d¢' sin ¢’ = 0. This result makes sense: since there
are no preferred directions along x or y, we cannot identify a direction along these axes in which p could
potentially point. Next (here w = sin§’),
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Thus

p=21R%0¢ 2. (43)

Note that our result does not depend on the choice of origin since the monopole moment (total charge)
vanishes. We can see this mathematically in equation : adding a constant, r’ — r’+c, for any constant
vector ¢, adds zero to the integral.

As an aside, note that the total charge on each hemisphere is ¢ = £27R%0y, so the magnitude of p
is simply ¢R, which is equivalent to concentrating each hemisphere’s charge into a point a distance R/2
from the origin.



