
Physics 301 - Homework #3 - Solutions

1. Conducting sphere with two cavities

a) To find charges on the surfaces of the two cavities, we enclose each cavity in a Gaussian surface that
entirely lays inside the conductor. It should not necessarily be a spherical surface – any surface inside
the conductor would do, since we are going to use the fact that under electrostatic equilibrium, E ≡ 0
inside the conductor’s interior. Hence, the electric flux through any Gaussian surface inside a conductor
at equilibrium is ΦE =

∮
S E · da = 0. Then by Gauss’s law any such Gaussian surface must enclose zero

net charge, thus the charge on the surface of cavity 1 is −q, and the surface of cavity 2 is not charged.
Another property of conductors in electrostatic equilibrium is that the charge inside them is always

equal to zero (all the external charge goes to conductor’s surfaces). We know that the net charge of the
conductor is +q, and that −q has been attracted to the surface of cavity 1 by the charge +q in the cavity.
Using charge conservation we conclude that the charge on the outer surface is +2q.

The charge on the surface of cavity 1 is distributed non-uniformly, since the right side of the cavity
interacts with the point charge +q stronger than its left side. On the contrary, the charge on the outer
surface of the shell has a uniform distribution, since the cavity, and everything that happens inside it, is
screened from the outer space by the region E = 0 inside the conductor, and “knows nothing” about the
charge distribution in the cavity.

b) The volume charge inside a conductor at electrostatic equilibrium is equal to zero. Always. We
already used it in part a). As for how it is distributed – well, it does not make any sense to discuss a
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distribution of something that does not exist!

c) The density of electric field lines is proportional to the charge density, and the field lines are
perpendicular to the surface of the conductor:

2. On the definition of electric energy

a) We have a charge q1 at position r1 = (0, 0, 0) and a charge q2 at position r2 = (0, 0, l). The work
we must do to bring these two charges together is simply

W =
1

4πϵ0

q1q2
l

. (1)

This will be positive work if the two charges have the same sign, and vice versa.
b) The total energy stored in the field produced by this pair of point charges is

W =
ϵ0
2

∫
all space

|E(r)|2 dτ. (2)

The field from the pair of point charges may be written as

E1(r) +E2(r) =
1

4πϵ0

(
q1

r− r1
|r− r1|3

+ q2
r− r2
|r− r2|3

)
, (3)

so that

W =
1

32π2ϵ0

∫
all space

∣∣∣∣q1 r− r1
|r− r1|3

+ q2
r− r2
|r− r2|3

∣∣∣∣2 dτ. (4)

We could simplify this further, but we already know that the answer will be W = ∞ (see below), so there
is little point.
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c) We can expand the E field as

|E1 +E2|2 = |E1|2 + 2E1 ·E2 + |E2|2, (5)

and then evaluate the integral of the cross term separately. Note that, with r1 = 0, and |r| ≡ r, we have

E1 ·E2 =
q1q2

(4πϵ0)2
r

r3
· r− r2
|r− r2|3

=
q1q2

(4πϵ0)2
r2 − r · r2
r3 |r− r2|3

. (6)

Figure 1: Geometry for calculating the interaction energy term, ∝ E1 ·E2.

Now, referring to Figure 1, note that r · r2 = rl cos θ and |r− r2|2 = r2 + l2 − 2rl cos θ, so that

E1 ·E2 =
q1q2

(4πϵ0)2
r2 − rl cos θ

r3 (r2 + l2 − 2rl cos θ)3/2
. (7)

Our expression for the interaction energy, Wint, then becomes

Wint = ϵ0

∫
all space

E1 ·E2 dτ

=
q1q2ϵ0
(4πϵ0)2

∫ ∞

0
r2dr

∫ π

0
sin θdθ

∫ 2π

0
dφ

r2 − rl cos θ

r3 (r2 + l2 − 2rl cos θ)3/2

=
q1q2
8πϵ0

∫ ∞

0
r2dr

∫ π

0
sin θdθ

r2 − rl cos θ

r3 (r2 + l2 − 2rl cos θ)3/2
. (8)

At this point, it is convenient to swap the order of the r and θ integrals, and to make the substitution of
variables, w ≡ cos θ, dw = − sin θdθ, so that∫ π

0
sin θ dθf(θ) =

∫ +1

−1
dw f(w), (9)

and

Wint =
q1q2
8πϵ0

∫ +1

−1
dw

∫ ∞

0
dr

r − lw

(r2 + d2 − 2rlw)3/2
. (10)

Now make the variable substitution, r′ = r − lw, dr′ = dr, so that r2 + l2 − 2rlw = r′2 + l2(1 − w2), so
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that

Wint =
q1q2
8πϵ0

∫ +1

−1
dw

∫ ∞

−wd
dr′

r′

(r′2 + l2(1− w2))3/2

=
q1q2
8πϵ0

∫ +1

−1
dw

−1

(r′2 + l2(1− w2))1/2

∣∣∣∣∞
−wd

=
q1q2
8πϵ0

∫ +1

−1
dw

[
0 +

1

(w2l2 + l2(1− w2))1/2

]
=

q1q2
8πϵ0

∫ +1

−1
dw

1

l
, (11)

→ Wint =
1

4πϵ0

q1q2
l

, (12)

in agreement with part a).
So we interpret the terms proportional to |E1|2 and |E2|2 as the (infinite) self-energy of the point

charges, and the term proportional to E1 · E2 as the work required to place the two point charges a
distance l apart.

3. Four point charges

a) We begin by finding the lowest-order, non-zero multipole moments for this set of charges. Clearly
the monopole moment is zero since Q = +3q − 3 · q = 0. The dipole moment is

p =
∑
i

qi ri = 3q(0, 0, b)− q(a, 0, 0)− q(0, 0,−b)− q(−a, 0, 0) = 4qb ẑ, (13)

so the leading term in the multipole expansion of the potential is the dipole term,

V (r) → 1

4πϵ0

p · r̂
r2

=
4qb

4πϵ0

ẑ · r̂
r2

=
qb

πϵ0

cos θ

r2
. (14)

b) We follow the treatment in class by computing E(r) = −∇V (r) explicitly. Recall that in spherical
coordinates,

∇V =
∂V

∂r
r̂+

1

r

∂V

∂θ
θ̂ +

1

r sin θ

∂V

∂φ
φ̂. (15)

Only the first two derivatives are non-zero for this dipole field. Specifically,

Er(r) = − ∂

∂r

(
qb

πϵ0

cos θ

r2

)
=

2qb

πϵ0

cos θ

r3
(16)

Eθ(r) = −1

r

∂

∂θ

(
qb

πϵ0

cos θ

r2

)
=

qb

πϵ0

sin θ

r3
, (17)

so that

E(r) =
1

4πϵ0

4qb

r3

(
2 cos θ r̂+ sin θ θ̂

)
. (18)

To sketch this field, we can use the VectorPlot function from Wolfram Alpha. For that, we need to
split E into Cartesian components:

E(r) =
1

4πϵ0

4qb

r3

(
3 sin θ cos θ x̂+ (2 cos2 θ − sin2 θ) ẑ

)
, (19)

with sin θ = x/
√
x2 + z2 and cos θ = z/

√
x2 + z2. Here is the plot generated with these data:

4



This plot reminds us of the electric field of a “pure” dipole (Griffiths, Figure 3.37a). No surprise, since
Eq.(18) is exactly Eq.(3.103) from Griffiths, which expresses the field of a dipole when all higher terms
in the multipole expansion of the potential are dropped – this is exactly what we did here, replacing our
charge distribution with an ideal (“pure”) dipole 4qb.

Let us find out how good this approximation is (not a part of the assignment, but still important to
know). We can use Python’s streamplot function 1. The exact field lines of the four charges are shown
in the figure below. The left panel shows a close-up at a region around the charges, over the range of
−4 < x, z < +4, assuming a = 1, b = 2. The positive charge (q = +3) is shown in red, and the negative
charges (q = −1) are shown in blue. The middle panel zooms out and shows the field lines of this system
of charges in the range of −40 < x, z < +40, together with the field lines of an ideal dipole 4qb (shown in
green). You can see that dipole approximation is reasonably accurate at large distances from the charge
system, and is not reliable close to it (right panel, showing both exact and approximate field lines over
the range of −10 < x, z < +10).

Figure: Electric field lines of exact charge configuration (black) and dipole approximation (green). Left:
zooming in onto exact filed lines. Middle: reasonable agreement between the exact solution and the dipole
approximation (18) at a large distance from the charges. Right: this agreement brakes closer to the charge
system. See text for more details on the parameters used.

1https://scipython.com/blog/visualizing-a-vector-field-with-matplotlib/
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4. Non-uniformly charged sphere

Let us start with computing the monopole moment of the sphere:

Q =

∫
V
ρ(r)dτ =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R

0
dr r2 sin θ

kR

r2
(R− 2r) sin θ = 0 (20)

due to integration over r: R3 − 2R(R2/2) = 0. Since the net charge on the sphere is zero, its monopole
term in the potential expansion is equal to zero:

V0(r) = 0. (21)

Now let us look at its dipole moment:

p =

∫ 2π

0
dϕ

∫ π

0
dθ

∫ R

0
dr r2 sin θ r. (22)

From here we can find px by replacing r in the integrand with r sin θ cosϕ, after which the integral
over ϕ gives zero. The same happens for py, with ry = r sin θ sinϕ. Finally, for pz we have rz = r cos θ,
and this component vanishes, too, since ∫ π

0
sin2 θ cos θdθ = 0, (23)

so that
V1(r) = 0. (24)

Therefore, we need to find the quadrupole term. Instead of calculating the tensor Qij , let us use the
equation for V2(r), which we get directly from Taylor’s expansion of 1/|r− r′|:

V2(r) =
1

4πϵ0

1

r3

∫
V
ρ(r

′
)
r
′2

2
(3 cos2 θ′ − 1)dτ

′
. (25)

Here I set θ = θ
′
for the term in brackets, since the observation point is on the z-axis, and we have

r ∥ ẑ, so tha the polar angles for r and r
′
are equal. We get:

V2(r) =
1

4πϵ0

1

r3
2π

kR

2

∫ R

0
drr2(R− 2r)

∫ π

0
dθ sin2 θ(2 cos2 θ − 1) =

1

4πϵ0

π2kR5

48r3
. (26)

5. Multipole expansion.

a) The monopole moment of one charge is simply Q = q, and its dipole moment is p = qsẑ. We have
for the first two terms (the upper index (a) refers to part a) of this question):

V
(a)
0 (r) =

1

4πϵ0

q

r
, V

(a)
1 (r) =

1

4πϵ0

qs cos θ

r2
. (27)

Let’s find the tensor of the quadrupole moment, Qij = q/2(3rirj−r2δij). Here r
2 = s2 and contributes

to the diagonal terms of Qij , and the only non-vanishing contribution from 3rirj is 3z
2 for i = j = 3. We

find that all off-diagonal terms of Qij are zero by virtue of x = y = 0, and

Qxx = Qyy = q(0− s2)/2 = −qs2/2, Qzz = q(3s2 − s2)/2 = qs2. (28)
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Now (we have to account for only diagonal elements with j = i):

V
(a)
2 (r) =

1

4πϵ0

1

r3

∑
i

Qiir
2
i

r2
=

1

4πϵ0

qs2

r3

(
z2

r2
− 1

2

x2 + y2

r2

)
=

1

4πϵ0

qs2

2r3
(
2 cos2 θ − sin2 θ

)
. (29)

We can finally brush it up using sin2 θ = 1− cos2 θ to get:

V
(a)
2 (r) =

1

4πϵ0

qs2

2r3
(
3 cos2 θ − 1

)
. (30)

Note that here we could find V2 without computing Qij . Let’s rotate the z-axis so that it passes
through the observation point P. Now the point charge has coordinates (r′ = s, θ′ = θ, ϕ′ = 0), with θ′

being the angle between r′ and the z-axis, and θ being the angle between r and the z-axis. The volume
charge density in spherical coordinates now writes: 2

ρ(r′) =
1

r′2 sin θ′
δ(r′ − s)δ(θ′ − θ)δ(ϕ− 0). (31)

Using the expression for the quadrupole potential with θ′ being the polar angle by construction

V2(r) =
1

4πϵ0

1

r3

∫
ρ(r′)

r′2

2
(3 cos θ′ − 1)dτ ′ (32)

and with dτ ′ = (dr′)(r′ sin θ′dθ′)(r′dϕ′), we arrive at (30) in one step.

b) For two +q charges sitting on the z-axis symmetrically about the origin, we find Q = 2q and p = 0
(since the position vectors of the two identical charges are pointing in the opposite directions). Hence,

V
(b)
0 (r) =

1

4πϵ0

2q

r
, V

(b)
1 (r) = 0. (33)

These two charges contribute equally into the quadrupole tensor (since its diagonal terms are quadratic
with respect to z, and its off-diagonal terms are equal to zero), so we simply need to double Qij from the
part a). Hence,

V
(b)
2 (r) =

1

4πϵ0

qs2

r3
(
3 cos2 θ − 1

)
. (34)

c) Finally, let us shift the origin to the location of the second charge, initially placed at (0, 0,−s). The
charge sitting at the origin will contribute to the monopole, but not to higher moments of charge density,
since for it r

′ ≡ 0. Hence, for V1 and V2 we can use the results of part a) with the replacement s → 2s,
since the first charge is now at a distance 2s from the new origin. We get:

V
(c)
0 (r) =

1

4πϵ0

2q

r
, V

(c)
1 (r) =

1

4πϵ0

2qs cos θ

r2
, V

(c)
2 (r) =

1

4πϵ0

2qs2

r3
(
3 cos2 θ − 1

)
. (35)

Comparing our answers to parts b) and c) we notice a strange thing: V
(b)
1 = 0, while V

(c)
1 is not. Is it

okay that terms in the multipole expansion appear and disappear when we simply shift the origin of the
coordinate system, which is not supposed to affect the properties of the physical system?

2math.oregonstate.edu/BridgeBook/book/math/delta3d
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To make sure that physical reality does not change when we make a different choice of the coordinate
system, let us see how these two answers compare. What changes when we displace a coordinate system
is the definition of the vector r to the observation point. In our equations we simply used a notation r,
but it is now time to look at it more carefully.

This picture shows two position vectors, rb and rc, for the two coordinate systems that we have used
in parts b) and c). Using cosine law and Taylor’s expansion up to terms linear in s/rc, we have:

rb =
√

r2c − 2rcs cos θc + s2 ≈ rc

(
1− s

rc
cos θc

)
. (36)

Now let’s use this in the equation for the monopole potential from part b):

V
(b)
0 (rc) =

1

4πϵ0

2q

rb
=

1

4πϵ0

2q

rc

(
1 +

s

rc
cos θc

)
2q

rb
+O((s/rc)

2). (37)

Now it is enough to open the brackets and recognize that the first term is the monopole form part c), and
the second term is the dipole from part c) so that

V
(b)
0 (rb) = V

(c)
0 (rc) + V

(c)
1 (rc), (38)

so that the dipole term “appears” from the monopole if we redefine the position vector. We could have
compared also the quadrupole terms, but for that we would need to keep higher terms in the Taylor’s
expansion of rb, and the calculation becomes considerably more cumbersome. Let us simply agree that
now it is easier to believe that both approaches are consistent, and let’s stop here with a light heart.

6. Dipole moment for a sphere of charge

We have a sphere of radius R with a uniform surface charge density +σ0 over the northern hemisphere
and −σ0 over the southern hemisphere (σ0 is a positive constant). There are no other charges present
inside or outside the sphere. The dipole moment of this charge distribution may be expressed as

p =

∫
V
ρ(r′) r′ dτ ′ →

∫
A
σ(r′) r′ da′. (39)

It is natural to work in spherical coordinates, so da′ = (Rdθ′)(R sin θ′ dϕ′), and

p = R2

∫ 2π

0
dϕ′
∫ π

0
σ(θ′)r′ sin θ′. (40)

Now we need to compute Cartesian components of vector p (I hope that you remember and can explain
why we are computing Cartesian – not spherical – components of p!). To do that, we write:

r′ = x′x̂+ y′ŷ + z′ẑ = R sin θ′ cosϕ′ x̂+R sin θ′ sinϕ′ ŷ +R cosϕ′ ẑ. (41)
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We see that px = py = 0, since
∫ 2π
0 dϕ′ cosϕ′ =

∫ 2π
0 dϕ′ sinϕ′ = 0. This result makes sense: since there

are no preferred directions along x or y, we cannot identify a direction along these axes in which p could
potentially point. Next (here w = sin θ′),

pz = R3

∫ 2π

0
dϕ′
∫ π

0
dθ′ sin θ′ cos θ′σ(θ′) = 2πR3

(
σ0

∫ π/2

0
dθ′ sin θ′ cos θ′ − σ0

∫ π

π/2
dθ′ sin θ′ cos θ′

)
(42)

= 4πR3σ0

∫ π/2

0
dθ′ sin θ′ cos θ′ = 4πR3σ0

∫ 1

0
dww = 2πR3σ0.

Thus
p = 2πR3 σ0 ẑ. (43)

Note that our result does not depend on the choice of origin since the monopole moment (total charge)
vanishes. We can see this mathematically in equation (40): adding a constant, r′ → r′+c, for any constant
vector c, adds zero to the integral.

As an aside, note that the total charge on each hemisphere is q = ±2πR2σ0, so the magnitude of p
is simply qR, which is equivalent to concentrating each hemisphere’s charge into a point a distance R/2
from the origin.
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