
Physics 301 - Homework #4 - Solutions

1. Conceptual questions

a) Bound volume charge density is:

ρB = −∇ ·P = −∇ · (ϵ0χeE) = −ϵ0[χe(∇ ·E) +E · (∇χe)] (1)

where the second step accounts for the fact that the dielectric is linear, and the last step uses Product
Rule (5) from Griffiths’ cover. Now let’s use ∇ ·E = ρ/ϵ0 = (ρB + ρF )/ϵ0 and rearrange for ρB:

ρB(1 + χe) = −χeρF − ϵ0E · (∇χe). (2)

In a neutral dielectric, ρF = 0, and “homogeneous” means that χe = const, and hence ∇χe ≡ 0. Bingo.
Let us reiterate: in a linear homogeneous dielectric, the bound volume charge density is zero as long

as there is no free volume charge density inside it (i.e. it is not doped with external charges).

b) We know that the curl of electric field is zero, thus,

0 = ∇×E =
1

ϵ0
(D−P) → ∇×P = ∇×D = ∇× [ϵ(r)E]. (3)

Using Product Rule (7) from Griffiths’ cover we get from here:

∇×P = ϵ(r)∇×E−E×∇ϵ(r). (4)

The first term is equal to zero since ∇×E ≡ 0, and the second term is non-zero in a non-uniform dielectric.
We get:

∇×P = −E×∇ϵ(r) ̸= 0. (5)

Alternatively, you can reach the same conclusion from computing the curl of P = ϵ0χe(r)E.

2. Parallel plate capacitor with dielectric

a) Since we neglect edge effects, the fields are translationally invariant along x and y, and are directed
along ẑ everywhere. Hence, we can use Gauss’s law to determine the fields. Without a dielectric between
the plates, the fields are determined solely by the surface charge on the plates, σF = Q/A. We refer to
this charge as the free charge. Then

D = −σF ẑ, E = −σF /ϵ0 ẑ, |∆V | = σFd/ϵ0, (6)

where the sign of the field is dictated by the direction of the z axis, and we only track the magnitude of
the voltage drop.

b) When we insert a dielectric, the fields will change. We still can use the free charge distribution to
determine D. Since the free charge is unaffected by inserting the dielectric,

D = −σF ẑ (everywhere between the plates). (7)
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For the E and P fields we can use the relation D = ϵ0E+P (which is always valid) to assert that outside
the dielectric (where P ≡ 0, since there is nothing to polarize) we have E = D/ϵ0. Thus

E = −σF /ϵ0 ẑ, P = 0 (outside the dielectric). (8)

Note that E is unchanged outside the dielectric.
Within the dielectric (which we assume here is linear), the polarization is proportional to the electric

field, P = ϵ0χeE, where χe is the susceptibility of the dielectric, so that

D = ϵ0E+P = ϵ0(1 + χe)E ≡ ϵE. (9)

Therefore, inside the dielectric, E = D/ϵ and P = D− ϵ0E = (1− ϵ0/ϵ)D, so that

E = −σF /ϵ ẑ, P = −σF (1− 1/ϵr) ẑ (inside the dielectric), (10)

where ϵr = ϵ/ϵ0 is the dimensionless dielectric constant of the material.
The voltage drop is the integral of E ·dl between the plates, so that |∆V | = (|D|/ϵ)t+(|D|/ϵ0)(d− t).

We get:

|∆V | = σF
ϵ0

[
d− t

(
1− 1

ϵr

)]
. (11)

Note that in the limit of no dielectric (t = 0), the voltage is σFd/ϵ0, and in the limit of a full dielectric
(t = d), it is σFd/ϵ, as expected.

c) Since the polarization is uniform everywhere within the dielectric, there is no bound volume charge:
ρB = −∇ ·P = −∂Pz/∂z = 0. This is consistent with Problem 1a, where we proved that a neutral linear
uniform dielectric does not develop bound volume charge.

The bound surface charge is σB = P · n̂. On the top surface of the dielectric, n̂ = ẑ, so σB = −|P|
and vice versa for the bottom surface, thus

σB = ∓σF (1− 1/ϵr), (12)

where the minus sign applies to the upper surface, and vice versa. The electric field due to these two
infinite planes of charges is simply Eind = +σB/ϵ0 ẑ = (σF /ϵ0)(1 − 1/ϵr)ẑ inside the dielectric, and zero
outside it. We see that

Eind = −P/ϵ0. (13)

You may find the sign of this relation surprising. When an external field acts on a dipole, the dipole
tries to orient in the direction of the external field. But the field produced by the dipole moment itself is
mainly directed from the positive pole towards the negative pole, therefore canceling some of the applied
field (and reducing the volume integral of |E|2, or the total energy).

d) Given the definition E = Eext + Eind, and the results in part c), we have the following. Outside
the dielectric, Eind = 0 and Eext = E, so that

Eext = D/ϵ0, Eind = 0 (outside the dielectric). (14)

Inside the dielectric we have Eind = −P/ϵ0 and thus Eext = E−Eind = (D−P)/ϵ0 +P/ϵ0, or

Eext = D/ϵ0, Eind = −P/ϵ0 (inside the dielectric). (15)

So the “external” field is simply D/ϵ0 both inside and outside the dielectric.
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e) Next we attach a battery to the capacitor plates to hold the potential drop fixed to ∆V0 ≡ σFd/ϵ0,
the value we found in part a). To hold this potential drop when we insert a dielectric, the battery will
have to supply additional charge. Specifically, there will be a new free charge density, σ′

F , that is given
by the condition

∆V0 =
σFd

ϵ0
=

σ′
F

ϵ0

[
d− t

(
1− 1

ϵr

)]
. (16)

So all of the results in parts b)-d) have the same form as above with the substitution

σF → σ′
F = σF

[
1− t

d

(
1− 1

ϵr

)]−1

. (17)

In the limit of no dielectric (t = 0 or ϵr = 1) we have σ′
F = σF , while in the limit of filled dielectric (t = d)

we have σ′
F = σF ϵr. In the latter case, all the fields increase by a factor of ϵr to maintain a fixed voltage

in the presence of dielectric screening.

3. Force on a dielectric slab

a) Let x denote the width of the empty part of the capacitor; we will set x = a/2 at the very end. We
model the structure as two parallel capacitors with equivalent capacitance

Ceq = C1 + C2 =
ϵ0ax

d
+

ϵ0ϵra(a− x)

d
=

ε0a

d
(ϵra− x(ϵr − 1)). (18)

If the plates of the capacitor carry charge Q, then the potential energy stored in it is:

W =
Q2

2Ceq
=

Q2d

2ϵ0a(ϵra− x(ϵr − 1))
. (19)

As we discussed in class,

Fel = −∇W → Fel,x = −dW

dx
, (20)

from where we get

Fel = −x̂
Q2d

2ϵ0a

(ϵr − 1)

(ϵra− x(ϵr − 1))2
→ Fel(x = a/2) = −x̂

2Q2d

ϵ0a3
(ϵr − 1)

(ϵr + 1)2
(21)

when x = a/2.

b) Now the voltage V across the capacitor’s plates is given, and we want to use

W =
CeqV

2

2
=

V 2ϵ0a

2d
(ϵra− x(ϵr − 1)) (22)

instead of Eq.(19). Using Eq.(20) we get:

F = −x̂
V 2ϵ0a

2d

d

dx
(ϵra− x(ϵr − 1)) → Fel(x = a/2) = +x̂

V 2ϵ0a

2d
(ϵr − 1). (23)

Using V = Q/Ceq, we rewrite this force in the form:

Fel(x = a/2) = +x̂
Q2

(ϵ0a2(ϵr + 1)/2d)2
ϵ0a

2d
(ϵr − 1) = +x̂

2Q2d

ϵ0a3
(ϵr − 1)

(ϵr + 1)2
. (24)

The magnitude of this force coincides with the Eq.(21) from part a), but, unfortunately, it has the
opposite sign: while the force in part a) points in the negative-x direction and pulls the slab into the
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capacitor, the force from part b) points in the positive-x direction and hence it pushes the slab out of
the capacitor. Clearly, something is wrong – since the force “does not know” which type of information,
charge or voltage, we want to start with!

c) The reason for the discrepancy lays in Eq.(20). Let’s recall where it comes from. If I do work on
the system by shifting the slab by a distance dx, its electric potential energy changes by dW . The work
that I produce while doing this is (we set Fme = −Fel, since I do this work against electric force):

Fmedx = −Feldx = dW, (25)

from where we got Eq.(20). The subtlety here is that this reasoning is correct in the first case, where I
used W = Q2/2Ceq thus explicitly assuming that the charge in the system conserves under the change
I made (the capacitor is detached from the battery). Then Eq.(20) is valid, and hence my answer from
part a) is correct. In the part b), in contrast, I stated that the voltage across the plates conserves; you
can think about it as if the capacitor was attached to a battery which maintained the voltage constant by
delivering extra charge to the plates. While delivering charge, the battery also did work on the system,
that should be included into the energy balance, which now reads:

dW = dWorkme + dWorkbattery = −Feldx+ V dQ. (26)

From here I can find an expression for the force in the situation when there are two agents responsible
for the energy change:

Fel = −dW

dx
+ V

dQ

dx
= −dW

dx
+ V 2dCeq

dx
(27)

since dQ = V dCeq. Taking the x-derivative of the equivalent capacitance (18) we will get exactly the
same expression, both magnitude and sign, as in part a) (left as an exercise).

It is interesting that without the work of the battery we got the correct magnitude of the force. Is it
a coincidence? To get some insight, let us simplify Eq.(27). Assuming that V is fixed, we have:

dW

dx
=

d

dx

Ceq(x)V
2

2
=

V 2

2

dCeq

dx
, (28)

while

V
dQ

dx
= V

d

dx
Ceq(x)V = V 2dCeq

dx
≡ 2

dW

dx
. (29)

This gives for the force (27):

Fel = −dW

dx
+ V

dQ

dx
= −dW

dx
+ 2

dW

dx
= +

dW

dx
. (30)

This explains why we got correct magnitude but wrong sign in part b), where we blindly applied
Eq.(20), which fails to account for the proper energy balance when some external agent (the battery) is
assumed to maintain the voltage constant.

4. A rod with a non-uniform polarization

a) Since we know polarization, to find the bound charge density we simply can use ρB = −∇ ·P and
σB = P · n̂, with n̂ pointing in the direction opposite to ŝ on the inner surface (s = a) and along ŝ on the
outer surface (s = b) of the cylinder. We get:

σB,a = −k/a2, σB,b = k/b2, (31)

ρB(s) = −k

s

∂

∂s

(
s
1

s2

)
=

k

s3
. (32)
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b) To find the electric field, we will use Gauss’ law, due to the axial symmetry of the problem. For
s < a we have E(s < a) = 0 since the enclosed charge is zero. For s > b we expect to have the same, since
the bound charge should add up to zero, and there are no free charges; let’s confirm that by computing
net bound charge enclosed by a co-axial cylinder of length L with a radius s > b:

Qencl = σB,a 2πaL+ σB,b 2πbL+

∫
Vencl

ρB(s
′)dτ ′ = −2πaLk

a2
+

2πbLk

b2
+ 2πLk

∫ b

a

ds′

s′2
= 0. (33)

As for the region a < s < b, we can find electric field from

Es(s) 2πsL =
Qencl

ϵ0
, (34)

with

Qencl = σB,a 2πaL+

∫
Vencl

ρB(s
′)dτ ′ = −2πaLk

a2
+ 2πLk

∫ s

a

ds′

s′2
= −2πkL

s
, (35)

and we get inside the cylindrical rod:

E(s) = − k

ϵ0s2
ŝ. (36)

c) Now let us find D from D = ϵ0E+P. The displacement vector is zero for s < a and s > b since there
E = P = 0, and in the region a < s < b we have:

D = ϵ0

(
− k

ϵ0s2

)
ŝ+

k

s2
ŝ = 0, (37)

which makes sense, since in this problem we do not have free charges, which are the source of the dis-
placement field D. Hence, the alternative – much faster! – solution would be to simply state that D ≡ 0
everywhere, and then find E in the rod as E = (D−P)/ϵ0 = −P/ϵ0, which coincides with equation (36).

5. Half-filled spherical capacitor

Let’s think what we can expect. There are free charges on both conductors, which will be distributed
between upper and lower halves of the shells – but we don’t know whether they will be distributed
uniformly or not due to lack of symmetry (the top part of the system is different from its bottom part).
Next, the dielectric will be polarized – hence, we expect that there will be bound surface charges on the
surfaces of the dielectric, i.e. on the lower half of the capacitor. There might be bound charges on the
dielectric-vacuum interface at the equator. Next, the dielectris is linear and uniform (characterized by a
single constant permittivity ϵ) – and we know from Problem 1a that then

ρB = 0. (38)

Since we can’t make sound conclusions about the charge distribution, let us try to approach the
problem from another side. One thing that we know for sure is that each conductor is an equipotential
object. Hence, the outer shell is under the same potential (let’s call it Vb) and the inner shell is also under
the same potential (let’s call it Va). Let us think what we can get from here.

Let’s choose spherical coordinates and take the polar (z) axis to be the symmetry axis of the system.
By symmetry, there can be no ϕ dependence in any of the fields or charge distributions. We will now
argue that electric field will be radial in this system. Since there are no volume charges anywhere, the
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potential will satisfy Laplace equation for r < a, r > b and also for a < r < b: ∇2V = 0. In each of these
regions it will hence have the form

V (r, θ) = V (r) =
c1
r

+ c2 (39)

with c1 and c2 being two constants; the fact that the potential does not depend on θ stems from the
boundary conditions V (a, θ) = Va and V (b, θ) = Vb and the Uniqueness Theorem. Therefore, the electric
field – the negative gradient of the potential – will be radial and spherically symmetric. Hence, our first
conclusion is that

E(r < a) =
C1

r2
r̂, E(a < r < b) =

C2

r2
r̂, E(r > b) =

C3

r2
r̂. (40)

Since we know that electric field is spherically symmetric, we can apply Gauss’s law (note that we
cannot apply Gauss’s law to the displacement field D: we still don’t know how free charge is distributed
between the upper and he lower halves of the system, and hence we are not sure that we have “enough”
symmetry to apply Gauss’s law!). This will tell us that C3 = 0 (since for a Gaussian surface enclosing
the whole capacitor the enclosed charge is zero). By the same token, C3 = 0, too (any spherical Gaussian
surface with a radius less that a encloses zero net charge). Therefore, we get:

D = E = P = 0 (r < a, r > b). (41)

To find the constant C2 we need to figure out the bound surface charge density on the inner plate,
σBa, since any Gaussian surface inside the dielectric will enclose the charge

Qencl = Q− |σBa| 2πa2 (42)

(both free charge from the inner shell and the bound charge sitting on the inner surface of the dielectric in
the lower half of the system). Then the electric field (everywhere inside the capacitor) and the polarization
(in its bottom half) will be:

E =
1

4πϵ0

Qencl

r2
r̂, P = ϵ0χeE =

χe

4π

Qencl

r2
r̂. (43)

The missing ingredient now is σBa in the expression for Qencl. We can find it from the expression for
polarization. At the inner surface, r = a, and the normal vector n̂ points inwards, hence from equation
(43) we get:

σBa = P · n̂ = −χeQencl

4πa2
≡ qBa

2πa2
, (44)

where qBa is the total amount of bound charge sitting on the inner surface of the dielectric (see figure).
In order to produce a radially symmetric electric field, the total (free + bound) charge density should

be uniform. For that, the amount of free charge sitting on the upper half of the capacitor, q+Fa, should be
equal to the amount of total (free + bound) charge sitting on the lower half of the capacitor, q−Fa + qBa,
and each of them is equal to Qencl/2:

q+Fa =
Qencl

2
, q−Fa + qBa =

Qencl

2
, (45)

or, using the relationship (44) between Qencl and qBa, we can rewrite it as:

q+Fa =
Qencl

2
, q−Fa =

Qencl

2
(1 + χe) ≡

Qencl

2
ϵr. (46)

There are more positive free charge on the lower plate to compensate for the negative bound charge
produced by polarized dielectric. Since the total free charge on the inner conductor is +Q, we finally find:

Q =
Qencl

2
+

Qencl

2
ϵr → Qencl =

2Q

1 + ϵr
=

2Q

2 + χe
. (47)
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Figure 1: The notation for problem #5.

Now we can compute the fields for a < r < b in terms of Q. The result is:

E(r) =
2

1 + ϵr

Q

4πϵ0

r̂

r2
(all z),

D(r) = ϵ0E(r) =
2

1 + ϵr

Q

4π

r̂

r2
(z > 0),

D(r) = ϵE(r) =
2ϵr

1 + ϵr

Q

4π

r̂

r2
(z < 0),

P(r) = 0 (z > 0),

P(r) = ϵ0χeE(r) =
2(ϵr − 1)

1 + ϵr

Q

4π

r̂

r2
(z < 0) (48)

We can also compute the surface charge densities in terms of Q. For free charge densities, σ+
Fa =

q+Fa/(2πa
2), σ−

Fa = q−Fa/(2πa
2), σ+

Fb = q+Fb/(2πb
2) and σ−

Fb = q−Fb/(2πb
2). From equations (46-47) we get:

σ+
Fa =

Q

2πa2(ϵr + 1)
, σ−

Fa =
Qϵr

2πa2(ϵr + 1)
, σ+

Fb = − Q

2πb2(ϵr + 1)
, σ−

Fb = − Qϵr
2πb2(ϵr + 1)

. (49)

For the bound charge density, we need to find qBa. From equations (45-47) we have:

qBa =
Qencl

2
− q−Fa = −Qencl

2
(ϵr − 1) = −Q

ϵr − 1

ϵr + 1
, (50)

and qBb = −qBa since the dielectric is neutral. Hence,

σBa = − Q

2πa2
ϵr − 1

ϵr + 1
, σBb =

Q

2πb2
ϵr − 1

ϵr + 1
. (51)

Note that the total (free + bound) charge densities, which are what we will actually measure, are

σa =
Qencl

4πa2
=

Q

2πa2(ϵr + 1)
, σb = −Qencl

4πb2
= − Q

2πb2(ϵr + 1)
. (52)
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As it should be (sanity check),

σa = σ+
Fa = σ−

Fa + σBa, σb = σ+
Fb = σ−

Fb + σBb. (53)

Finally, the capacitance follows from the voltage drop,

|∆V | = V (a)− V (b) =
2

1 + ϵr

Q

4πϵ0

(
1

a
− 1

b

)
, (54)

whereby

C =
Q

|∆V |
=

1 + ϵr
2

4πϵ0
ab

b− a
. (55)

Let’s check limiting cases. If there is no dielectric (χe = 0, ϵr = 1), then the capacitance reduces to

C0 = 4πϵ0
ab

b− a
, (56)

which is the standard result for a spherical capacitor. This can be compared to C = Aϵ0/d for a parallel
plate capacitor, with A = 4πab and d = b− a.

In the limit of a highly susceptible material (ϵr ≫ 1), the capacitance reduces to

C → 4πϵ

2

ab

b− a
, (57)

which is half the capacitance of a fully filled spherical capacitor,

Cdiel = 4πϵ
ab

b− a
, (58)

due to the fact that only half of the capacitor is filled with dielectric. (The de-rating factor is exactly 1/2
in the limit that the upper hemisphere contributes negligibly to the overall capacitance.)

Note that equation (55) for the capacitance can be rewritten as (remember, ϵ0ϵr = ϵ)

C =
1

2
4πϵ0

ab

b− a
+

1

2
4πϵ

ab

b− a
=

C0

2
+

Cdiel

2
. (59)

This suggests a different approach to this question, namely, in the spirit of your Tutorial 6, where
you treated a half-filled parallel-plate capacitor as two half-capacitors, one empty and one filled with a
dielectric, attached in parallel to the same voltage (enforced by the conducting plates of the capacitors).
The logic here will enfold as follows. Consider two spherical capacitors, one empty, the other uniformly
filled with a dielectric with permittivity ϵ = ϵ0ϵr. Their capacitances are given, respectively, by equations
(56) and (58) (we use here the general fact the filling a capacitor with a dielectric increases its capacitance
by a factor of ϵ). Now let us mentally cut them in halves. Since the electric field in each original capacitor
was radial, we can expect that in the remaining half it will be radial, too (this statement should be proved
a little bit more rigorously, but this is left to you). Let us then put the empty half-capacitor on top of the
filled half-capacitor and think how the free charge will split between them given the mismatch of their
capacitances and the same voltage, V (a)− V (b), across the plates. The charges on them will split as

|∆V | =
q+F
C0

=
q−F
C

, (60)

which gives us two equations for the charges:

q−F
q+F

=
C

C0
= ϵr, q+F + q−F = Q, (61)
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which yields

q+F =
Q

ϵr + 1
, q−F =

ϵrQ

ϵ+ 1
, (62)

from which we can conclude that in order to have the same amount of charge on both halves of the
composite capacitor (which we need to have radially symmetric electric field) the bound charge should be

qB = q+F − q−F = −Q
ϵr − 1

ϵr + 1
, (63)

in full accordance with (50). From here we can proceed to finding Qencl and to the field equations (48).
Which of the two routes to take – the call is yours.

6. Torque on a dipole.

a) We will solve this problem using the method of images. We will mentally replace the grounded
(V = 0) metal plane with an image dipole with its center at −z0. Note the direction of the dipole: each
real charge has its image in the lower half-plane; the image charge has the sign opposite to the real charge
and is located at the same distance from the plane as the real charge. This configuration of charges (real
plus image dipoles) has a potential that satisfies the same boundary conditions as the initial “dipole –
metal plane” system. Now we simply need to look at the torque that the image dipole p′ exerts on the
real dipole, p. To do that, we need to calculate the electric field produced by the image dipole at the
location of the real dipole.

The electric field of an pure dipole p′ is (Griffiths, equation (3.104))

E(r) =
1

4πϵ0

1

r3
[
3(p′ · r̂)r̂− p′] , (64)

where r is a vector from the location of p′ to the observation point where p is sitting.
Now, p = x̂ p sin θ + ẑ p cos θ, and p′ = −x̂ p sin θ + ẑ p cos θ, r̂ = ẑ and r = 2z0. Then

E(r) =
1

4πϵ0

p

(2z0)3
[sin θ x̂+ 2 cos θ ẑ] , (65)

and the torque is:

N = p×E = − 1

32πϵ0

p2

z20
sin θ cos θ ŷ. (66)

b) The equilibrium values of θ are 0, π (vertical dipole) and ±π/2 (horizontal dipole). Those are the
angles at which the torque is equal to zero.
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