
Physics 301 - Homework #5 - Solutions

1. Potential in a square pipe

a) We will solve this problem by separating the variables in Cartesian coordinates. Since the system is
uniform in z direction, the potential depends only on x and y. Substituting V (x, y) = X(x)Y (y) into the
Laplace equation ∇2V (x, y) = 0 and dividing it by XY yields two ordinary differential equations:

d2X

dx2
= +b2X,

d2Y

dy2
= −b2Y. (1)

A general solution for Y (y) is:

Y (y) = A sin by +B cos by = A sin by, (2)

with B = 0 since Y (y = 0) = 0 (note that the boundary condition Y (0) = Y (a) = 0 determined the
choice of assigning the positive constant to Y (y)). Now the boundary condition Y (0) = 0 is satisfied
automatically. In order to satisfy the condition Y (a) = 0 we set

b = bn =
πn

a
, n = 1, 2, 3... (3)

Furthermore, the general form for X(x) can be chosen from:

Y (y) = C ′ebx +D′e−bx = C cosh bx+D sinh bx, (4)

with coshα = (eα + e−α)/2 and sinhα = (eα − e−α)/2 being hyperbolic cosine and sine. In the following,
I’ll use the second form of the X(x) part of the potential.

Now we can write the potential in the form:

V (x, y) =

∞∑
n=1

(
Cn cosh

πnx

a
+Dn sinh

πnx

a

)
sin

πny

a
, (5)

and we need to find the coefficients Cn and Dn that would satisfy the remaining boundary conditions,
V (a, y) = V0 and ∂V (0, y)/∂x = 0. Let us compute ∂V (0, y)/∂x, to start with. We get from (5):

∂V (x, y)

∂x
=

∞∑
n=1

πn

a

(
Cn sinh

πnx

a
+Dn cosh

πnx

a

)
sin

πny

a
. (6)

Now, from ∂V (0, y)/∂x = 0 we get:

∂V (0, y)

∂x
=

∞∑
n=1

πn

a
Dn sin

πny

a
= 0, (7)

which means that Dn ≡ 0 for all n. To prove it formally, you can apply the “Fourier trick”: multiply this
equation by sin(πmy/a) and integrate the result over y from 0 to a. Now we have:

V (x, y) =

∞∑
n=1

Cn cosh
πnx

a
sin

πny

a
. (8)
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We will find the remaining coefficients, Cn, from the last boundary condition, V (a, y) = V0, which
gives us:

V0 =
∞∑
n=1

Cn coshπn sin
πny

a
. (9)

Let’s multiply its both sides by sin(πmy/a) and integrate the result over y from 0 to a (“Fourier
trick”). We get:∫ a

0
V0 sin

πmy

a
dy =

∫ a

0

∞∑
n=1

Cn coshπn sin
πny

a
sin

πmy

a
dy =

∞∑
n=1

Cn coshπn

∫ a

0
sin

πny

a
sin

πmy

a
dy.

(10)
Now, since sin(πny/a) form a full and orthogonal set of functions on (0, a),∫ a

0
sin

πny

a
sin

πmy

a
dy =

a

2
δnm, (11)

so that

V0

∫ a

0
sin

πmy

a
dy =

a

2

∞∑
n=1

Cn coshπn δmn =
a

2
Cm coshπm. (12)

One last thing that remains is to compute the integral next to V0. We will use Eq.(3.35) from Griffiths,
which states that this integral is zero when m is even and equal to 2a/πm if m is odd. Then

Cm =
4V0

πm

1

coshπm
. (13)

This completes our calculation, with the result being

V (x, y, z) =
∑

m odd

4V0

πm

cosh
(πmx

a

)
coshπm

sin
(πmy

a

)
. (14)

b) Since the electric field is a (negative) gradient of the potential, the boundary condition ∂V (0, y, z)/∂x =
0 means that electric field has no x-component at x = 0. Since it does not have z-component either due
to the symmetry of the problem, it means that electric field has only y-component at x = 0.

c) Equation (14) shows that potential is a sum of terms, each of them being proportional to 1/m. Hence,
it will be dominated by small-m terms of this sum, and to get a rough idea about the potential and electric
field in this system, we can plot the term with m = 1. The picture below shows Vm=1(x, y) (left panel)
and the corresponding contour plot (middle panel). We can sketch electric field lines using the contour
plot. Electric field lines (white arrows in the right panel) are always perpendicular to equipotential lines,
and their density is proportional to the magnitude of the electric field. We see that, indeed, electric field
tends to be parallel or anti-parallel to the y-axis at x = 0.
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2. Dielectric shells with potential specified at the surfaces

We have two concentric spherical shells with radii a and b, with b > a. The inner shell is held at a
fixed constant potential

V (a, θ) = Va, (15)

while the outer shell is held at a fixed potential

V (b, θ) = Vb cos θ, (16)

so that potential between them interpolates from a uniform (at r = a) to a θ-dependent form at r = b.
Since the system is axially symmetric (no φ dependence) the general solution of Laplace’s equation in the
region between the two spheres is

V (r) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ). (17)

The inner boundary condition requires

∞∑
l=0

(
Ala

l +
Bl

al+1

)
Pl(cos θ) = Va, (18)

while the outer condition requires

∞∑
l=0

(
Alb

l +
Bl

bl+1

)
Pl(cos θ) = Vb cos θ. (19)

Note that here we don’t have boundary conditions at r = 0 and r → ∞, since we are only interested
in the region a < r < b.

In class, we asserted that boundary conditions (18)-(19) must be satisfied l by l because the Legendre
polynomials are orthogonal over the interval −1 < w = cos θ < +1. In the following few lines, we detail
how we can get equations for Al and Bl using orthogonality of Legendre polynomials.

Recall that, with w = cos θ, the orthogonality condition for Pl(cos θ) = Pl(w) is∫ +1

−1
Pl(w)Pl′(w) dw =

2

2l + 1
δll′ . (20)
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Multiplying both sides of equation (18) by Pl′(w) and integrating from −1 to +1 gives

∞∑
l=0

(
Ala

l +
Bl

al+1

)∫ +1

−1
Pl(w)Pl′(w) dw = Va

∫ +1

−1
Pl′(w) dw, (21)

→ Al′a
l′ +

Bl′

al′+1
=

(2l′ + 1)Va

2

∫ +1

−1
Pl′(w) dw. (22)

Applying the same procedure to equation (19) gives

∞∑
l=0

(
Alb

l +
Bl

bl+1

)∫ +1

−1
Pl(w)Pl′(w) dw = Vb

∫ +1

−1
Pl′(w)w dw, (23)

→ Al′b
l′ +

Bl′

bl′+1
=

(2l′ + 1)Vb

2

∫ +1

−1
Pl′(w)w dw. (24)

Now observe that, since P0(w) = 1, the right hand side of equation (22) reduces to

(2l + 1)Va

2

∫ +1

−1
Pl(w)P0(w) dw =

(2l + 1)Va

2

2

2l + 1
δl0 = Va δl0, (25)

where we have relabelled l′ → l. Similarly, since P1(w) = w, the right hand side of equation 24 reduces to

(2l + 1)Vb

2

∫ +1

−1
Pl(w)P1(w) dw =

(2l + 1)Vb

2

2

2l + 1
δl1 = Vb δl1. (26)

Thus, for each l we have two equations and two unknowns,

Ala
l +

Bl

al+1
= Va δl0, (27)

Alb
l +

Bl

bl+1
= Vb δl1. (28)

We can approach these l by l. First consider l > 1: the right-hand side is zero for both equations, so that

Ala
l +

Bl

al+1
= 0, (29)

Alb
l +

Bl

bl+1
= 0. (30)

Since a, b ̸= 0 this requires Al = 0 and Bl = 0 for any l > 1. For l = 0,

A0 +
B0

a
= Va, (31)

A0 +
B0

b
= 0, (32)

Eliminating A0 gives

B0

(
1

a
− 1

b

)
= Va → B0 =

ab

b− a
Va, (33)

and

A0 = −B0

b
= − a

b− a
Va. (34)
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For l = 1 we have

A1a+
B1

a2
= 0, (35)

A1b+
B1

b2
= Vb. (36)

Eliminating A1 gives

B1

(
1

a3
− 1

b3

)
= −Vb

b
→ B1 = − a3b3

b3 − a3
Vb

b
, (37)

and

A1 = −B1

a3
=

b3

b3 − a3
Vb

b
. (38)

Our solution is then

V (r) = A0 +
B0

r
+

(
A1r +

B1

r2

)
cos θ, (39)

or, using the above coefficients,

V (r) =
a

b− a

(
b

r
− 1

)
Va +

b2

b3 − a3

(
r − a3

r2

)
Vb cos θ. (40)

It is straightforward to verify that this satisfies the given boundary conditions at r = a, b. Note that the
solution smoothly interpolates from an l = 0 form at r = a to an l = 1 form at r = b.

3. Potential of a rod immersed in a uniform electric field

Let the cylinder axis be the z axis. We are told that the external field, E0, is perpendicular to this
axis. Without loss of generality, we can take this direction to be along the x axis. We then proceed by
analogy to the dielectric sphere example we discussed in class. In that case, we asserted that the potential
satisfied Laplace’s equation everywhere except the sphere’s surface, where bound surface charge from the
dielectric polarization was likely to accumulate. Note that this approach is only valid if there is no bound
volume charge within the dielectric, that is, if ρB = −∇ ·P = 0, so that Laplace’s equation holds within.
Indeed, if a divergence-less solution does exist, then we can assert by uniqueness that it is the only so-
lution. Since the dielectric is linear and homogeneous (characterized by a single coordinate-independent
dielectric constant ϵr), we can use the Laplace equation for potential everywhere but on the boundary of
the sphere, and solve it by separation of variables.

a) Let us start with deriving a general expression for the potential in cylindrical coordinates. Laplace’s
equation in cylindrical coordinates is:

∇2V (s, ϕ, z) =
1

s

∂

∂s

(
s
∂V

∂s

)
+

1

s2
∂2V

∂ϕ2
+

∂2V

∂z2
= 0. (41)

Since the cylinder is infinite in the z direction, ∂2V /∂z2 = 0. Assuming that we can represent V (s, ϕ)
as a product of two functions, each depends on one variable only, we substitute V (s, ϕ) = S(s)Φ(ϕ) into
this equation and multiply it by s2/S(s)Φ(ϕ). This leaves us with two ordinary differential equations:

s
d

ds

(
s
dS

ds

)
= aS,

d2Φ

dϕ2
= bΦ (42)

with the constraint a+ b = 0. If we denote a = −b = n2, we can finally write:

s2
d2S

ds2
+ s

dS

ds
− n2S = 0,

d2Φ

dϕ2
= −n2Φ. (43)
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General solutions of these equations are:

Sn(s) =

{
Ans

n +Bn/s
n for n > 0

A0 ln s+B0 for n = 0
(44)

and
Φn(ϕ) = C

′
ne

inϕ +D
′
ne

−inϕ = Cn cos(nϕ) +Dn sin(nϕ). (45)

We will use the sin/cos representation of Φ(ϕ). Then, with C0 absorbed into A0 and B0:

V (s, ϕ) = A0 ln s+B0 +
∞∑
n=1

(Ans
n +Bns

−n)(Cn cosnϕ+Dn sinnϕ). (46)

b) As with the sphere from the lecture, we identify 4 boundary conditions for the potential:

1. V (s = 0) is finite,

2. V (s, φ) → −E0 x = −E0 s cosϕ as s → ∞ (that is, E(r) → E0 x̂ as |r| → ∞),

3. V (s = a) is continuous,

4. ∇ ·D = ρF = 0 so that D = ϵE = −ϵ∇V is continuous at s = a.

Let us examine the last condition a bit more closely. Observe that

∇ ·D = 0 →
∮
A
D · da = 0, (47)

so if we take A to be a thin, curved Gaussian pillbox that straddles the cylindrical boundary at s = a,
with unit normals n̂ = ±ŝ, we conclude that

Din
s = Dout

s → ϵEin
s = ϵ0E

out
s → ϵ

(
∂V

∂s

)in

= ϵ0

(
∂V

∂s

)out

. (48)

As we discussed in the very beginning, in equation (46) we need separate coefficients to describe the
field inside and outside the dielectric:

V in(s, ϕ) = Ain
0 ln s+Bin

0 +

∞∑
n=1

(Ain
n s

n +Bin
n s−n)(C in

n cosnϕ+Din
n sinnϕ), (49)

V out(s, ϕ) = Aout
0 ln s+Bout

0 +
∞∑
n=1

(Aout
n sn +Bout

n s−n)(Cout
n cosnϕ+Dout

n sinnϕ). (50)

Next, we apply the boundary conditions given above. Condition 1 requires that Ain
0 = 0 and Bin

n = 0 for
all n > 0 → what remains are Ain

n>0. Condition 2 requires Aout
0 = 0, Bout

0 = 0, and Aout
n = 0 for n ̸= 1 →

what remains are Aout
1 and Bout

n≥1. Furthermore, for n = 1, the condition that V (s, ϕ) → −E0 s cosϕ as
s → ∞ requires that Aout

1 Cout
1 = −E0. (We cannot separate A1 and C1 in this expression, but we will

address this ambiguity below.)
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At this point we have:

V in(s, ϕ) = Bin
0 +

∞∑
n=1

Ain
n s

n(C in
n cosnϕ+Din

n sinnϕ), (51)

V out(s, ϕ) = −E0 s cosϕ+

∞∑
n=1

Bout
n s−n(Cout

n cosnϕ+Dout
n sinnϕ). (52)

Now that we have eliminated Bin
n and Aout

n (for n > 1), it is clear that we cannot separately constrain the
product of two free amplitudes, so, without loss of generality, define Ain

n ≡ 1 and Bout
n ≡ 1 (for n > 1) so

that,

V in(s, ϕ) = Bin
0 +

∞∑
n=1

sn(C in
n cosnϕ+Din

n sinnϕ), (53)

V out(s, ϕ) = −E0 s cosϕ+
∞∑
n=1

s−n(Cout
n cosnϕ+Dout

n sinnϕ). (54)

Condition 3 is a matching condition that requires V in(a, ϕ) = V out(a, ϕ), so that

Bin
0 +

∞∑
n=1

an(C in
n cosnϕ+Din

n sinnϕ) = −E0 a cosϕ+
∞∑
n=1

a−n(Cout
n cosnϕ+Dout

n sinnϕ). (55)

By orthogonality, we must equate each term in the series independently. To see this, first multiply both
sides of the equation by cosn′ϕ and integrate from 0 to 2π. This will eliminate all but the cosnϕ terms
with n = n′, leaving

C in
n′an

′
= Cout

n′ a−n′
, (56)

and deal similarly with sinn′ϕ. Applying this operation for each n′ gives the following conditions (after
dropping the ′ from n),

Bin
0 = 0, (57)

C in
1 = −E0 + Cout

1 /a2 (58)

Din
1 = 0, (59)

C in
n = Cout

n a−2n, (60)

Din
n = Dout

n a−2n. (61)

At this point we have

V in(s, ϕ) = (−E0 + Cout
1 /a2) s cosϕ+

∞∑
n=2

sn

a2n
(Cout

n cosnϕ+Dout
n sinnϕ), (62)

V out(s, ϕ) = (−E0 + Cout
1 /s2) s cosϕ+

∞∑
n=2

s−n(Cout
n cosnϕ+Dout

n sinnϕ), (63)

where the only undetermined coefficients are Cout
n and Dout

n . Now take the radial derivatives

∂V in

∂s
= (−E0 + Cout

1 /a2) cosϕ+

∞∑
n=2

nsn−1

a2n
(Cout

n cosnϕ+Dout
n sinnϕ), (64)

∂V out

∂s
= (−E0 − Cout

1 /s2) cosϕ+
∞∑
n=2

−ns−n−1(Cout
n cosnϕ+Dout

n sinnϕ). (65)
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Once again, by orthogonality, we must match up each element of the series term by term at s = a. For
n > 1 this gives

ϵna−n−1Cout
n = −ϵ0na

−n−1Cout
n → Cout

n = 0 (n > 1), (66)

ϵna−n−1Dout
n = −ϵ0na

−n−1Dout
n → Dout

n = 0 (n > 1). (67)

Finally, for n = 1 we have

ϵ(−E0 + Cout
1 /a2) = ϵ0(−E0 − Cout

1 /a2) → Cout
1 =

ϵ− ϵ0
ϵ+ ϵ0

E0a
2. (68)

Collecting these results and inserting them into equations (62) and (63) gives

V in(s, ϕ) = − 2ϵ0
ϵ+ ϵ0

E0 x, (69)

V out(s, ϕ) = −
(
1− ϵ− ϵ0

ϵ+ ϵ0

a2

s2

)
E0 x, (70)

where we have used x = s cosϕ in these last expressions.

c) Finally,

Ein = −∇V in = −x̂
∂

∂x
V (x) = x̂

2ϵ0
ϵ+ ϵ0

E0 (71)

is constant in the dielectric, confirming that there is no bound volume charge in the material, and that
Laplace’s equation therefore holds. Note also that V (r) → −E0 x for all space in the limit ϵ → ϵ0, as we
should expect.

4. B field of a wire making a 90o turn

We can use the Biot-Savart law to find the B field from a steady current,

B(r) =
µ0

4π

∫
C

Idl× (r− r′)

|r− r′|3
. (72)

Let us choose coordinates where P is at the origin, x̂ is to the right, ŷ is up, and ẑ is out of the page.
Then we can divide the wire into three portions, (a), (b) and (c). The horizontal portion (a) has y = −R
with −∞ < x < 0, the vertical portion (b) has x = +R with 0 < y < ∞, and the curved portion (c) has
x2 + y2 = R2 with −π/2 < ϕ < 0.

Since we choose P to be the origin, we have r = 0, so that

B(0) = −µ0I

4π

∫
C

dl× r′

|r′|3
. (73)

For portion (a), we have r′ = x′x̂−Rŷ, |r′|3 = (x′2 +R2)3/2, and

dl× r′ = dx′x̂× (x′x̂−Rŷ) = −Rdx′(x̂× ŷ) = −Rdx′ẑ. (74)

Similarly for portion (b), r′ = Rx̂+ y′ŷ, |r′|3 = (R2 + y′2)3/2, and

dl× r′ = dy′ŷ × (Rx̂+ y′ŷ) = Rdy′(ŷ × x̂) = −Rdy′ẑ. (75)
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Together, these two contributions give

B(a+b)(0) =
µ0I

4π
ẑ

(∫ 0

−∞

Rdx′

(x′2 +R2)3/2
+

∫ +∞

0

Rdy′

(y′2 +R2)3/2

)
=

µ0IR

4π
ẑ

∫ +∞

−∞

dx′

(x′2 +R2)3/2

=
µ0

2π

I

R
ẑ. (76)

For portion (c), we have r′ = R ŝ, and dl = R dϕ φ̂, hence dl× r′ = −R2 dϕ ẑ. The contribution from
portion (c) is thus

B(c)(0) =
µ0I

4π
ẑ

∫ 0

−π/2

R2 dφ

R3
=

µ0

8

I

R
ẑ. (77)

Combining equations (76) and (77), we get:

B =

(
1

2π
+

1

8

)
µ0I

R
ẑ. (78)

Let us make a sanity check and at the same time try to get this answer by simpler means. In lectures
we found that B field of an infinite wire carrying a current I is

|B| = µ0

2π

I

s
, (79)

where s is the perpendicular distance from the wire and the field is azimuthal around the current in a
right-handed sense. Now, let us think about what the B field of a half-a-wire carrying a current I would
look like. Consider a half-a-wire running from −∞ < x < 0, and consider a point at a vertical distance s
right above its end at x = 0. By the principle of superposition, the azimuthal component of the field at
this point will be equal to one half of the field created by the full wire, (79) – since, by symmetry, the left
and the right halves of the current-carrying wire contribute equally to the field (79) above its middle1.
Applying this logic to portions (a) and (b) of the wire, we conclude that the z-component of the B field
that they create at P is:

B(a+b)(P ) = 2
1

2

µ0

2π

I

R
ẑ =

µ0

2π

I

R
ẑ. (80)

Finally, we discussed in lectures that the current due to a circular loop of radius a is

|B| = µ0

2

I

a
, (81)

oriented perpendicular to the loop in the right-handed sense. Because we only have one quarter of a loop
here, for the z-component of the B field due to the portion (c) we should simply divide this by 4:

B(c)(P ) =
µ0

8

I

R
ẑ. (82)

Combining (79) and (82) gives exactly (78), which is great news. However, this streamline (and much
easier than using the Biot-Savart law directly) calculation assumes that B the quarter ring contributed
no x- or y-components at P, which we did not prove. In fact, we cannot rule out the existence of x̂ or ŷ
components without complete calculation. By symmetry, we should expect any transverse component to

1Note that this logic works only for a point right above the end of the wire, not at any other point shifted away from it.
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satisfy Bx = −By, since I → −I under reflection about the line x = −y – but this is as much as we can say.

5. B field of a slab

a) One sheet of current at z = 0: see Griffiths, Example 5.8. In short, due to the translational
symmetry in the x-y plane, B can only depend on z. Assume that the current is flowing in the +x
direction. Dividing mentally the surface current into infinitesimally thin threads and applying the right-
hand rule to each of them, we conclude that the direction of B is along −ŷ for z > 0 and along ŷ for
z < 0.

Let us choose a rectangular Ampèrian loop with a horizontal side of length l aligned with the y-axis,
and with the vertical side 2z sitting symmetrically about the x-y plane. Ampère’s Law tells us∮

B · dl =
∫
top

B · dl+
∫
left

B · dl+
∫
bottom

B · dl+
∫
right

B · dl = µ0Ienc. (83)

The integrals over the vertical side vanish since B ⊥ dl, and the integral along each horizontal side
gives 2Bl (assuming that we go along the loop counter-clockwise, since this is the positive direction for our
out-of-page current). Now, the enclosed current is Ienc = K0l, and we get the equation for the magnitude
of the magnetic field:

2Bl = µ0K0l. (84)

Thus,

B =


−µ0K0

2
ŷ for z > 0,

+
µ0K0

2
ŷ for z < 0.

(85)

Note that the magnitude of the magnetic field due to a sheet of current does not depend on the vertical
distance from it (which reminds us of the electric field of an infinite sheet of charge).

b) Two sheets of current: Here we will apply the principle of superposition using our result from part
(a). The picture below shows two sheets of current along with B fields produces by each of them in three
regions, above the sheets, between them, and below them. We see that the two fields cancel above and
below the sheets, and double in the gap between them (which reminds us of the electric field of an infinite
parallel plate capacitor).

The magnetic field between the two slabs is:

B = −µoKoŷ 0 < z < a, and zero otherwise. (86)

c) A layer of non-uniform current: By symmetry, the B field for z > 0 is pointing in −ŷ direction,
and in the +ŷ direction for z < 0.
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Let us start with B field outside the slab, at a distance z > h from the x-y plane. Again, the Ampèrian
loop will be a rectangle with a horizontal side of length l aligned with the y-axis, and with the vertical
side 2z sitting symmetrically about the x-y plane. The new element here is dealing with non-uniform
volume current density. For the observation point z outside the slab, the loop enclosed all the current
passing through the piece of slab of width l. From Ampère’s law,

2Bl = µ0

∫
loop

J · da = µ0l

∫ h

−h
J0|z

′ |dz′
=

µ0J0h
2

2
, (87)

from where we can find the magnitude of the B field.
For the observation point z inside the slab, the only difference will be the reduced amount of current

passing through the Ampère’s loop, that will now have height z < h and will again be centered at z = 0.
We get:

2Bl = µ0

∫
loop

J · da = µ0l

∫ z

−z
J0|z

′ |dz′
=

µ0J0z
2

2
. (88)

Taking into account the direction of B field which we know from the right-rand rule, we get the final
answer:

B =



−µ0J0h
2

2
ŷ for z > h,

−µ0J0z
2

2
ŷ for 0 < z < h,

+
µ0J0z

2

2
ŷ for − h < z < 0,

+
µ0J0h

2

2
ŷ for z < −h.

(89)

This question did not ask you to plot the graph of the B field, which is an overlook on my side: graphs
help us to visualize and better understand our results. Hope you plotted one nonetheless, even if you did
not submit it for marks. Here is mine:

6. Vector potential

a) Vector A must point in the ẑ direction because it is given by the integral

A =
µ0

4π

∫
J

|r− r′ |
dτ

′
(90)

and J has only z-component. Therefore, the Poisson equation reduces to the equation for the z-
components:

∇2A = −µ0J → ∇2A(in)
z = −µ0

I

πR2
. (91)
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By symmetry, A
(in)
z can only depend on s. We use the expression for Laplacian in cylindrical coordinates:

1

s

∂

∂s

(
s
∂A

(in)
z

∂s

)
= −µ0

I

πR2
, (92)

and after integrating it twice we get:

A(in)
z (s) = −s2

µ0I

4πR2
+ C1 ln s+ C2, (93)

with C1 and C2 being integration constants. We set C1 = 0 to not let A
(in)
z (s = 0) diverge. The second

constant, C2, is found from the boundary condition A
(in)
z (s = R) = 0 to be C2 = Iµ0/4π. Therefore,

A(in)(s < R) =
µ0I

4π

(
1− s2

R2

)
ẑ. (94)

By the same reasoning, A(out) = A
(out)
z (s)ẑ. Outside the wire, there is no current, and the z-component

of the vector potential is the solution of the Laplace equation:

∇2A(out)
z =

1

s

∂

∂s

(
s
∂A

(out)
z

∂s

)
= 0, (95)

whose solution is:

A(out)
z (s) = C1 ln s+ C2 ≡ C1 ln

(
s

s0

)
, (96)

where we have chosen C2 → −C1 ln s0 with s0 from now on being the second integration constant.

The boundary condition A
(out)
z (s = R) = 0 dictates s0 = R. We are left with:

A(out)
z (s) = C1 ln

( s

R

)
. (97)

We find the remaining constant, C1, from the boundary condition

∂A
(out)
z

∂n
− ∂A

(in)
z

∂n
= −µ0K. (98)

Since K = 0 (we have volume, not surface, current density in this problem!), we conclude that the
derivative of the z-component over the normal, s, should be continuous. We use (94) to set up the
equation for C2, which reads: {

−µ0I

4π

2s

R2
=

C1

s

}
s=R

→ C1 = −µ0I

2π
, (99)

and we finally get:

A(out)(s > R) = −µ0I

2π
ln
( s

R

)
ẑ. (100)

b) Using our expression for A, we can write:

B = ∇×A = −∂Az

∂s
φ̂. (101)

Inside the wire, this gives:

B
(in)
ϕ =

µ0I

4π

(
2s

R2

)
=

µ0Is

2πR2
. (102)
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Using Ampere’s law with an Amperian loop with radius s < R co-centric to the axis of the cylinder,
we get:

2πsB
(in)
ϕ = µ0

I

πR2
πs2 → B

(in)
ϕ (s) =

µ0Is

2πR2
, (103)

as in (102).
Likewise, we can find magnetic field outside the wire from the vector potential as

B
(out)
ϕ =

µ0I

2π

∂

∂s
ln s =

µ0I

2πs
. (104)

Using Ampere’s law with an Amperian loop with radius s > R co-centric to the axis of the cylinder,
we get the same answer:

2πsB
(out)
ϕ = µ0I → B

(in)
ϕ (s) =

µ0I

2πs
. (105)

Everything is consistent, and we have nothing to worry about.
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