Physics 301 - Homework #5 - Solutions

1. Potential in a square pipe

a) We will solve this problem by separating the variables in Cartesian coordinates. Since the system is
uniform in z direction, the potential depends only on x and y. Substituting V' (z,y) = X (z)Y (y) into the
Laplace equation V2V (x,7y) = 0 and dividing it by XY yields two ordinary differential equations:

?X d?Y
— = +b’X - = —b*Y. 1
dz? = dy? (1)
A general solution for Y (y) is:
Y (y) = Asinby + B cosby = Asin by, (2)

with B = 0 since Y (y = 0) = 0 (note that the boundary condition Y (0) = Y (a) = 0 determined the
choice of assigning the positive constant to Y (y)). Now the boundary condition Y (0) = 0 is satisfied
automatically. In order to satisfy the condition Y (a) = 0 we set

b=b, = n=1,23. (3)
a

Furthermore, the general form for X (x) can be chosen from:
Y (y) = C'e" + D'e ™ = C cosh bx + D sinh bz, (4)

with cosha = (e* +e7%)/2 and sinha = (e* — e™%) /2 being hyperbolic cosine and sine. In the following,
I'll use the second form of the X (z) part of the potential.
Now we can write the potential in the form:

oo
Vix,y) = Z (Cn cosh ? + Dy, sinh Waﬂ) sin — (5)
n=1

and we need to find the coefficients C),, and D,, that would satisfy the remaining boundary conditions,
V(a,y) = Vp and 9V (0,y)/0z = 0. Let us compute OV (0,y)/dz, to start with. We get from (F):

ov(z,y) = ™ ., TNT TTNT\ . TNy
T = Z 7 (Cn sinh T + Dn cosh T) S T (6)

n=1
Now, from 0V (0,y)/0x = 0 we get:

av(0,y) ™y
T = D sin —= O, (7)

n=1

which means that D,, = 0 for all n. To prove it formally, you can apply the “Fourier trick”: multiply this
equation by sin(mmy/a) and integrate the result over y from 0 to a. Now we have:

™Y

oo
y) = Z C), cosh T i ™ (8)
a
n=1

a



We will find the remaining coefficients, C),, from the last boundary condition, V(a,y) = Vj, which
gives us:
> ™my
Vo= Z C', cosh mn sin — (9)

n=1

Let’s multiply its both sides by sin(mmgy/a) and integrate the result over y from 0 to a (“Fourier
trick”). We get:

e m e n m > a n m
/ Vosinudy = / ZC’n coshTrnsinLy sin 7r7ydy = ZC” cosh7m/ SinLy sin 7Tiydy.
0 a 0 a a 0 a

n=1 n=1 a
(10)
Now, since sin(mny/a) form a full and orthogonal set of functions on (0, a),
a
/ sin 2 sin 71-mydy = 25nm, (11)
0 a a 2
so that -
a
Vo/ sin maly _ 4 Z Cpcoshmn 0,y = ng cosh wm. (12)
0 a 2 o— 2

One last thing that remains is to compute the integral next to V. We will use Eq.(3.35) from Griffiths,
which states that this integral is zero when m is even and equal to 2a/7m if m is odd. Then

4Vy 1
Cp=——"7". 13
" 7m coshmm (13)
This completes our calculation, with the result being
4V, cosh (me) Tmy
V= 3 W ), ), 11
(z,y,2) — cosh mm S a (14)
m

b) Since the electric field is a (negative) gradient of the potential, the boundary condition OV (0, y, z)/0z =
0 means that electric field has no x-component at x = 0. Since it does not have z-component either due
to the symmetry of the problem, it means that electric field has only y-component at x = 0.

c¢) Equation shows that potential is a sum of terms, each of them being proportional to 1/m. Hence,
it will be dominated by small-m terms of this sum, and to get a rough idea about the potential and electric
field in this system, we can plot the term with m = 1. The picture below shows V;,—1(z,y) (left panel)
and the corresponding contour plot (middle panel). We can sketch electric field lines using the contour
plot. Electric field lines (white arrows in the right panel) are always perpendicular to equipotential lines,
and their density is proportional to the magnitude of the electric field. We see that, indeed, electric field
tends to be parallel or anti-parallel to the y-axis at x = 0.
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0

2. Dielectric shells with potential specified at the surfaces

We have two concentric spherical shells with radii ¢ and b, with b > a. The inner shell is held at a

fixed constant potential
V(a,0) =V, (15)

while the outer shell is held at a fixed potential
V(b,0) = Vjcosb, (16)

so that potential between them interpolates from a uniform (at » = a) to a 6-dependent form at r = b.
Since the system is axially symmetric (no ¢ dependence) the general solution of Laplace’s equation in the
region between the two spheres is

Vi)=Y (Alrl + %) Py(cosb). (17)
=0

The inner boundary condition requires

> B
3 (Alal + al—jl) Py(cos ) =V, (18)

=0

while the outer condition requires

Z (Albl + llel) Py(cosb) = Vjcosb. (19)
1=0

Note that here we don’t have boundary conditions at r = 0 and r — oo, since we are only interested
in the region a < r < b.

In class, we asserted that boundary conditions (18)-(19) must be satisfied / by ! because the Legendre
polynomials are orthogonal over the interval —1 < w = cosf < +1. In the following few lines, we detail
how we can get equations for A; and B; using orthogonality of Legendre polynomials.

Recall that, with w = cos €, the orthogonality condition for P(cosf) = Pj(w) is

+1 9
/_1 B(w)ﬂ/ (w) dw = A1 (5”/. (20)



Multiplying both sides of equation by Py(w) and integrating from —1 to +1 gives

00 B +1 +1
> <Ala + z+1>/ Py(w) Py (w) dw :Va/ Py (w) dw, (21)
1=0 -1 -1
, By 2 + nv, [t
— Al/al + al’-li-l = ( / -Pl’ )d . (22)
Applying the same procedure to equation gives
i l B +1 +1
3 (Alb bm) | R@R@de=v [ P wde (23)
1=0 -1 -1
;7 20 + 1)V, [T
— Apb + bl,il ! Z ) b/1 Py(w)w dw. (24)

Now observe that, since Py(w) = 1, the right hand side of equation (22) reduces to

20+ 1)V, [ QU+1DV, 2
AL AL Py(w)Py(w) dw = 810 = Va 010, 2
5 » l(w) o(w) w 9 20+ 1 10 Va dio (5>

where we have relabelled I — [. Similarly, since P;(w) = w, the right hand side of equation 24| reduces to

20+ 1)V, /“ 2+ 1) 2 B
5 g P(w)Py(w) dw = 5 1 o = Vp 1. (26)

Thus, for each | we have two equations and two unknowns,

B
Ala + l = V4 010, (27)

Abt 4 = Vy 1. (28)

bl+1

We can approach these [ by [. First consider [ > 1: the right-hand side is zero for both equations, so that

B
Alal =+ F = 0, (29)
B
l L
Alb' + ﬁ =0. (30)

Ao+ % = Va, (31)
Aot 20 =, (32)
Eliminating Ay gives
Bo <i - 2) —V, = By= bib Vi, (33)
and By "
Ao——T——b_aVa (34)



For [ = 1 we have

By
Ala + ﬁ — 0, (35>
By
A1b+ 2= V. (36)
Eliminating A; gives
11 Vi a®v® V
B -] =— By = — 37
1<a3 b3> b N T TR B (37)
and B vV
A =-"1 = -
! a? b —ad b (38)
Our solution is then
Vir)=Ap+ 70 + (Alr + 7“21) cos b, (39)
or, using the above coefficients,
a b b? al
V(I‘):b_a (7"_1) Va+m <T_7,.2> ‘/})COSG. (40)

It is straightforward to verify that this satisfies the given boundary conditions at » = a,b. Note that the
solution smoothly interpolates from an [ = 0 form at r = a to an I = 1 form at r = b.

3. Potential of a rod immersed in a uniform electric field

Let the cylinder axis be the z axis. We are told that the external field, Eg, is perpendicular to this
axis. Without loss of generality, we can take this direction to be along the = axis. We then proceed by
analogy to the dielectric sphere example we discussed in class. In that case, we asserted that the potential
satisfied Laplace’s equation everywhere except the sphere’s surface, where bound surface charge from the
dielectric polarization was likely to accumulate. Note that this approach is only valid if there is no bound
volume charge within the dielectric, that is, if pp = —V - P = 0, so that Laplace’s equation holds within.
Indeed, if a divergence-less solution does exist, then we can assert by uniqueness that it is the only so-
lution. Since the dielectric is linear and homogeneous (characterized by a single coordinate-independent
dielectric constant €,), we can use the Laplace equation for potential everywhere but on the boundary of
the sphere, and solve it by separation of variables.

a) Let us start with deriving a general expression for the potential in cylindrical coordinates. Laplace’s
equation in cylindrical coordinates is:

V2V (s, ¢, 2)

2 2
_1a<av> LoV PV ()

~505\"0s ) 2052 T o2
Since the cylinder is infinite in the z direction, 9?V /0z% = 0. Assuming that we can represent V (s, ¢)

as a product of two functions, each depends on one variable only, we substitute V (s, ¢) = S(s)®(¢) into
this equation and multiply it by s2/S(s)®(¢). This leaves us with two ordinary differential equations:

d dS d*®
222 = i 42
57 <Sds> as, i b (42)
with the constraint a 4+ b = 0. If we denote a = —b = n?, we can finally write:
d%s dsS d*®
2 2¢ _ _ 2
SW—FSE—HS—O, W—-Tl‘b (43)



General solutions of these equations are:

Aps"+ B,/s"  forn >0

Sn(s) = { Aglns+ By forn=0 (44)

and
®,(¢) = C, e + D e = C), cos(nd) + Dy, sin(ng). (45)
We will use the sin/cos representation of ®(¢). Then, with Cp absorbed into Ag and By:

V(s,¢) = Aglns+ By + Z(Ansn + Bps ") (Cy, cosng + Dy, sinng). (46)

n=1

b) As with the sphere from the lecture, we identify 4 boundary conditions for the potential:
1. V(s = 0) is finite,
2. V(s,p) > —Epx = —Epscos¢ as s — oo (that is, E(r) — EyX as |[r| — 00),

3. V(s = a) is continuous,

S

. V-D = pr =0sothat D =cE = —eVV is continuous at s = a.

Let us examine the last condition a bit more closely. Observe that
V~D:0—>fD-da:O, (47)
A

so if we take A to be a thin, curved Gaussian pillbox that straddles the cylindrical boundary at s = a,
with unit normals n = +8§, we conclude that

in out
b o o (2) —a () "

As we discussed in the very beginning, in equation we need separate coefficients to describe the
field inside and outside the dielectric:

Vin(s, ¢) = AMIns + Bt + Z(Ai,{‘s" + Bi"s™)(CI" cos ng 4+ DM sinng), (49)
n=1

VOul(s, ¢) = Agut Ins+ BJ"™ + Z(Afl“tsn + B2"s™™)(C" cosng + D sinn). (50)
n=1

Next, we apply the boundary conditions given above. Condition 1 requires that A = 0 and BI* = 0 for
all n > 0 — what remains are A", ;. Condition 2 requires A" = 0, B§"" = 0, and A%"* =0 for n # 1 —
what remains are A" and B°Y,. Furthermore, for n = 1, the condition that V(s,¢) — —FEq scos ¢ as
s — 0o requires that AQWCP" = —F,. (We cannot separate A; and C; in this expression, but we will
address this ambiguity below.)



At this point we have:

Vin(s, ¢) = B + Z AN (O cos ngp + DI sinng), (51)
n=1
oo
VO (s, ¢) = —Egscosd + Z Bo" 5T (OO cosng + DO sinng). (52)
n=1

Now that we have eliminated B and A" (for n > 1), it is clear that we cannot separately constrain the
product of two free amplitudes, so, without loss of generality, define A" =1 and B3 =1 (for n > 1) so
that,

Vin(s, ¢) = B + Z s"(CM cosng + DI sinng), (53)
n=1
VoUul(s, ¢) = —FEyscos¢ + Z (O cosng + DI sinng). (54)
n=1

Condition 3 is a matching condition that requires V*(a, ¢) = V°"(a, ¢), so that

BM + Z a™(C" cosng + DM sinng) = —Fgyacos ¢ + Z a”"(C2" cosng + DO sinng). (55)

n=1

By orthogonality, we must equate each term in the series independently. To see this, first multiply both
sides of the equation by cosn’¢ and integrate from 0 to 27. This will eliminate all but the cosn¢ terms
with n = n/, leaving

Cing™ = Cota™, (56)

and deal similarly with sinn’¢. Applying this operation for each n’ gives the following conditions (after
dropping the ’ from n),
=0, 57

(57)
O = —Ey + C /a? (58)
=0, (59)

= Ca?n, (60)
Dy = DM a=?", (61)

At this point we have

Vii(s,¢) = (—Eo + C{" /a®) scos ¢ + Z C’Out cosng + D™ sinng), (62)
VOoul(s, ) = (—FEp + CY"/s?) s cos ¢ + Z s7"(CO" cosng + D2 sinng), (63)
n=2

where the only undetermined coefficients are CS™ and DS". Now take the radial derivatives

ags = (—Fy + C{™ /a?) C’ou‘C cosng + D™ sinng), (64)
n=2
avet out /2 = —n—1/out out _:
5 (—Eg— C{"/s*)cos ¢ + Z —ns (C cosng + Dy sinng). (65)
n=2
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Once again, by orthogonality, we must match up each element of the series term by term at s = a. For
n > 1 this gives
ena”"TIOO = —e¢gnaT"TICOM OO =0 (n > 1), (66)
=0

ena "IDOY = —ggna""IDOW . powt (n>1). (67)
Finally, for n = 1 we have

€ — €

e(—Ep+ CY"/a?) = eo(—Ey — O /a?)  — O =

Collecting these results and inserting them into equations and gives

: 260
Vi(s,¢) = — Eyz, 69
(5.:0) = == Eoa (69)
Voul(s, ¢) om0 d (70)
s, ) =— 11— — x
’ €+ € 2 0%
where we have used x = scos ¢ in these last expressions.
c) Finally,
. . 0 A
E"=-VV"=—-%—V(z) =% E 71
v * (z) e + € 0 (71)

is constant in the dielectric, confirming that there is no bound volume charge in the material, and that
Laplace’s equation therefore holds. Note also that V(r) — —FEp« for all space in the limit € — ¢, as we
should expect.

4. B field of a wire making a 90° turn

We can use the Biot-Savart law to find the B field from a steady current,

B(r) “O/CMIX(I'_IJ). (72)

s lr — /|3

Let us choose coordinates where P is at the origin, X is to the right, ¥ is up, and z is out of the page.
Then we can divide the wire into three portions, (a), (b) and (c). The horizontal portion (a) has y = —R
with —oo < z < 0, the vertical portion (b) has x = +R with 0 < y < oo, and the curved portion (c) has
2?2 4+ 9% = R? with —71/2 < ¢ < 0.

Since we choose P to be the origin, we have r = 0, so that

/
B(0) = —%I ) dm; . (73)

For portion (a), we have r’ = z/%x — Ry, |v'|> = (22 + R?)%/2, and
dl x r' = da/% x (v'% — RY) = —Rd2' (% x §) = —Rda'2. (74)

Similarly for portion (b), ' = RX + 'y, |r'|> = (R? + 4'*)3/2, and
dlxr' =dy'y x (Rx+y'y) = Rdy'(y x X) = —Rdy'z. (75)



Together, these two contributions give

B®+P)(0) = ”;'Ii ’ _ Rdd + I _ Rdy
T A4r . (l,/2 +R2)3/2 0 (y/2 _|_R2)3/2

,U()IR % Foo dx’
A1 - ($’2+R2)3/2
_M L,
2r R

(76)

For portion (c), we have r’' = R 8, and dl = R d¢ ¢, hence dl x v’ = —R? d¢ 2. The contribution from
portion (c) is thus

1 O R2dy po I
BO (0 = Mol / _ kol
(0) 1 oy B Wk (77)

Combining equations and , we get:

(1 1N pol
B_<27r+8> 7 & (78)

Let us make a sanity check and at the same time try to get this answer by simpler means. In lectures
we found that B field of an infinite wire carrying a current I is
po 1
B|=—-, 79
Bl =10 (79)
where s is the perpendicular distance from the wire and the field is azimuthal around the current in a
right-handed sense. Now, let us think about what the B field of a half-a-wire carrying a current I would
look like. Consider a half-a-wire running from —oco < x < 0, and consider a point at a vertical distance s
right above its end at x = 0. By the principle of superposition, the azimuthal component of the field at
this point will be equal to one half of the field created by the full wire, — since, by symmetry, the left
and the right halves of the current-carrying wire contribute equally to the field above its middleﬂ
Applying this logic to portions (a) and (b) of the wire, we conclude that the z-component of the B field
that they create at P is:
1
Bet)(py =g K0, KO, 80
(P) =25 52 7%~ on % (80)
Finally, we discussed in lectures that the current due to a circular loop of radius a is

_ Mol

B
B =120

(81)
oriented perpendicular to the loop in the right-handed sense. Because we only have one quarter of a loop
here, for the z-component of the B field due to the portion (c) we should simply divide this by 4:

1
BE(P)=£22 5 82
(P) =2 (52)

Combining and gives exactly , which is great news. However, this streamline (and much
easier than using the Biot-Savart law directly) calculation assumes that B the quarter ring contributed
no x- or y-components at P, which we did not prove. In fact, we cannot rule out the existence of x or y
components without complete calculation. By symmetry, we should expect any transverse component to

Note that this logic works only for a point right above the end of the wire, not at any other point shifted away from it.



satisfy B, = —B,, since I — —I under reflection about the line z = —y — but this is as much as we can say.
5. B field of a slab

a) One sheet of current at z = 0: see Griffiths, Example 5.8. In short, due to the translational
symmetry in the z-y plane, B can only depend on z. Assume that the current is flowing in the 4z
direction. Dividing mentally the surface current into infinitesimally thin threads and applying the right-
hand rule to each of them, we conclude that the direction of B is along —y for z > 0 and along y for
z < 0.

Let us choose a rectangular Amperian loop with a horizontal side of length [ aligned with the y-axis,
and with the vertical side 2z sitting symmetrically about the z-y plane. Ampere’s Law tells us

wall:/ B dl+ B'dl+/ B-d1+/ B - dl = piolene. (83)
top left bottom right

The integrals over the vertical side vanish since B 1 dl, and the integral along each horizontal side
gives 2Bl (assuming that we go along the loop counter-clockwise, since this is the positive direction for our
out-of-page current). Now, the enclosed current is I.,. = Koyl, and we get the equation for the magnitude
of the magnetic field:

2Bl = uoKol. (84)
Thus,
—“OQKOy for z > 0,
B= (85)
—|—'UO2KOSI for z < 0.

Note that the magnitude of the magnetic field due to a sheet of current does not depend on the vertical
distance from it (which reminds us of the electric field of an infinite sheet of charge).

b) Two sheets of current: Here we will apply the principle of superposition using our result from part
(a). The picture below shows two sheets of current along with B fields produces by each of them in three
regions, above the sheets, between them, and below them. We see that the two fields cancel above and
below the sheets, and double in the gap between them (which reminds us of the electric field of an infinite
parallel plate capacitor).

z Blower Bupper
Ko®
K, ®© y
The magnetic field between the two slabs is:
B = —pu,Kyy 0 < z < a, and zero otherwise. (86)

c) A layer of non-uniform current: By symmetry, the B field for z > 0 is pointing in —y direction,
and in the 4y direction for z < 0.

10



Let us start with B field outside the slab, at a distance z > h from the z-y plane. Again, the Amperian
loop will be a rectangle with a horizontal side of length [ aligned with the y-axis, and with the vertical
side 2z sitting symmetrically about the z-y plane. The new element here is dealing with non-uniform
volume current density. For the observation point z outside the slab, the loop enclosed all the current
passing through the piece of slab of width {. From Ampere’s law,

2

h 2
o Joh
2Bl:u0/ J-da:ugl/ Jol |dz = HOl0 (87)
loop h

from where we can find the magnitude of the B field.

For the observation point z inside the slab, the only difference will be the reduced amount of current
passing through the Ampere’s loop, that will now have height z < h and will again be centered at z = 0.
We get:

SRR
ZBZ:MO/ J-da:,ugl/ Jol |d2 = “°2°z . (88)
loop —z

Taking into account the direction of B field which we know from the right-rand rule, we get the final
answer:

Joh?

J“)Toy for 2 > h,
J 2

—“0202 g for0<z<h,

B— (89)

J 2

+“°2°Zy for —h <z <0,
Joh?

+N0 20 y for z < —h.

This question did not ask you to plot the graph of the B field, which is an overlook on my side: graphs
help us to visualize and better understand our results. Hope you plotted one nonetheless, even if you did
not submit it for marks. Here is mine:

By (2)

6. Vector potential

a) Vector A must point in the z direction because it is given by the integral
Ko J i
A=— [ ——d 90
4w / |r — 1’ T (90)

and J has only z-component. Therefore, the Poisson equation reduces to the equation for the z-
components:

1

V2ZA = —1pd v2An) —
12%0] — z 12%) 7TR2

(91)
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By symmetry, AS”) can only depend on s. We use the expression for Laplacian in cylindrical coordinates:

19 [ 9A" I
55 ( s ) TR 52)
and after integrating it twice we get:
; I
Al (g) = g2 4’;‘}%2 4+ C1lns + o, (93)

with C7 and (5 being integration constants. We set C7 = 0 to not let A,(Zm)(s = 0) diverge. The second

constant, Co, is found from the boundary condition Agn)(s = R) =0 to be Cy = I19/4n. Therefore,

A I 2
Al (s < R) = ’% (1 - ;) 7. (94)

By the same reasoning, A (°%) = A,(Zom) (s)z. Outside the wire, there is no current, and the z-component
of the vector potential is the solution of the Laplace equation:

1o [ oAl
2 A (out) - Y z —
V=AY < s (s s 0, (95)
whose solution is:
AL () = Cilns+ Cy = C1 In (;) : (96)
0

where we have chosen Co — —C In sg with sg from now on being the second integration constant.
The boundary condition Ai"“t)(s = R) = 0 dictates so = R. We are left with:

AL (5) = ¢y In (%) . (97)

We find the remaining constant, C1, from the boundary condition

aAgout) aAgzn)
on on

= —po K. (98)

Since K = 0 (we have volume, not surface, current density in this problem!), we conclude that the
derivative of the z-component over the normal, s, should be continuous. We use to set up the
equation for C'9, which reads:

MOI 2s Cl ,u,()I
e R 0 = Koo 99
{ 47 R2 S}SZR - ! 27’ (99)
and we finally get:
(out) _ _toly (3,
ACD(s > R) = —E-n (R) 2. (100)

b) Using our expression for A, we can write:

04, .

B = A=— 101
V x 55 P (101)
Inside the wire, this gives:
; I [ 2s wols
plin) _ HoZ (253 ) 102
¢ 4 \ R? 21 R? (102)
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Using Ampere’s law with an Amperian loop with radius s < R co-centric to the axis of the cylinder,
we get:

@y _ L o (in),  _ Hols
2msBy " = Ho—3 TS — B, (s) = o 2 (103)
as in ((102).
Likewise, we can find magnetic field outside the wire from the vector potential as
I 8 ,U,QI
B(OUt):'uLil = 104
¢ 21 Os e 27s (104)

Using Ampere’s law with an Amperian loop with radius s > R co-centric to the axis of the cylinder,
we get the same answer:

(out) (i), _ Mol
2msBy " = pol — B, (s) = S (105)
Everything is consistent, and we have nothing to worry about.
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