
Physics 301 - Homework #6 - Solutions

1. Spinning disk

a) One way to proceed is to mentally split the disc into a collection of tiny concentric circular stripes, each
of infinitesimal thickness ds, which will cover the area of the disk: each such stripe is a line of current,
whose dipole moment, dm, we can compute. The dipole moment of the disk then will be the superposition
of these tiny dipoles dm.

The loop shown in the figure at a distance s from the center of the disk carries current

dI(s) = K(s)ds = σv(s) ds = σωsds, (1)

where K(s) is the surface current density describing the motion of charges due to rotation of the disk; note
that K(s) = σωs has units of charge per unit time per unit length, as expected for a surface current. We
used the fact that a point on the disk at a distance s from its center has a velocity v(s) = ω × s = ωsφ̂.
The corresponding infinitesimal dipole moment is

dm = πs2 dI(s) ẑ. (2)

Then the magnetic dipole moment of the disk is

m =

∫ R

0
dm = ẑ

∫ R

0
πσωs3ds =

πσωR4

4
ẑ. (3)

Another approach would be to use the general expression for the magnetic moment,

m =
1

2

∫
V
r′ × J(r′) dτ ′ → 1

2

∫
A
r′ ×K(r′) da′ (4)

with
K(r′) = σωs′φ̂. (5)

Then the magnetic moment is

m =
1

2

∫
A
r′ ×K(r′) da′ =

1

2

∫
A
(s′ ŝ)× (σωs′ φ̂) s′ds′ dφ′ =

2πσω

2
ẑ

∫ R

0
s′3ds′, (6)
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or, in full agreement with the previous approach,

m =
πσωR4

4
ẑ. (7)

Note that m has units of current times area (Ia), as expected for a magnetic moment.

b) Building on our first approach, we can find total magnetic field on the z axis by superimposing the
electric fields of the infinitesimal rings of current. By symmetry, the only non-zero component will point
along the z axis. Each ring of thickness ds of radius s carries current dI(s) = σωsds, and creates a vertical
field dB on the z axis of the ring. In the lectures we derived this field to be

dB = dBz ẑ, dBz(s, z) =
µ0

2

dIs2

(s2 + z2)3/2
=

µ0

2

σωs3ds

(s2 + z2)3/2
. (8)

Macroscopic magnetic field is found by integrating the contributions of all these line currents:

Bz(z) =

∫ R

0

µ0

2

σωs3ds

(s2 + z2)3/2
=

µ0σω

2

R2 − 2z
√
R2 + z2 + 2z2√
R2 + z2

. (9)

We can notice that R2 − 2z
√
R2 + z2 + 2z2 = (R2 + z2)− 2z

√
R2 + z2 + z2, and rewrite the numerator

as a full square. Restoring vector notations,

B(z) =
µ0σω

2

(
√
R2 + z2 − z)2√

R2 + z2
ẑ. (10)

If we were to solve the problem directly from the Biot-Savart law without invoking infinitesimal rings,
we could write:

B(r) =
µ0

4π

∫
A

K(r′)× (r− r′)

|r− r′|3
da′. (11)

With r = z ẑ and r′ = s′ ŝ and K(r) given by (5), we can first work out the vector nature of the
numerator,

K(r′)× (r− r′) = σωs′ φ̂× (z ẑ− s′ ŝ) = σωs′z ŝ+ σωs′2 ẑ. (12)

We can simplify this by noting that the first term ∝ ŝ will vanish once we integrate over φ because
|r− r′| =

√
z2 + s′2 is independent of φ when r is on the z axis. The second term yields the same integral

(and hence the same answer) as before, since:

B(z) =
µ0

4π
ẑ

∫
A

σωs′2

(z2 + s′2)3/2
s′ds′dφ′ =

µ0σω

2
ẑ

∫ R

0

s′3ds′

(z2 + s′2)3/2
. (13)

Now let us find the approximate expression for the magnetic field on the z axis for z ≫ R. We use
Taylor’s expansion √

R2 + z2 = z
√

1 +R2/z2 ≈ z

(
1 +

1

2

R2

z2

)
= z +

R2

2z
, (14)

and keep only the leading term, z, in the denominator. We get:

B(z) ≈ µ0σω

8

R4

z3
ẑ. (15)
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c) Finally, let us find the magnetic field at the z axis using dipole approximation, (3). We get:

B(1)(z) =
µ0

4π

3(m · ẑ)ẑ−m

z3
=

µ0

4πz3

(
3
πωσR4

4
− πωσR4

4

)
=

µ0σω

8

R4

z3
ẑ (16)

as before – everything is nice, consistent and as expected.

2. Conducting slab

We have a slab of conducting material in the x-y plane with thickness 2a (−a < z < +a) carrying a
uniform current density J = J0 x̂. Since the system is translationally invariant in x and y (specifically
J and χm), it follows that all of the derived fields are only functions of z, H(r) = H(z), M(r) = M(z),
B(r) = B(z) (note that it is NOT the same as to state that they can only have z-components!). By
symmetry, all the fields have only y-components (to see that, you can imagine the current density J as a
set of wires carrying current in +x direction and apply right-hand rule and superposition principle). The
direction of the B field inside the slab is shown in the figure.

The slab is non-magnetic, with M = 0 and B = µ0H, and zero bound currents. We use the Loop 1
with width L1 shown in the figure and apply Ampere’s law to get:∮

Loop 1
B · dl = 2By(z)L1 = (µ0J0)(2zL1) (17)

from where:

Bslab = −µ0zJ0ŷ, Hslab = −zJ0ŷ, Mslab = 0, Jslab
b = 0, Kslab

b = 0. (18)

Outside the slab, we will have magnetization, so we should be more careful when choosing what to
start with. We will use Ampere’s law for auxiliary field H, since we know the free current, Jf = J. Using
Loop 2 with width L2 form the figure we get:∮

Loop 2
H · dl = 2Hy(z)L2 = J0(2aL2) (19)

(note that the current is now restricted by the thickness of the slab and does not depend on the location
of z). From here we get (here sgn is the sign function, equal to 1 when its argument is positive, and to -1
when its argument is negative):

Hout = −aJ0 sgn(z)ŷ, Bout = µH = −µ0(1 + χm)aJ0 sgn(z)ŷ (20)

and
Mout = χmH = −aχmJ0 sgn(z)ŷ. (21)
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Finally, we can use (21) to find the bound currents in the magnetic material outside the slab. Since
Mout = const in each of the half-spaces,

Jout
b = ∇×Mout = 0. (22)

For surface bound current we use Kb = M × n̂, with n̂ = −ẑ for the upper half-space and n̂ = ẑ for
the lower half-space (remember that n̂ points outwards, i.e. away from the magnetic). We get:

Kb(z = a) = −aJ0χm ŷ × (−ẑ) = +aJ0χmx̂

Kb(z = −a) = +aJ0χm ŷ × (+ẑ) = +aJ0χmx̂
(23)

so that
Kout

b = aJ0χmx̂ ∥ J. (24)

3. Frozen magnetization

a) To find B, we start by calculating its sources, Jb and Kb, from magnetization:

Jb = ∇×M =
1

s

∂

∂s

(
s · ks2

)
ẑ = 3ksẑ, (25)

Kb = M× n̂ = φ̂× ŝks2|s=R = −kR2ẑ. (26)

We will use Ampere’s law to find B. Due to the azimuthal symmetry of magnetic field, we get:∮
B(s) · dl = B(s) · 2πs = µ0Iencl, (27)

with

Iencl(s < R) =

∫
πs2

Jb(s
′) · da′ =

∫ 2π

0

∫ s

0
(3ks′)s′dϕ′ds′ = 2πks3 (28)

and

Iencl(s > R) =

∫
πR2

Jb(s
′) · da′ +

∫
2πR

Kb dl
′ = 2πkR3 − kR2 · 2πR = 0. (29)

Therefore,

Bin(s) = µ0ks
2φ̂, Bout(s) = 0. (30)

b) The auxiliary field in the air is simply Hout(s) = Bout(s)/µ0 = 0, since the air is a linear magnetic.
Inside the cylinder, we can use

Hin(s) =
Bin(s)

µ0
−M(s) = 0 (31)

(here I used Eq.(30)). Hence, H ≡ 0 everywhere.

c) Let us check that the pair of boundary conditions

B
(out)
⊥ (R) = B

(in)
⊥ (R), H

(out)
∥ (R) = H

(in)
∥ (R) (32)

(the second boundary condition holds because there are no free currents whatsoever, including the bound-
ary of the cylinder). The boundary condition for B⊥ is satisfied since, according to Eq.(Bmag), B does not
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have a component normal to the interface. The boundary condition for H∥ is also satisfied automatically,
since this field is zero in both media. The boundary condition work!

Even though the above is enough to get full marks, let us out of curiosity look at the boundary
conditions for B∥, which, according to Eq.(6.27) from Griffiths, are

B
(out)
∥ (R)−B

(in)
∥ (R) = µ0(K× n̂), (33)

with K being the bound surface current Kb from (26). From (30) we see that the left-hand side of this
equation is 0− µ0kR

2φ̂ = −µ0kR
2φ̂. The right-hand side is µ0(−kR2)ẑ× ŝ = −µ0kR

2φ̂ – it also works!

d) It’s a non-linear material. In a linear material, M = χmH, which is clearly not satisfied here.

4. Fields in a gap

a) Let us start by figuring out what the magnetic field inside the toroid would be in the absence of the
gap. Basically, we want to argue that the high susceptibility of the “soft iron” causes the magnetic field
lines to be concentrated in the magnetic material. We will argue that magnetic field lines form something
very close to regular circles even though the coil attached to the toroid at the left breaks the circular
symmetry of the problem.

We know that an empty coil produces a magnetic field B = µ0nI ẑ (with the z axis pointing upward),
which is uniform inside the coil. Well, this is, strictly speaking, true for an infinite solenoid, but we will
use this approximation here. The field lines go out of our finite solenoid and form closed loops that are
distributed over the whole outer space. The density of the field lines (and hence the magnitude of the
magnetic field) outside the coil is hence much smaller than inside it (see panel (a) in the figure below).

Now, what happens if we place a magnetic material with high µ inside the coil? Assume that there is
still a small portion of the coil filled with air, while its bulk is occupied with the magnetic (panel (b)). The
parallel component of the auxiliary field H conserves since there are no free currents: Hair

∥ = Hmagnetic
∥ ,

or Bair
∥ /µ0 = Bmagnetic

∥ /µ. We find that if we fill a solenoid with a magnetic material, the magnetic field

in it becomes enhanced by a factor of µ/µ0 ≫ 1 (panel (b)):

Bmagnetic
∥ =

µ

µ0
Bair

∥ ≫ Bair
∥ . (34)

Now, what will these lines do when they continue along the magnetic material away from the coil? I’ll
argue below that they will stay inside the magnetic, since crossing its boundary with air is against what
boundary conditions tell us. Consider a point at the boundary of the magnetic and magnetic fields near
it inside and outside the core (point P in panel (b)). We know that:

Bair
∥ ≪ Bmagnetic

∥ , Bair
⊥ = Bmagnetic

⊥ , Bair ≪ Bmagnetic (35)

(the last condition states that the magnetic field magnitude inside the solenoid is enhanced – see the field
lines density in panel (b) of the figure). Roughly speaking, the B field everywhere inside the magnetic is
strongly dominated by its parallel component. Neglecting Bmagnetic

⊥ in comparison with Bmagnetic
∥ , we get

inside the “soft iron”:
B(r) ≈ Bmagnetic

∥ φ̂ = µHmagnetic
∥ φ̂, (36)

and B(r) = 0 outside the toroid (panel (c)).
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b) Now let us add the gap of thickness d and find the field inside it. In this paragraph, I’ll use the
subscripts ⊥ and ∥ with respect to the horizontal edge of the gap. Since there are no free currents
anywhere, H∥ conserves across the edge of the gap. Therefore, Hgap (and, consequently, Bgap) have no
r-components. Moreover, since B⊥ conserves, we realize that

Bgap = Bmagnetic = −Bϕφ̂. (37)

Now, since there are no free currents, we can use Ampere’s law for the polar (the only one!) component
of the auxiliary field H. We chose Ampere’s loop of radius a < s < b that runs inside the toroid, and
write (the subscript “ϕ” for the H fields dropped):∮

C
H · dl = NI = Hmagnetic(s) (2πs) +Hgapd. (38)

From the boundary condition for the perpendicular component of B field at the gap we have:

µHmagnetic = Bmagnetic = Bgap = µ0H
gap, (39)

from where
Hmagnetic(2πs− d) +

µ

µ0
Hmagneticd = NI, (40)

and hence

Hmagnetic(s) =
NI

(2πs− d) + (µ/µ0)d
. (41)

Now neglecting d in comparison with (µ/µ0)d and using (39) we find:

Hmagnetic(s) =
µ0

µ

NI

d+ µ0

µ 2πs
, Bmagnetic(s) =

µ0NI

d+ µ0

µ 2πs
,

Hgap(s) =
NI

d+ µ0

µ 2πs
, Bgap(s) =

µ0NI

d+ µ0

µ 2πs
.

(42)

5. A solenoid and a loop

a) The magnetic field strength within the solenoid is B = µ0nI, where n is the number of turns per unit
length and I is the solenoidal current. The field strength is uniform within the solenoid and it points to
the right, given the direction of the solenoidal current shown in the figure.

If the solenoidal current increases uniformly with time, dI/dt = k, then the flux through the surround-
ing loop will increase as well:

dΦ

dt
=

dB

dt
· πa2 = µ0nkπa

2. (43)
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By Faraday’s law, the induced emf in the loop is

E = −dΦ

dt
= −µ0nkπa

2, (44)

so the induced current through the resistor is

Iind =
µ0nkπa

2

R
. (45)

The sign of the current can be inferred from Faraday’s law and/or Lenz’ law.
Using Lenz’ law: the induced current will act to oppose the change in the magnetic flux through the

loop, meaning that the induced magnetic field from the loop current will point to the left, to counteract
the increasing solenoidal contribution to the right. By the right hand rule, this requires the current to
flow in the direction opposite to I (counterclockwise, if looking from the left end).

Using Faraday’s law: we defined magnetic flux through the loop to be positive for flux pointing to the
right, so our unit normal to the surface bounded by the loop points to the right, therefore a positive emf
around the loop would induce a clockwise current, and vice-versa. Since we found E to be negative, the
induced current is counterclockwise (looking from the left end).

b) If we remove the solenoid from the loop entirely, the flux through the surrounding loop changes from
Φ = µ0nIπa

2 to 0 over some period of time. Without specifying the specific time dependence, let Φ(t)
be the flux at time t, let ti be a time before the solenoid is moved, and let and tf be a time after it is
removed.

The total charge passing through the loop’s resistor can be obtained by integrating the induced current,

Q =

∫ tf

ti

Iind(t) dt =
1

R

∫ tf

ti

E(t) dt = − 1

R

∫ tf

ti

dΦ

dt
dt =

Φi − Φf

R
. (46)

Therefore

Q =
µ0nIπa

2

R
. (47)

Since the flux to the right has decreased, the induced current will be clockwise (looking from the left end)
in order to counteract the loss of flux.

6. Sliding bar

a) Using the Lorentz force law, we have (assume going around the circuit counter-clockwise, so that the
positive normal to the circuit is out of the page):

E =

∮
(v0 ×B) · dl = −v0Bl. (48)

Note that only the metal bar contributes to the integral, as no other part of the circuit is moving.
The minus appears since the Lorentz force on the imaginary positive charge carriers in the bar is down,
and hence antiparallel to the chosen dl on this segment. This emf creates induced current in the negative
(clockwise) direction.

b) The flux rule states:

E = − d

dt
Φ = −B

dA

dt
, (49)
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since the B field does not change, and the change of the flux is due to the change of the area exposed to
the field. Now, A = lx, where x is the distance from the left side of the circuit to the bar. Then

dA

dt
= l

dx

dt
= lv0, (50)

and we get, in agreement with (48):

E = −Blv0. (51)

c) The magnitude of the current induced in the loop is

I =
E
R

=
Blv0
R

, (52)

and its direction, as we discussed in part a), is clockwise. This current induces its own field, Bind, and
according to the right-hand rule, it will point into the page. Hence, the flux created by the induced cur-
rent opposes the increase (due to the increasing area) of the external flux through the loop, as it should be.

d) The net magnetic force on the bar is (assuming positive direction to the right, and v = v(t) is the
velocity with which the bar is moving at the moment t):

F = −BIl = −B

(
Blv

R

)
l = ma = m

dv

dt
. (53)

This gives us a differential equation for v(t):

d

dt
v = −B2l2

mR
v = −v

τ
. (54)

Solving this differential equation with the initial condition v(t = 0) = v0 gives:

v(t) = v0e
− t

τ = v0e
− l2B2

mR
t. (55)

This means that the bar is slowing down, and its kinetic energy is gradually decreasing. Where does it
go, if there is no friction? The only suspect is a resistor. We know that the power dissipated in a resistor
is given by (we use τ = mR/l2B2, which can be rewritten as l2B2/R = m/τ):

PR = Iε =

(
Blv

R

)
(Blv) =

l2B2v2

R
=

l2B2v20
R

e−2 t
τ =

mv20
τ

e−2 t
τ ≡ PR(t). (56)

Therefore, the total energy dissipated in the resistor by moment t is

Edissipated =

∫ t

0
PR(t

′)dt′ =
mv20
τ

∫ t

0
e−2 t′

τ dt′ =
mv20
2

(
1− e−2t/τ

)
=

mv20
2

− mv2(t)

2
, (57)

which is equal to the change it the kinetic energy of the moving bar, so the energy conserves! Everything
works smoothly, as it should be, so it is time to say –

The End.
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