
Lecture 3

Grad, Div, Curl.
Line, surface, volume integrals.
Stokes’ theorem and Gauss’ theorem. 



Math review: Vector calculus 

• Nabla
• Differential operators: 

o Gradient, Divergence, Curl, Laplacian

(Ch. 1.2)

∇



Differential operator “nabla”

Definition (Cartesian coordinates):

• Nabla is a vector (vector operator)

∇≡ ∇ = �𝐱𝐱 𝜕𝜕
𝜕𝜕𝜕𝜕

+ �𝐲𝐲 𝜕𝜕
𝜕𝜕𝑦𝑦

+ �𝐳𝐳 𝜕𝜕
𝜕𝜕𝑧𝑧

• Nabla is an operator (it acts on a function of coordinates)

• Vector multiplication operations for nabla have special names (grad, div, curl)



Nabla & Div, Grad, Curl: Warming up 

Q: True or false:

This mathematical operation on a scalar field, 𝑇𝑇, 
makes sense and is technically valid:

A. True, and it will produce a vector field 
B. True, and it will produce a scalar field 
C. False, because you can not take the divergence of a scalar field 
D. False, because you cannot take the gradient of a vector field 
E. I don't remember what this means

∇ ⋅ ∇𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧)



Q: True or false:

This mathematical operation on a scalar field, 𝑇𝑇, 
makes sense and is technically valid:

A. True, and it will produce a vector field 
B. True, and it will produce a scalar field 
C. False, because you can not take the divergence of a scalar field 
D. False, because you cannot take the gradient of a vector field 
E. I don't remember what this means

∇ ⋅ ∇𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧)

• 𝑇𝑇 is a scalar

• ∇𝑇𝑇 is a vector:

∇𝑇𝑇 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐱𝐱 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

�𝐲𝐲 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧

�𝐳𝐳 ≡ 𝐀𝐀

• ∇ ⋅ (𝐀𝐀 = ∇𝑇𝑇) is a scalar:

∇ ⋅ 𝐀𝐀 =
𝜕𝜕𝐴𝐴𝑥𝑥
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝐴𝐴𝑦𝑦
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝐴𝐴𝑧𝑧
𝜕𝜕𝑧𝑧

Nabla & Div, Grad, Curl: Warming up 



1) Multiplying a vector by a scalar (produces a vector)

Vector multiplication: Review

2) Dot product of two vectors (produces a scalar)

3) Cross product of two vectors (produces a vector)



• The gradient of a scalar function, 𝑇𝑇(𝑥𝑥,𝑦𝑦, 𝑧𝑧), is a vector function which, at each point, 
points in the direction of the steepest increase of 𝑇𝑇. 

• The magnitude of the gradient at each point is equal to the slope of 𝑇𝑇 in the direction 
of its maximum growth. 

• Notation: ∇𝑇𝑇

Gradient: Review

light = low 
dark = high



• A vector function, 𝐹⃗𝐹(𝑥𝑥,𝑦𝑦, 𝑧𝑧), has a divergence and a curl:

Divergence and Curl: Review

• Divergence: a scalar, measures “spreading out”:

• Curl: a vector, measures “vorticity”:



Estimating divergence

Q: Do either of these fields plausibly have zero divergence? 

A. Both have zero divergence
B. Only field I 
C. Only field II 
D. None of them 
E. I have no idea



Estimating divergence

Q: Do either of these fields plausibly have zero divergence? 

A. Both have zero divergence
B. Only field I 
C. Only field II 
D. None of them 
E. I have no idea

∇ ⋅ 𝐅𝐅 = 𝜕𝜕𝐹𝐹𝑥𝑥
𝜕𝜕𝜕𝜕

(only x-component)

• Which of the two fields has 
a constant x-component?

𝑥𝑥

𝑦𝑦



Estimating curl

Q: Do either of these fields plausibly have zero curl? 

A. Both have zero curl
B. Only field I 
C. Only field II 
D. None of them 
E. I have no idea



Estimating curl

Q: Do either of these fields plausibly have zero curl? 

A. Both have zero curl
B. Only field I 
C. Only field II 
D. None of them 
E. I have no idea

• If place a stick in this “flow”, the vector field I 
would cause this stick to rotate as a consequence 
of non-zero curl, while the field II won’t

∇ × 𝐅𝐅 𝑧𝑧 = 𝜕𝜕𝑦𝑦 𝐹𝐹𝑥𝑥 − 𝜕𝜕𝑥𝑥𝐹𝐹𝑦𝑦

= 𝜕𝜕𝑦𝑦 𝐹𝐹𝑥𝑥

• Which of the two fields has a 
y-independent x-component?

𝑥𝑥

𝑦𝑦



Differential operators: Summary

𝑡𝑡 = 𝑡𝑡(𝐫𝐫): scalar function 𝐯𝐯 = 𝐯𝐯 𝐫𝐫 = 𝑣𝑣1�𝐱𝐱 + 𝑣𝑣2 �𝐲𝐲 + 𝑣𝑣3�𝐳𝐳: vector function

= ∇𝑡𝑡 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

�𝐱𝐱 +
𝜕𝜕𝑡𝑡
𝜕𝜕𝑦𝑦

�𝐲𝐲 +
𝜕𝜕𝑡𝑡
𝜕𝜕𝑧𝑧

�𝐳𝐳Grad

= ∇ ⋅ 𝐯𝐯 =
𝜕𝜕𝑣𝑣1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑣𝑣2
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑣𝑣3
𝜕𝜕𝑧𝑧

Div

= ∇ × 𝐯𝐯 =

�𝐱𝐱 �𝐲𝐲 �𝐳𝐳
𝜕𝜕
𝜕𝜕𝜕𝜕

𝜕𝜕
𝜕𝜕𝑦𝑦

𝜕𝜕
𝜕𝜕𝑧𝑧

𝑣𝑣1 𝑣𝑣2 𝑣𝑣3

Curl

scalar

vector

vector

in Cartesian 
coordinates



Differential operators: Summary

𝑡𝑡 = 𝑡𝑡(𝐫𝐫): scalar function 𝐯𝐯 = 𝐯𝐯 𝐫𝐫 = 𝑣𝑣1�𝐱𝐱 + 𝑣𝑣2 �𝐲𝐲 + 𝑣𝑣3�𝐳𝐳: vector function

see Griffiths’ cover, or file 
“formulas” posted on Canvas



Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, 𝑇𝑇, 
in cartesian coordinates:



Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, 𝑇𝑇, 
in cartesian coordinates:

Write the double gradient as a dot product:

Laplacian operator: 
∇2 or Δ



Math review: Line and Surface integrals

• Line integrals and work
• Surface integrals and flux

(Ch. 1.3.1)

𝐅𝐅



Line integrals: Review

You met them: 

• calculating work along a path: 𝑊𝑊 = ∫𝑎𝑎
𝑏𝑏 𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫

• using Ampere’s law in integral form: ∮ 𝐁𝐁 ⋅ 𝑑𝑑𝐫𝐫 = 𝜇𝜇0𝐼𝐼encl

• Vector field 𝐅𝐅𝐅𝐅 • Path 𝑎𝑎 → 𝑏𝑏
𝑎𝑎

𝑏𝑏

𝑑𝑑𝐫𝐫

𝑑𝑑𝐫𝐫

𝑑𝑑𝐫𝐫

• At each point on the path, compute dot product 
of the line segment 𝑑𝑑𝐫𝐫 and the field 𝐅𝐅, and add 
the outcomes up (= integrate)

• 𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫 = 𝐹𝐹 𝑑𝑑𝑑𝑑 cos 𝜃𝜃 = 𝐹𝐹𝑥𝑥𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑦𝑦𝑑𝑑𝑑𝑑 + 𝐹𝐹𝑧𝑧𝑑𝑑𝑑𝑑

• You move along the path from 𝑎𝑎 to 𝑏𝑏



Line integrals: Practice

Q: A force 𝐅𝐅 is non-zero and uniform in the upper half-space, and points at 30o above the 
horizontal. Calculate the work of this force over the closed path shown (heigh 𝑎𝑎, width 𝑏𝑏).

A. 0

B. 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

C. 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹/2

D. 𝐹𝐹𝐹𝐹 cos 30o + 𝐹𝐹(𝑎𝑎/2) cos 150o

E. 𝐹𝐹𝐹𝐹 cos 30o

𝐅𝐅

30o



Line integrals: Practice

Q: A force 𝐅𝐅 is non-zero and uniform in the upper half-space, and points at 30o above the 
horizontal. Calculate the work of this force over the closed path shown (heigh 𝑎𝑎, width 𝑏𝑏).

A. 0

B. 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹

C. 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹/2

D. 𝐹𝐹𝐹𝐹 cos 30o + 𝐹𝐹(𝑎𝑎/2) cos 150o

E. 𝐹𝐹𝐹𝐹 cos 30o

𝑊𝑊 = �
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫
𝐅𝐅

30o









�
1
𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫 = 𝐹𝐹𝐹𝐹 cos(30o)

�
2
𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫 = 𝐹𝐹

𝑎𝑎
2

cos(120o)

�
3
𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫 = 0

�
4
𝐅𝐅 ⋅ 𝑑𝑑𝐫𝐫 = 𝐹𝐹

𝑎𝑎
2

cos(60o)

cos(120o) = − cos(60o)



Flux: Review

• �𝒏𝒏(𝐫𝐫) is a unit vector normal to the surface

• For a flat surface and uniform field 𝐯𝐯:

• Note that if 𝐯𝐯 𝐫𝐫 ⊥ �𝐧𝐧, then the flux of 𝐯𝐯 through 𝐴𝐴 will be zero.

Flux is a measure of how much vector field flows through a closed, oriented surface.

• The angle between 𝐯𝐯 and �𝐧𝐧 (the unit normal to the surface) matters! 

�𝒏𝒏

𝐯𝐯

𝜃𝜃
Φ = 𝐯𝐯 ⋅ 𝐀𝐀 = 𝑣𝑣𝑣𝑣 cos 𝜃𝜃

• For non-uniform field 𝐯𝐯 𝐫𝐫 or 
curved area, we need to integrate 
𝐯𝐯(𝐫𝐫) ⋅ 𝑑𝑑𝐚𝐚 over the surface:

𝐀𝐀 = 𝐴𝐴 �𝐧𝐧



Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat 
surface, or through it curved surface?

A. Φflat

B. Φcurved

C. They are equal

𝐯𝐯

𝐯𝐯



Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat 
surface, or through it curved surface?

A. Φflat

B. Φcurved

C. They are equal

𝑑𝑑𝐚𝐚

𝑑𝑑𝐚𝐚

𝑑𝑑𝐚𝐚
𝑑𝑑𝐚𝐚

𝐯𝐯

𝐯𝐯

Φflat = �
flat
𝐯𝐯 ⋅ 𝑑𝑑𝐚𝐚 = −𝑣𝑣 𝜋𝜋𝑅𝑅2

Φcurved = �
curved

𝐯𝐯 ⋅ 𝑑𝑑𝐚𝐚 = � 𝑣𝑣�𝐳𝐳 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 sin𝜃𝜃 𝑑𝑑𝑑𝑑 �𝐬𝐬 …

We can evaluate this integral, and we will 
see that Φcurved = −Φfl𝐚𝐚𝐚𝐚: 

The amount of field flowing through the 
two surfaces is the same (# of flux lines)!

𝑧𝑧



Math review: Stokes’ Theorem and Gauss’s Theorem

• Fundamental Theorem for Gradients
• Fundamental Theorem for Divergences   

(Gauss’s Theorem)
• Fundamental Theorem for Curls                       

(Stokes’ Theorem)

(Ch. 1.3.2 – 1.3.5)



Fundamental Theorem of Calculus

In ordinary 1D calculus, the Fundamental Theorem of Calculus relates the integral of a 
function, 𝑓𝑓(𝑥𝑥), to the anti-derivative of this function, 𝐹𝐹(𝑥𝑥), at the endpoints (boundary) of 
the interval:

• This theorem generalizes quite broadly in vector calculus. One generalization is the 
Fundamental Theorem of Gradients: ∫𝐶𝐶 ∇𝑇𝑇 𝐫𝐫 ⋅ 𝑑𝑑𝐫𝐫 = 𝑇𝑇 𝐛𝐛 − 𝑇𝑇(𝐚𝐚) (next slide)

• Two more are Divergence Theorem and Curl Theorem (right after that).

where 𝐹𝐹(𝑥𝑥) is the anti-derivative of 𝑓𝑓(𝑥𝑥):  𝑓𝑓 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑.

• This theorem states that the integral of the derivative of a function 𝐹𝐹 (𝑓𝑓 = 𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑) over 
an interval is determined by the value of that function 𝐹𝐹 at the boundary of that interval.



Fundamental Theorem of Gradients

• Take an arbitrary (but “well-behaved”) scalar field 𝑇𝑇 𝑥𝑥,𝑦𝑦, 𝑧𝑧 = 𝑇𝑇(𝐫𝐫). Pick two arbitrary points, 
𝒂𝒂 and 𝒃𝒃. You want to compute the line integral of ∇𝑇𝑇 along any path 𝐶𝐶 connecting 𝒂𝒂 and 𝒃𝒃. 

• You will find that this integral depends only on the value of 𝑇𝑇 at the end-points: 

• Since for any closed path 𝑇𝑇 𝐚𝐚 = 𝑇𝑇 𝐛𝐛 , we have:

• The integral of a derivative (a gradient) of a function 
𝑇𝑇 over an interval is determined by the value of this 
function 𝑇𝑇 at the endpoints of the interval. 

Any field that can be 
expressed as a gradient 
is a conservative field.



Stokes’ (Curl) Theorem

Stokes’ theorem relates a line integral to a surface integral: the line integral of a vector field 
around a closed loop is equal to the surface integral of the curl of the field over any surface 
bounded by that loop:

(𝐶𝐶 bounds 𝑆𝑆)

• The integral of a derivative (a curl) of a function 𝐀𝐀
over an area 𝑆𝑆 is determined by the value of this 
function 𝐀𝐀 on its boundary 𝐶𝐶. 



Gauss’ (Divergence) Theorem

Gauss’s theorem relates a surface integral to a volume integral: the surface integral (a flux 
of a vector field) through a closed surface is equal to the integral of the divergence of that 
field over the volume bounded by that surface:

(𝑆𝑆 bounds 𝑉𝑉)

• The integral of a derivative (a divergence) of a 
function 𝐀𝐀 over a volume 𝑉𝑉 is determined by the 
value of this function 𝐀𝐀 on its boundary 𝑆𝑆. 



Fundamental Theorems: Summary

Integral Derivative Fundamental theorem

line

surface

volume

gradient

curl

divergence

gradient theorem

Stokes’ theorem

Gauss’ theorem

Note: the letters used to designate fields are arbitrary, but suggestive



Divergence of 1/𝑟𝑟2

Consider the 3D vector field in spherical coordinates, 
where 𝑐𝑐 is a constant: 

Q: The divergence of this vector field is: 

A. Zero everywhere
B. Zero everywhere except at the origin
C. None-zero everywhere 
D. Non-zero everywhere, but zero at the origin 
E. I have no idea



Divergence of 1/𝑟𝑟2

1) Compute ∇ ⋅ 𝐕𝐕(𝐫𝐫) in spherical coordinates. 

Reminder: 

2) Is this consistent with Gauss’ theorem?

Reminder: 



Divergence of 1/𝑟𝑟2

• We see that ∇ ⋅ 𝐕𝐕 𝐫𝐫 = 0 everywhere – but maybe at 𝐫𝐫 = 0.

• We also see that the integral of ∇ ⋅ 𝐕𝐕 𝐫𝐫 over a sphere of an 
arbitrary radius centered at 𝐫𝐫 = 0 must give 4𝜋𝜋

• We can resolve it only by making the identification:

• Properties of 3D delta function:
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