Lecture 3

Grad, Div, Curl.
Line, surface, volume integrals.

Stokes’ theorem and Gauss’ theorem.

Triple Products
iy A-(BxC)=B-iCxA)=C-(AxB)
i2) Ax(BxC)=BA-0C-CA B)
Product Rules
(B Vifer=fiVer+gVf)
(4 VA-Bj=Ax(VxBI+Bx(VxA)+(A V)B+(B-V)A
(5) V. ifA)=fIV-A)+A-(Vf)
(6) V. (AxB)=B-(VxA)-A-(VxB)
(N Vx(fAl=fIVAI-Ax(Vf)
8) Vx(AxB)=(B VIA-(A -V)B+A(V .B)-B(V.A)
Second Derivatives
9 V- (VxA)=0
(10y ¥ x(Vfi=0

(11} Vx(VxA) =WV(V-A}—TA



Math review: Vector calculus
(Ch. 1.2)

* Nabla
» Differential operators:

o Gradient, Divergence, Curl, Laplacian



Differential operator “nabla”

Definition (Cartesian coordinates):

V

= d
V=8 0x t yay £z (V 'g‘c"r‘joé))x = 3%

* Nabla is an operator (it acts on a function of coordinates)
* Nabla is a vector (vector operator)

 Vector multiplication operations for nabla have special names (grad, div, curl)



Nabla & Div, Grad, Curl: Warming up

Q: True or false:

This mathematical operation on a scalar field, T,
makes sense and is technically valid:

V-VI'(x,y,2z)

True, and it will produce a vector field

True, and it will produce a scalar field

False, because you can not take the divergence of a scalar field
False, because you cannot take the gradient of a vector field
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| don't remember what this means



Nabla & Div, Grad, Curl: Warming up

e T is a scalar
Q: True or false:

. . : . e VT is a vector:
This mathematical operation on a scalar field, T,

makes sense and is technically vaIi”(T:AN\ or = 0T . 0T _
VI =—X+—V+—Z=A
d0x dy 0z
V-VI'(x,y,2z) «V-(A=VT)isascalar:
g-@a._‘;
A d0A, aAy d0A,
A. True, and it will proﬁuce a vector field V-A= Ox T 3y T 97

True, and it will produce a scalar field

C. False, because you can not take the divergence of a scalar field
D. False, because you cannot take the gradient of a vector field
E. Idon't remember what this means



Vector multiplication: Review

1) Multiplying a vector by a scalar (produces a vector)

C=aB — [Cy,C,,C,] = [aBg,aB,,aB,]

2) Dot product of two vectors (produces a scalar)

A-B=) AB;=A,B,+A,B,+A.B, = |A||B|cosf

3) Cross product of two vectors (produces a vector)

L L] k
AXxB= nll ﬂ; a3 = @203y | 3 j +‘ S
o o by b
bl bz 53 bg bg. bl b3 1 2

axb

fi

bxa
=-axh




Gradient: Review

* The gradient of a scalar function, T'(x, y, z), is a vector function which, at each point,
points in the direction of the steepest increase of T.

* The magnitude of the gradient at each point is equal to the slope of T in the direction
of its maximum growth.

* Notation: VT 5 5 5
T T T
VI(z,y,2)= —X+ —yV+ —2
(,y,2) Ox oy 0z
/(ﬂ,h,ftﬂ,b})
light = low
dark = high




Divergence and Curl: Review

* A vector function, ﬁ(x, y,Z), has a divergence and a curl:

F(r) = Fy(r)% + F,(t)§ + F.(r)2 = [Fa(r), F, (r), Fu(r)]

* Divergence: a scalar, measures “spreading out”:

OF’ OF: OF \\l//
F — x Jj z ——
v ox T oy T 0z //t\\

* Curl: a vector, measures “vorticity”:
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div F= 3¢ * 2y T e - = =

A. Both have zero divergence f f ﬁ

B. Only field | J T
C. Only field Il —
D. None of them

E. I have noidea

Estimating divergence

Q: Do either of these fields plausibly have zero divergence?

AESEREEERN
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Estimating divergence
Q: Do either of these fields plausibly have zero divergence?

V-F = Fx (only x-component)

-

- Ox

* Which of the two fields has
a constant x-component?

.;Atftl
.‘.Atfft
..14*'1

A. Both have zero divergence

Only field |

C. Only field Il
D. None of them
E. | have noidea

SERRERSRRE
YYYYYYYYYY

I A A A A A A & A A
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Estimating curl

Q: Do either of these fields plausibly have zero curl?

Both have zero curl
Only field |

Only field Il

None of them

| have no idea

.‘nnifti
...Atfft
.-ai&f"
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Estimating curl

-

Q: Do either of these fields plausibly have zero curl?

= Oy Fx - — — - I

i i A f— il -

» Which of the two fields has a .- == = - = =

y-independent x-component? = b = - = :

- - - il il -

. e - -

A. Both have zero curl - = B

B. Only field |
@ Only field Il * |f place a stick in this “flow”, the vector field |

D. None of them would cause this stick to rotate as a consequence

E. | have no idea of non-zero curl, while the field Il won’t



t = t(r):

Grad

Div

Curl

Differential operators: Summary

scalar function

Vt

v=v(r) =v;X+ v,y + v3Z:

ot N ot _ N ot
~ ax "oyt Toaz”
dv dv, 0Jv
_ I V2 OVs
0x dy 0z
X VvV 1z
B d d 0
dx 0dy 0z
vy V2 V3

vector

scalar

vector

vector function

in Cartesian
coordinates




t = t(r):

Differential operators: Summary

scalar function

v=v(r) =X+ v,y + v3Z:

Cylindrical.

Gradient:

Divergence: V. .v =

| do dug | . dv, dJv a 17T 8
Vixve|lcamac= |4 ] = -— t = | —=(su
[ :’ [H: F)s]d’ 5 [&s i

Ciirl:

Laplaciun:

A =ds§+sdod+d:i

ar . 1 dr -~ dr
Vi= — =i — 7
PRIy dutr et
ldt@
(s gt
5 ds W )+.-: dop

¥ d¢ dz

I d :
V= —— .ffj—r s —l;
5 ds ds £-

dr = sdsd¢d:

vector function

see Griffiths’ cover, or file

“formulas” posted on Canvas

Spherical. d) =dri¥+rdf6 +rsinfdpd: dr = sinddrdb do
dr . 1 dr - I or -
Gradienr Vi = i—r- r+-—=6 + — —'¢
{ ) t]U,,-:I ) ar r aé rsing iitf)
o)== |2
¢ _ 13 d T
Divergence: V -v = — —(r-u,) + ——— —(sin# vy} + —
r=dr rsing og rsméb de
I o )
Curl: VXxve —— [ (sinf vg) - dl#:| r
rsing | 96 do
i | odv, J a | a du, | -
+ — e (1 0+~ | —(ruy) -
r Lin(—f g ar(”’“"] T [ﬁr (rve) = 35 }'ﬁ
) b o (.90 ! o ' A°
Laplacian: Vi = —_-,-—‘- (r'-i) + ————— (:\einlﬂﬂ + I . ir_
re dr dr r-sin@ 0@ a6 risin- @ og-




Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, T,
in cartesian coordinates:

V- VT(.’L', Y, Z)



Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, T,

in cartesian coordinates:

— > = A9 49 A
V- VT (z,y,2) R TIME EPIRRT
H . _ A _! 1 ‘_l A o7
Write the deu-ble—g—#ad?tent as a dot product: VT = X 55 +?79C7 *2 5
V. -VT = (X0, +y0, + 20,) - (X0, T + y0,T + 20,T)
x —~— X
= 0.1 + 0;T + 02T

V?=08+09,+0; | Laplacian operator:

VZorA

V-VT(z,y,z) = V’T(z,y,2)




Math review: Line and Surface integrals

(Ch. 1.3.1)

__________

1111111

* Line integrals and work

,,,,,,,

''''''''''

* Surface integrals and flux A==



Line integrals: Review

You met them:
e calculating work along a path: W = f: F - dr

* using Ampere’s law in integral form: gﬁ B-dr = uylapnq

e \Vector field F e Patha —» b

* You move along the path froma to b

* At each point on the path, compute dot product
of the line segment dr and the field F, and add

the outcomes up (= integrate)

*F-dr=Fdlcosf = F.dx + F,dy + F,dz



Line integrals: Practice

Q: A force F is non-zero and uniform in the upper half-space, and points at 30° above the
horizontal. Calculate the work of this force over the closed path shown (heigh a, width b).

Fo++a Nod sure

Fb+ Fa/?2

Fb cos(30°) + F(a/2) cos(150°)
Fb cos(30°)

m O O @ >



Line integrals: Practice

Q: A force F is non-zero and uniform in the upper half-space, and points at 30° above the
horizontal. Calculate the work of this force over the closed path shown (heigh a, width b).

F
e W= l F-dr
N - 1
a;?/v S e 00p
o= A
| | fF-drzFbcos(BOO) jF-drzO
"""" & 1 3
A. O @ a a
jF - dr = F —cos(120°) fF -dr = F —cos(60°)
B. Fb+Fa 2 2 4 2
C. Fb+ Fa/2
D. Fbcos(30°) + F(a/2) cos(150°) cos(120°) = —cos(60°)

@ Fb cos(30°)



Flux: Review

Flux is a measure of how much vector field flows through a closed, oriented surface.

‘s * (1) is a unit vector normal to the surface . % o 't
n . . ’
uy ) * For a flat surface and uniform field v:
®=v-A=vAcosb A=An
v 4
* The angle between v and n (the unit normal to the surface) matters!
* Note that if v(r) L n, then the flux of v through A will be zero.

* For non-uniform field v(r) or
curved area, we need to integrate
v(r) - da over the surface:




Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat

surface, or through it curved surface? l l l l l l
\%

Lo JIL

C. They are equal



Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat

surface, or through it curved surface?
P e (o, 2;7) v

_ _ 2
CIDﬂat—fﬂatv-da——vﬂR Qe(o, %)

gg = covO

D urved = f v-da= f(v’z‘)(ad@ asinfdgSs) ..
curved

da

We can evaluate this integral, and we will
see that Dy rved = —Poat:

B. D yrved The amount of field flowing through the
. . '
@ They are equal two surfaces is the same (# of flux lines)!




Math review: Stokes’ Theorem and Gauss’s Theorem

(Ch. 1.3.2 - 1.3.5)

* Fundamental Theorem for Gradients

* Fundamental Theorem for Divergences
(Gauss’s Theorem)

* Fundamental Theorem for Curls
(Stokes’ Theorem)

\N

Ei

!LF-d’r- ﬂ;curlF-ds
STOKED

o



Fundamental Theorem of Calculus

In ordinary 1D calculus, the Fundamental Theorem of Calculus relates the integral of a
function, f(x), to the anti-derivative of this function, F'(x), at the endpoints (boundary) of
the interval:

b b
b - AF
| 1@ = F¥) - Fla) 5"? de = Fl‘
where F(x) is the anti-derivative of f (x): f = dF /dx.

* This theorem states that the integral of the derivative of a function F (f = dF /dx) over
an interval is determined by the value of that function F at the boundary of that interval.

* This theorem generalizes quite broadly in vector calculus. One generalization is the
Fundamental Theorem of Gradients: fC VT(r) -dr = T(b) — T(a) (next slide)

* Two more are Divergence Theorem and Curl Theorem (right after that).



Fundamental Theorem of Gradients

* Take an arbitrary (but “well-behaved”) scalar field T'(x, y,z) = T(r). Pick two arbitrary points,
a and b. You want to compute the line integral of VT along any path C connecting a and b.

* You will find that this integral depends only on the value of T at the end-points:

* The integral of a derivative (a gradient) of a function
]C VI(r)-dr =T(b) - T(a) T over an interval is determined by the value of this

- - function T at the endpoints of the interval.
o,T'-"- ’37_;,. . a(; = (VT)°OIF

* Since for any closed path T(a) = T(b), we have:

-

dr b

Any field that can be i
f VT(r)-dr=0 expressed as a gradient y g \§} v
¢ is a conservative field. )l |




Stokes’ (Curl) Theorem

Stokes’ theorem relates a line integral to a surface integral: the line integral of a vector field
around a closed loop is equal to the surface integral of the curl of the field over any surface
bounded by that loop:

2D
[[@aw)aa- Al

(C bounds S)

Closed Curve C " V X A

* The integral of a derivative (a curl) of a function A
over an area S is determined by the value of this —
function A on its boundary C.



Gauss’ (Divergence) Theorem

Gauss’s theorem relates a surface integral to a volume integral: the surface integral (a flux
of a vector field) through a closed surface is equal to the integral of the divergence of that
field over the volume bounded by that surface:

3D on
[]],-awar = /[ Aw)-aa

(S bounds V)

* The integral of a derivative (a divergence) of a
function A over a volume V is determined by the
value of this function A on its boundary S.



Fundamental Theorems: Summary

Integral Derivative Fundamental theorem
b
AR F(r) = V(r) | V6 dr=ob) - p(a)
C a
line gradient gradient theorem
//E(r)-da B(r) =V x A(r) ]/(VxA)-dazﬁA-dr
S S C
surface curl Stokes’ theorem
///p(r)dT p(r) =V - E(r) ///(V-E)de//E-da
1% 1% S
volume divergence Gauss’ theorem

Note: the letters used to designate fields are arbitrary, but suggestive



Divergence of 1/r?

Consider the 3D vector field in spherical coordinates,
where c is a constant:

V(r) =c—

?».2

Q: The divergence of this vector field is:

A. Zero everywhere
Zero everywhere except at the origin
C. None-zero everywhere
D. Non-zero everywhere, but zero at the origin
E. Ihave noidea

% % % & ¥ o o

U T T T B Y B
\\\\\’f’/!:

f)".#‘_'.a

j"’-"

""J{*ﬁ\\\‘
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C. ~ Divergence of 1 /1?2
g / V(r) i

Ny c ?"2
A.1) Compute V - V(r) in spherical coordinates. = fe
Ue = qu
. . ii 1 ) Vo
Reminder: V- ‘_:Zd (r ”+131 9(8111919)+/§119d¢
- . da = ¢ da
ry - = — o — - —‘— .9_ n -
V.U < 5 oar (/" ’!_z,) L2t =0
L—) (=0 ?

'3 his consistent with Gauss’ theorem? S 7 de = S s da

Reminder: ‘Flal—digdlmr_rzsmededqbr o
{ .7 dt = §>(§.aa‘ . g(c ) (r RZsing 40 1¢) = ¢ Sae sinO- i.m =
v S . 2

S & D

-_-C‘ 4’( 9~ <v



Divergence of 1/r?

* We see that V - V(r) = 0 everywhere — but maybe atr = 0.

* We also see that the integral of V - V(r) over a sphere of an
arbitrary radius centered at r = 0 must give 47

* We can resolve it only by making the identification:

I

V.

r2

— 4%5(3)( )

[f 80 -rae=]

1 reV
0 ré¢V

* Properties of 3D delta function:

5(ar) = —— 53(r)

al®

[6°()]

Br—r1)=6zx—2)y—vy)d(z—2)

]
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