

Lecture 3

Grad, Div, Curl.

Line, surface, volume integrals.

Stokes' theorem and Gauss' theorem.

Triple Products

$$(1) \quad \mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

$$(2) \quad \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$$

Product Rules

$$(3) \quad \nabla(fg) = f(\nabla g) + g(\nabla f)$$

$$(4) \quad \nabla(\mathbf{A} \cdot \mathbf{B}) = \mathbf{A} \times (\nabla \times \mathbf{B}) + \mathbf{B} \times (\nabla \times \mathbf{A}) + (\mathbf{A} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{A}$$

$$(5) \quad \nabla \cdot (f\mathbf{A}) = f(\nabla \cdot \mathbf{A}) + \mathbf{A} \cdot (\nabla f)$$

$$(6) \quad \nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

$$(7) \quad \nabla \times (f\mathbf{A}) = f(\nabla \times \mathbf{A}) - \mathbf{A} \times (\nabla f)$$

$$(8) \quad \nabla \times (\mathbf{A} \times \mathbf{B}) = (\mathbf{B} \cdot \nabla)\mathbf{A} - (\mathbf{A} \cdot \nabla)\mathbf{B} + \mathbf{A}(\nabla \cdot \mathbf{B}) - \mathbf{B}(\nabla \cdot \mathbf{A})$$

Second Derivatives

$$(9) \quad \nabla \cdot (\nabla \times \mathbf{A}) = 0$$

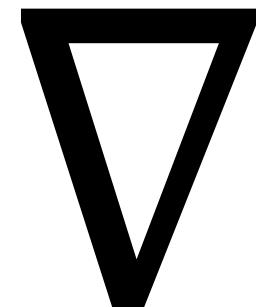
$$(10) \quad \nabla \times (\nabla f) = 0$$

$$(11) \quad \nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

Math review: Vector calculus

(Ch. 1.2)

- Nabla
- Differential operators:
 - Gradient, Divergence, Curl, Laplacian



Differential operator “nabla”

Definition (Cartesian coordinates):

$$\nabla \equiv \vec{\nabla} = \hat{\mathbf{x}} \frac{\partial}{\partial x} + \hat{\mathbf{y}} \frac{\partial}{\partial y} + \hat{\mathbf{z}} \frac{\partial}{\partial z}$$

$$(\nabla f(x, y, z))_x = \frac{\partial f}{\partial x}$$

- Nabla is an operator (it acts on a function of coordinates)
- Nabla is a vector (vector operator)
- Vector multiplication operations for nabla have special names (grad, div, curl)

Nabla & Div, Grad, Curl: Warming up

Q: True or false:

This mathematical operation on a scalar field, T , makes sense and is technically valid:

$$\nabla \cdot \nabla T(x, y, z)$$

- A. True, and it will produce a vector field
- B. True, and it will produce a scalar field
- C. False, because you can not take the divergence of a scalar field
- D. False, because you cannot take the gradient of a vector field
- E. I don't remember what this means

Nabla & Div, Grad, Curl: Warming up

Q: True or false:

This mathematical operation on a scalar field, T , makes sense and is technically valid:

$$\nabla \cdot \nabla T(x, y, z)$$

$\tilde{\mathbf{A}}$

- T is a scalar

- ∇T is a vector:

$$\nabla T = \frac{\partial T}{\partial x} \hat{\mathbf{x}} + \frac{\partial T}{\partial y} \hat{\mathbf{y}} + \frac{\partial T}{\partial z} \hat{\mathbf{z}} \equiv \mathbf{A}$$

- $\nabla \cdot (\mathbf{A} = \nabla T)$ is a scalar:

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

- A. True, and it will produce a vector field
- B.** True, and it will produce a scalar field
- C. False, because you can not take the divergence of a scalar field
- D. False, because you cannot take the gradient of a vector field
- E. I don't remember what this means

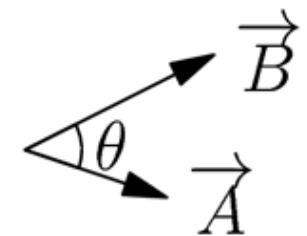
Vector multiplication: Review

1) Multiplying a vector by a scalar (produces a vector)

$$\mathbf{C} = a\mathbf{B} \rightarrow [C_x, C_y, C_z] = [aB_x, aB_y, aB_z]$$

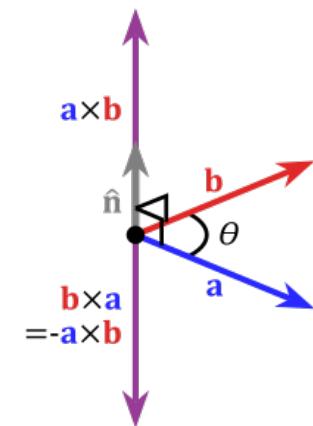
2) Dot product of two vectors (produces a scalar)

$$\mathbf{A} \cdot \mathbf{B} = \sum_i A_i B_i = A_x B_x + A_y B_y + A_z B_z = |\mathbf{A}| |\mathbf{B}| \cos \theta$$



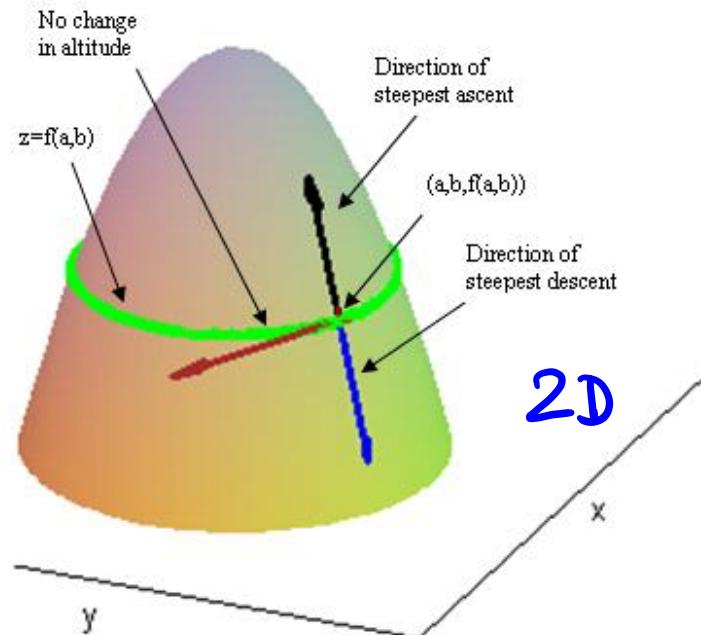
3) Cross product of two vectors (produces a vector)

$$\vec{\mathbf{A}} \times \vec{\mathbf{B}} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \mathbf{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \mathbf{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \mathbf{k}$$



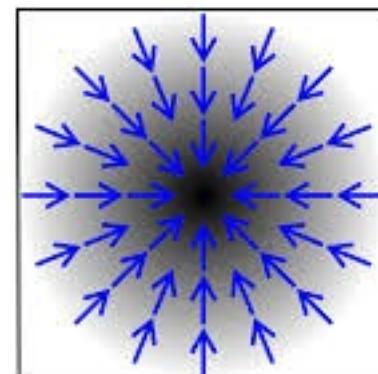
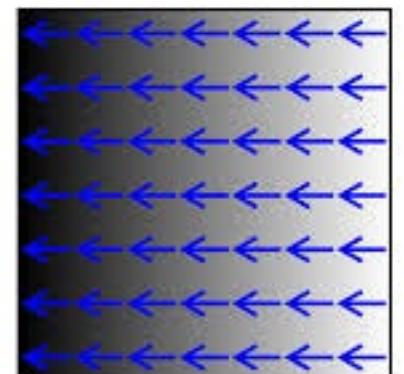
Gradient: Review

- The **gradient** of a scalar function, $T(x, y, z)$, is a vector function which, at each point, points in the direction of the steepest increase of T .
- The magnitude of the gradient at each point is equal to the slope of T in the direction of its maximum growth.
- Notation: ∇T



$$\nabla T(x, y, z) = \frac{\partial T}{\partial x} \hat{\mathbf{x}} + \frac{\partial T}{\partial y} \hat{\mathbf{y}} + \frac{\partial T}{\partial z} \hat{\mathbf{z}}$$

light = low
dark = high



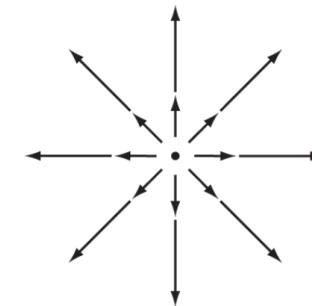
Divergence and Curl: Review

- A vector function, $\vec{F}(x, y, z)$, has a **divergence** and a **curl**:

$$\mathbf{F}(\mathbf{r}) = F_x(\mathbf{r})\hat{\mathbf{x}} + F_y(\mathbf{r})\hat{\mathbf{y}} + F_z(\mathbf{r})\hat{\mathbf{z}} = [F_x(\mathbf{r}), F_y(\mathbf{r}), F_z(\mathbf{r})]$$

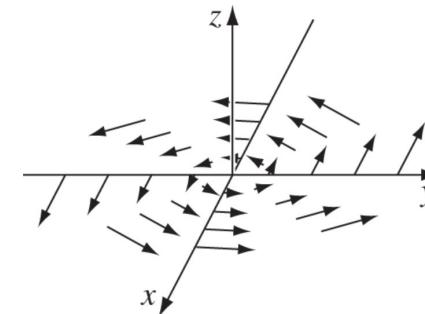
- **Divergence**: a scalar, measures “spreading out”:

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$



- **Curl**: a vector, measures “vorticity”:

$$\nabla \times \mathbf{F} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \partial_x & \partial_y & \partial_z \\ F_x & F_y & F_z \end{vmatrix} \quad \partial_x \equiv \frac{\partial}{\partial x} \text{ etc.}$$

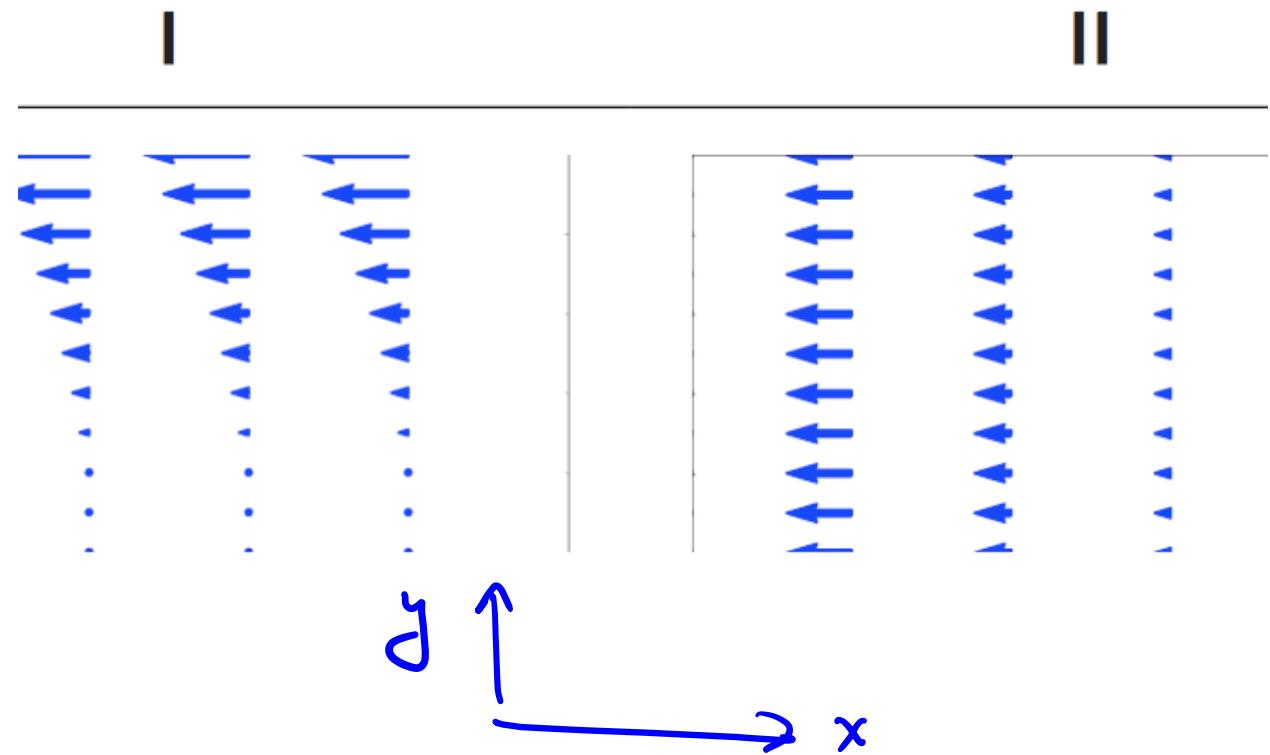


Estimating divergence

Q: Do either of these fields plausibly have zero divergence?

$$\operatorname{div} \vec{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

~~$\frac{\partial F_y}{\partial y}$~~ ~~$\frac{\partial F_z}{\partial z}$~~



- A. Both have zero divergence
- B. Only field I
- C. Only field II
- D. None of them
- E. I have no idea

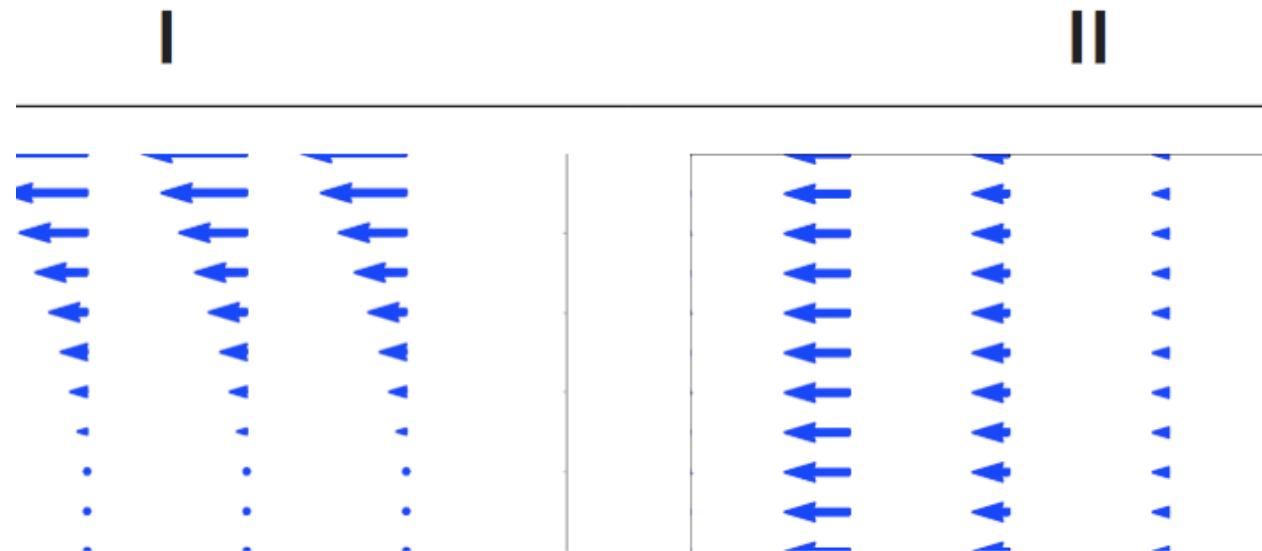
Estimating divergence

Q: Do either of these fields plausibly have zero divergence?

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} \text{ (only } x\text{-component)}$$

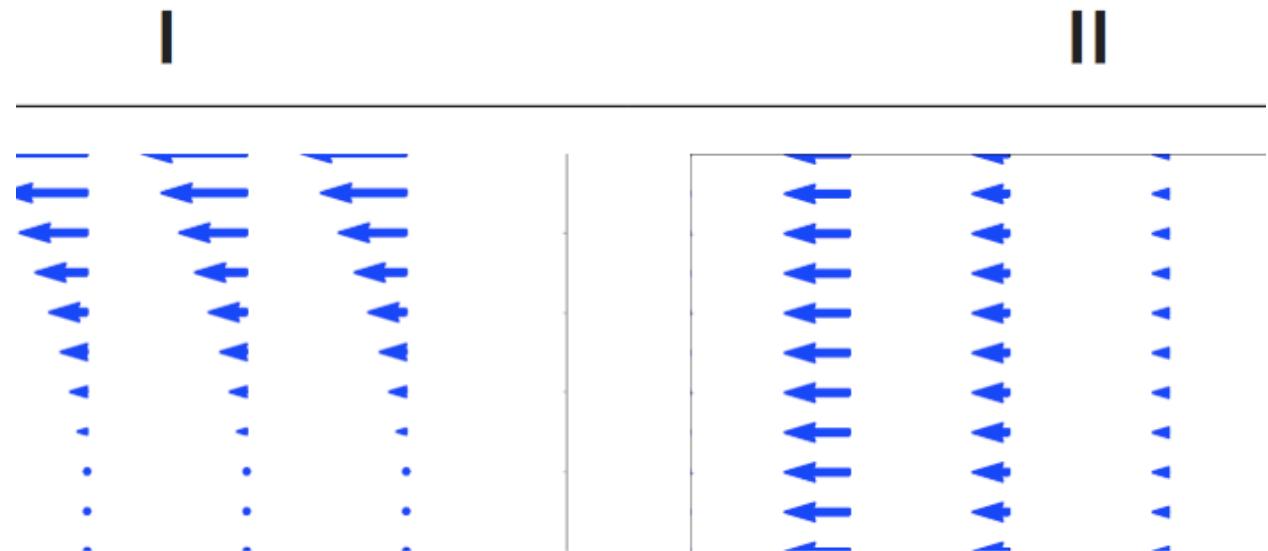
- Which of the two fields has a **constant** x -component?

- A. Both have zero divergence
- B.** Only field I
- C. Only field II
- D. None of them
- E. I have no idea



Estimating curl

Q: Do either of these fields plausibly have zero curl?



- A. Both have zero curl
- B. Only field I
- C. Only field II
- D. None of them
- E. I have no idea

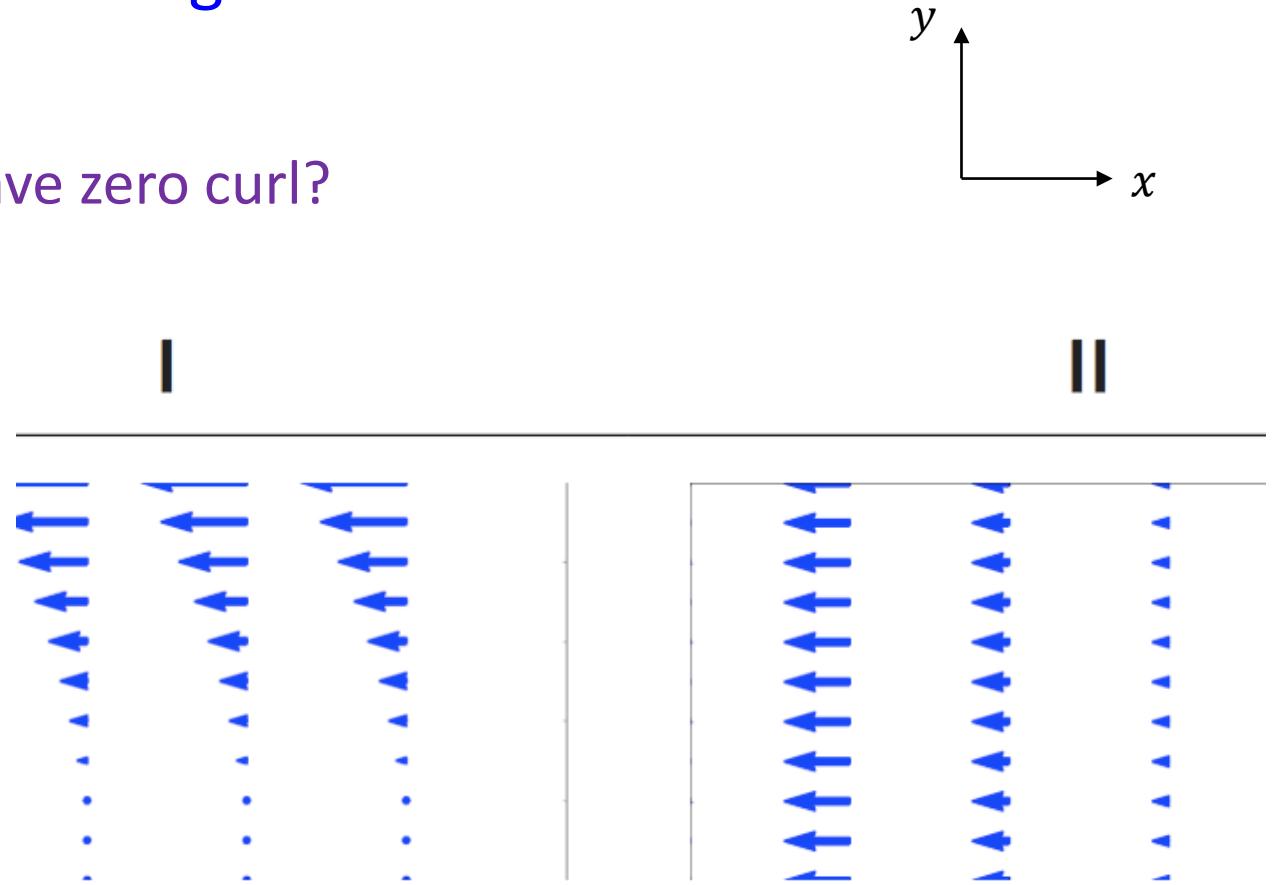
Estimating curl

Q: Do either of these fields plausibly have zero curl?

$$(\nabla \times \mathbf{F})_z = \partial_y F_x - \cancel{\partial_x F_y}$$
$$= \partial_y F_x$$

- Which of the two fields has a y-independent x-component?

- A. Both have zero curl
- B. Only field I
- C. Only field II
- D. None of them
- E. I have no idea



- If place a stick in this “flow”, the vector field I would cause this stick to rotate as a consequence of non-zero curl, while the field II won’t

Differential operators: Summary

$t = t(\mathbf{r})$: scalar function

$\mathbf{v} = \mathbf{v}(\mathbf{r}) = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}} + v_3 \hat{\mathbf{z}}$: vector function

$$\text{Grad} = \nabla t = \frac{\partial t}{\partial x} \hat{\mathbf{x}} + \frac{\partial t}{\partial y} \hat{\mathbf{y}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

vector

$$\text{Div} = \nabla \cdot \mathbf{v} = \frac{\partial v_1}{\partial x} + \frac{\partial v_2}{\partial y} + \frac{\partial v_3}{\partial z}$$

scalar

$$\text{Curl} = \nabla \times \mathbf{v} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ v_1 & v_2 & v_3 \end{vmatrix}$$

vector

in Cartesian coordinates

Differential operators: Summary

$t = t(\mathbf{r})$: scalar function

$\mathbf{v} = \mathbf{v}(\mathbf{r}) = v_1 \hat{\mathbf{x}} + v_2 \hat{\mathbf{y}} + v_3 \hat{\mathbf{z}}$: vector function

Cylindrical. $d\mathbf{l} = ds \hat{\mathbf{s}} + s d\phi \hat{\mathbf{\phi}} + dz \hat{\mathbf{z}}$; $d\tau = s ds d\phi dz$

$$\text{Gradient: } \nabla t = \frac{\partial t}{\partial s} \hat{\mathbf{s}} + \frac{1}{s} \frac{\partial t}{\partial \phi} \hat{\mathbf{\phi}} + \frac{\partial t}{\partial z} \hat{\mathbf{z}}$$

$$\text{Divergence: } \nabla \cdot \mathbf{v} = \frac{1}{s} \frac{\partial}{\partial s} (s v_s) + \frac{1}{s} \frac{\partial v_\phi}{\partial \phi} + \frac{\partial v_z}{\partial z}$$

$$\text{Curl: } \nabla \times \mathbf{v} = \left[\frac{1}{s} \frac{\partial v_z}{\partial \phi} - \frac{\partial v_\phi}{\partial z} \right] \hat{\mathbf{s}} + \left[\frac{\partial v_s}{\partial z} - \frac{\partial v_z}{\partial s} \right] \hat{\mathbf{\phi}} + \frac{1}{s} \left[\frac{\partial}{\partial s} (s v_\phi) - \frac{\partial v_s}{\partial \phi} \right] \hat{\mathbf{z}}$$

$$\text{Laplacian: } \nabla^2 t = \frac{1}{s} \frac{\partial}{\partial s} \left(s \frac{\partial t}{\partial s} \right) + \frac{1}{s^2} \frac{\partial^2 t}{\partial \phi^2} + \frac{\partial^2 t}{\partial z^2}$$

see Griffiths' cover, or file
“formulas” posted on Canvas

Spherical. $d\mathbf{l} = dr \hat{\mathbf{r}} + r d\theta \hat{\mathbf{\theta}} + r \sin \theta d\phi \hat{\mathbf{\phi}}$; $d\tau = r^2 \sin \theta dr d\theta d\phi$

$$\text{Gradient: } \nabla t = \frac{\partial t}{\partial r} \hat{\mathbf{r}} + \frac{1}{r} \frac{\partial t}{\partial \theta} \hat{\mathbf{\theta}} + \frac{1}{r \sin \theta} \frac{\partial t}{\partial \phi} \hat{\mathbf{\phi}}$$

$$\text{Divergence: } \nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$$

$$\text{Curl: } \nabla \times \mathbf{v} = \frac{1}{r \sin \theta} \left[\frac{\partial}{\partial \theta} (\sin \theta v_\phi) - \frac{\partial v_\theta}{\partial \phi} \right] \hat{\mathbf{r}} + \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial v_r}{\partial \phi} - \frac{\partial}{\partial r} (r v_\phi) \right] \hat{\mathbf{\theta}} + \frac{1}{r} \left[\frac{\partial}{\partial r} (r v_\theta) - \frac{\partial v_r}{\partial \theta} \right] \hat{\mathbf{\phi}}$$

$$\text{Laplacian: } \nabla^2 t = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial t}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial t}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 t}{\partial \phi^2}$$

Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, T , in cartesian coordinates:

$$\nabla \cdot \nabla T(x, y, z)$$

Second derivatives once again

Q: Derive an explicit expression for the divergence of a gradient of a scalar field, T , in cartesian coordinates:

$$\nabla \cdot \nabla T(x, y, z)$$

$$\vec{\nabla} = \hat{x} \frac{\partial}{\partial x} + \hat{y} \frac{\partial}{\partial y} + \hat{z} \frac{\partial}{\partial z}$$

div. of grad
Write the ~~double gradient~~ as a dot product:

$$\vec{\nabla} T = \hat{x} \frac{\partial T}{\partial x} + \hat{y} \frac{\partial T}{\partial y} + \hat{z} \frac{\partial T}{\partial z}$$

$$\begin{aligned}\nabla \cdot \nabla T &= (\hat{x} \partial_x + \hat{y} \partial_y + \hat{z} \partial_z) \cdot (\hat{x} \partial_x T + \hat{y} \partial_y T + \hat{z} \partial_z T) \\ &= \partial_x^2 T + \partial_y^2 T + \partial_z^2 T\end{aligned}$$

$$\nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2$$

Laplacian operator:

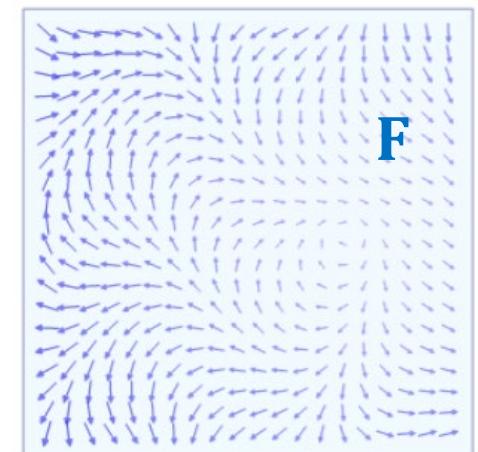
$$\nabla^2 \text{ or } \Delta$$

$$\nabla \cdot \nabla T(x, y, z) = \nabla^2 T(x, y, z)$$

Math review: Line and Surface integrals

(Ch. 1.3.1)

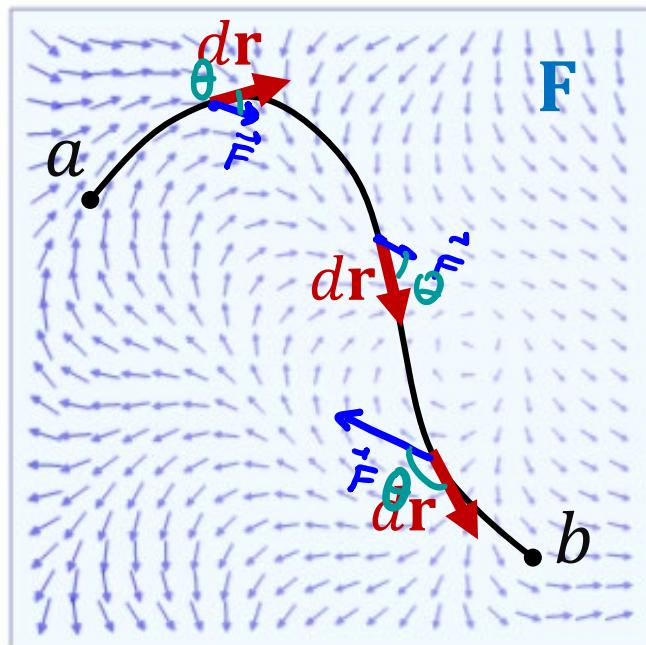
- Line integrals and work
- Surface integrals and flux



Line integrals: Review

You met them:

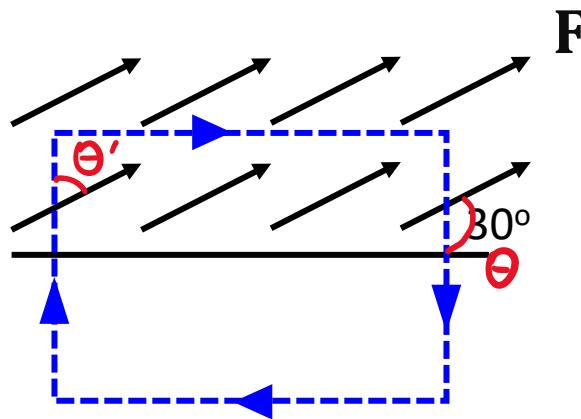
- calculating work along a path: $W = \int_a^b \mathbf{F} \cdot d\mathbf{r}$
- using Ampere's law in integral form: $\oint \mathbf{B} \cdot d\mathbf{r} = \mu_0 I_{\text{encl}}$



- Vector field \mathbf{F}
- Path $a \rightarrow b$
- You move along the path from a to b
- At each point on the path, compute dot product of the line segment $d\mathbf{r}$ and the field \mathbf{F} , and add the outcomes up (= integrate)
- $\mathbf{F} \cdot d\mathbf{r} = F dl \cos \theta = F_x dx + F_y dy + F_z dz$

Line integrals: Practice

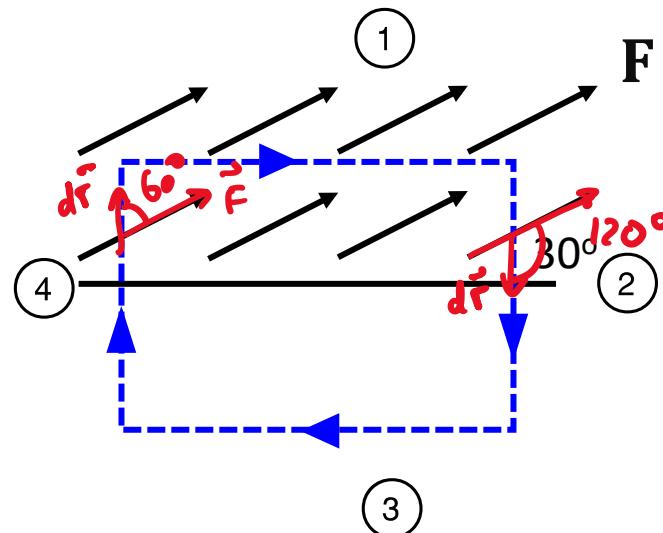
Q: A force \mathbf{F} is non-zero and uniform in the upper half-space, and points at 30° above the horizontal. Calculate the work of this force over the closed path shown (height a , width b).



- A. 0
- B. ~~$Fb + Fa$~~ Not sure
- C. $Fb + Fa/2$
- D. $Fb \cos(30^\circ) + F(a/2) \cos(150^\circ)$
- E. $Fb \cos(30^\circ)$

Line integrals: Practice

Q: A force \mathbf{F} is non-zero and uniform in the upper half-space, and points at 30° above the horizontal. Calculate the work of this force over the closed path shown (height a , width b).



$$W = \int_{loop} \mathbf{F} \cdot d\mathbf{r}$$

$$\int_1 \mathbf{F} \cdot d\mathbf{r} = Fb \cos(30^\circ)$$

$$\int_3 \mathbf{F} \cdot d\mathbf{r} = 0$$

- A. 0
- B. $Fb + Fa$
- C. $Fb + Fa/2$
- D. $Fb \cos(30^\circ) + F(a/2) \cos(150^\circ)$
- E. $Fb \cos(30^\circ)$

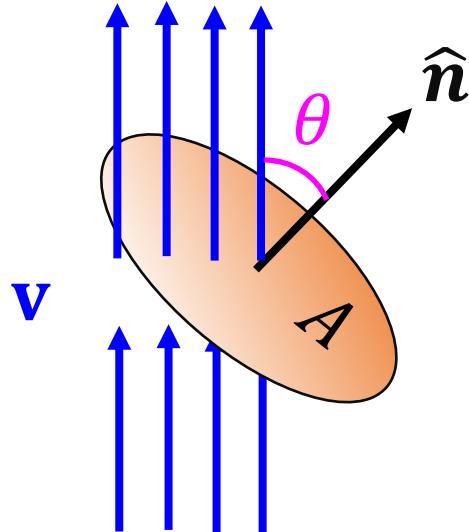
$$\int_2 \mathbf{F} \cdot d\mathbf{r} = F \frac{a}{2} \cos(120^\circ)$$

$$\int_4 \mathbf{F} \cdot d\mathbf{r} = F \frac{a}{2} \cos(60^\circ)$$

$$\cos(120^\circ) = -\cos(60^\circ)$$

Flux: Review

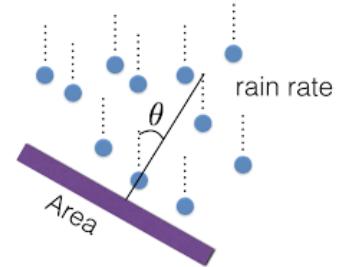
Flux is a measure of how much vector field flows through a closed, oriented surface.



- $\hat{n}(\mathbf{r})$ is a unit vector normal to the surface
- For a flat surface and uniform field \mathbf{v} :

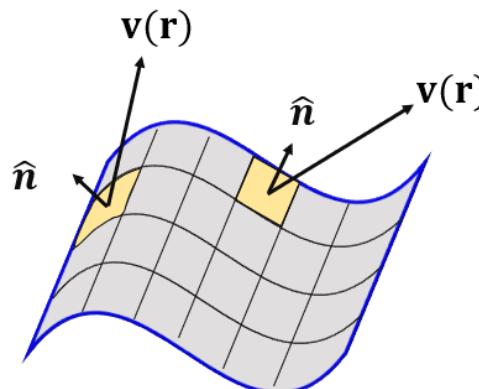
$$\Phi = \mathbf{v} \cdot \mathbf{A} = vA \cos \theta$$

$$\mathbf{A} = A \hat{\mathbf{n}}$$



- The angle between \mathbf{v} and $\hat{\mathbf{n}}$ (the unit normal to the surface) matters!
- Note that if $\mathbf{v}(\mathbf{r}) \perp \hat{\mathbf{n}}$, then the flux of \mathbf{v} through A will be zero.

- For non-uniform field $\mathbf{v}(\mathbf{r})$ or curved area, we need to integrate $\mathbf{v}(\mathbf{r}) \cdot d\mathbf{a}$ over the surface:

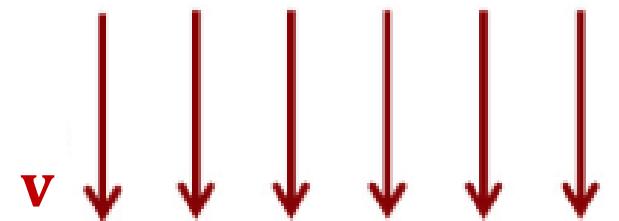
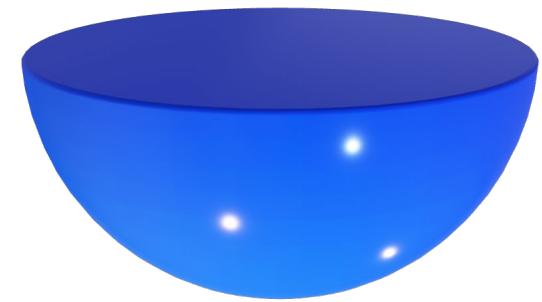
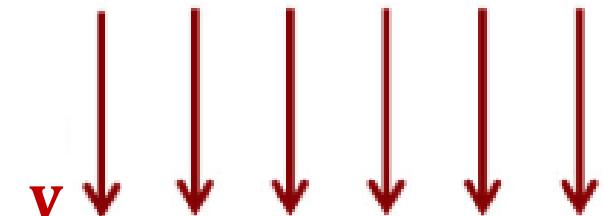


$$\iint_S \mathbf{v}(\mathbf{r}) \cdot d\mathbf{a} = \iint_S (\mathbf{v} \cdot \hat{\mathbf{n}}) da$$

Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat surface, or through its curved surface?



- A. Φ_{flat}
- B. Φ_{curved}
- C. They are equal

Flux: Example

Q: A hemisphere is immersed into a uniform vector field, as shown.

Which flux has a larger magnitude, through its flat surface, or through its curved surface?

$$\Phi_{\text{flat}} = \int_{\text{flat}} \mathbf{v} \cdot d\mathbf{a} = -v \pi R^2$$

$$\phi \in (0, 2\pi)$$

$$\theta \in (0, \pi/2)$$

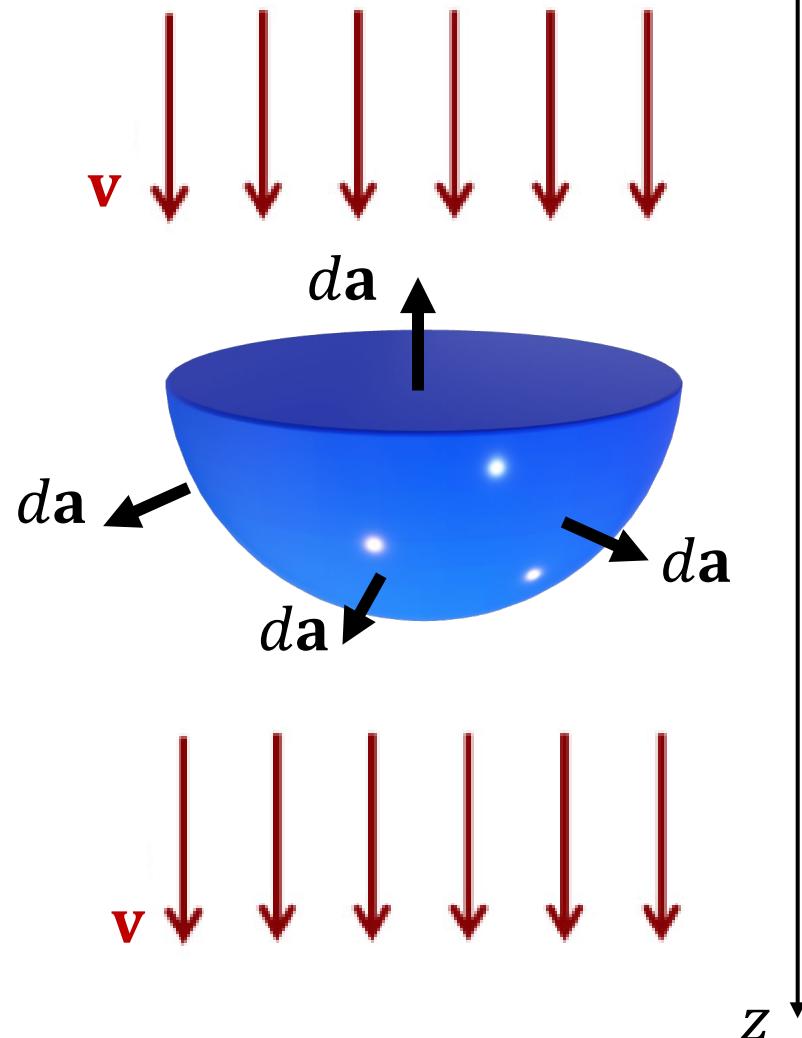
$$\hat{z} \cdot \hat{s} = \cos \theta$$

$$\Phi_{\text{curved}} = \int_{\text{curved}} \mathbf{v} \cdot d\mathbf{a} = \int (v \hat{z}) (a d\theta a \sin \theta d\phi \hat{s}) \dots$$

We can evaluate this integral, and we will see that $\Phi_{\text{curved}} = -\Phi_{\text{flat}}$:

- A. Φ_{flat}
- B. Φ_{curved}
- C. They are equal

The amount of field flowing through the two surfaces is the same (# of flux lines)!



Math review: Stokes' Theorem and Gauss's Theorem

(Ch. 1.3.2 – 1.3.5)

- Fundamental Theorem for Gradients
- Fundamental Theorem for Divergences
(Gauss's Theorem)
- Fundamental Theorem for Curls
(Stokes' Theorem)

Fundamental Theorem of Calculus

In ordinary 1D calculus, the **Fundamental Theorem of Calculus** relates the integral of a function, $f(x)$, to the anti-derivative of this function, $F(x)$, at the endpoints (boundary) of the interval:

$$\int_a^b f(x) dx = F(b) - F(a)$$

$$\int_a^b \cancel{\frac{dF}{dx}} \cdot \cancel{dx} = F \Big|_a^b$$

where $F(x)$ is the anti-derivative of $f(x)$: $f = dF/dx$.

- This theorem states that the integral of the derivative of a function F ($f = dF/dx$) over an interval is determined by the value of that function F at the boundary of that interval.
- This theorem generalizes quite broadly in vector calculus. One generalization is the **Fundamental Theorem of Gradients**: $\int_C \nabla T(\mathbf{r}) \cdot d\mathbf{r} = T(\mathbf{b}) - T(\mathbf{a})$ (next slide)
- Two more are **Divergence Theorem** and **Curl Theorem** (right after that).

Fundamental Theorem of Gradients

- Take an arbitrary (but “well-behaved”) scalar field $T(x, y, z) = T(\mathbf{r})$. Pick two arbitrary points, \mathbf{a} and \mathbf{b} . You want to compute the line integral of ∇T along any path C connecting \mathbf{a} and \mathbf{b} .
- You will find that this integral depends only on the value of T at the end-points:

$$\int_C \nabla T(\mathbf{r}) \cdot d\mathbf{r} = T(\mathbf{b}) - T(\mathbf{a})$$

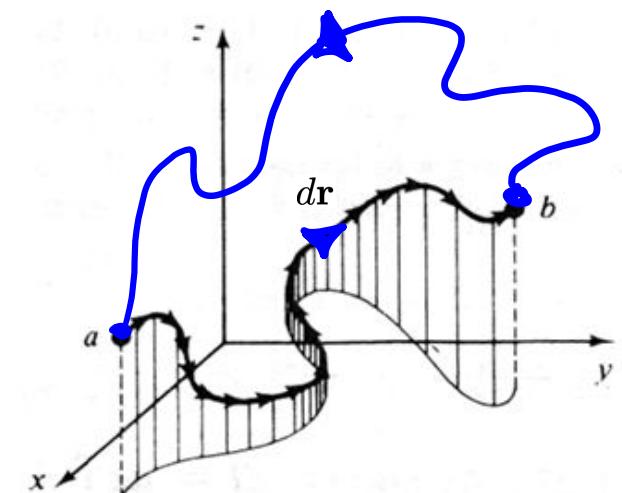
$$dT = \frac{\partial T}{\partial \mathbf{r}} \cdot d\mathbf{r} = (\nabla T) \cdot d\mathbf{r}$$

- The integral of a derivative (a gradient) of a function T over an interval is determined by the value of this function T at the endpoints of the interval.

- Since for any closed path $T(\mathbf{a}) = T(\mathbf{b})$, we have:

$$\oint_C \nabla T(\mathbf{r}) \cdot d\mathbf{r} = 0$$

Any field that can be expressed as a gradient is a **conservative field**.

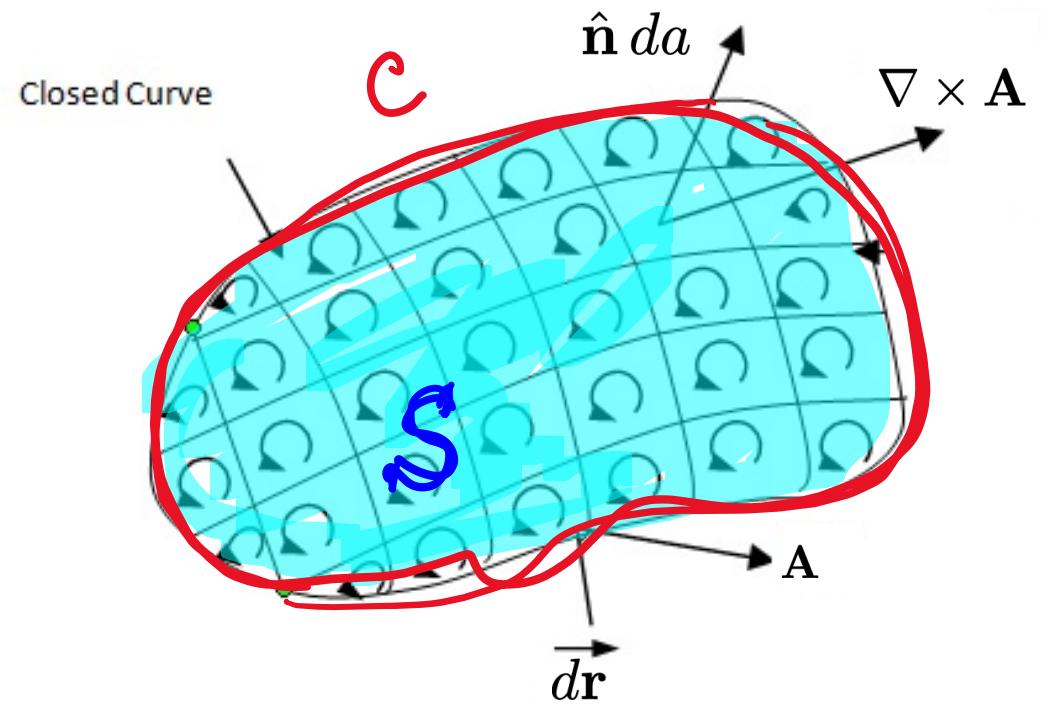


Stokes' (Curl) Theorem

Stokes' theorem relates a line integral to a surface integral: the line integral of a vector field around a closed loop is equal to the surface integral of the curl of the field over any surface bounded by that loop:

$$\iint_S (\nabla \times \mathbf{A}(\mathbf{r})) \cdot d\mathbf{a} \stackrel{2D}{=} \oint_C \mathbf{A}(\mathbf{r}) \cdot d\mathbf{r}$$

(C bounds S)



- The integral of a derivative (a curl) of a function \mathbf{A} over an area S is determined by the value of this function \mathbf{A} on its boundary C .

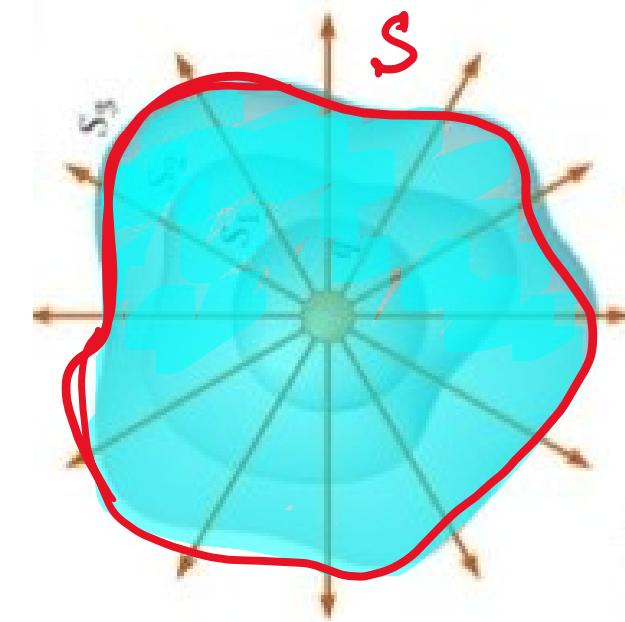
Gauss' (Divergence) Theorem

Gauss's theorem relates a surface integral to a volume integral: the surface integral (a flux of a vector field) through a closed surface is equal to the integral of the divergence of that field over the volume bounded by that surface:

$$\begin{array}{c} \text{3D} \\ \iiint_V (\nabla \cdot \mathbf{A}(\mathbf{r})) d\tau \end{array} = \begin{array}{c} \text{2D} \\ \iint_S \mathbf{A}(\mathbf{r}) \cdot d\mathbf{a} \end{array}$$

(S bounds V)

- The integral of a derivative (a divergence) of a function \mathbf{A} over a volume V is determined by the value of this function \mathbf{A} on its boundary S .



Fundamental Theorems: Summary

Integral

$$\int_C \mathbf{F}(\mathbf{r}) \cdot d\mathbf{r}$$

line

Derivative

$$\mathbf{F}(\mathbf{r}) = \nabla \phi(\mathbf{r})$$

gradient

Fundamental theorem

$$\int_{\mathbf{a}}^{\mathbf{b}} \nabla \phi \cdot d\mathbf{r} = \phi(\mathbf{b}) - \phi(\mathbf{a})$$

gradient theorem

$$\iint_S \mathbf{E}(\mathbf{r}) \cdot d\mathbf{a}$$

surface

$$\mathbf{B}(\mathbf{r}) = \nabla \times \mathbf{A}(\mathbf{r})$$

curl

$$\iint_S (\nabla \times \mathbf{A}) \cdot d\mathbf{a} = \oint_C \mathbf{A} \cdot d\mathbf{r}$$

Stokes' theorem

$$\iiint_V \rho(\mathbf{r}) d\tau$$

volume

$$\rho(\mathbf{r}) = \epsilon_0 \nabla \cdot \mathbf{E}(\mathbf{r})$$

divergence

$$\iiint_V (\nabla \cdot \mathbf{E}) d\tau = \iint_S \mathbf{E} \cdot d\mathbf{a}$$

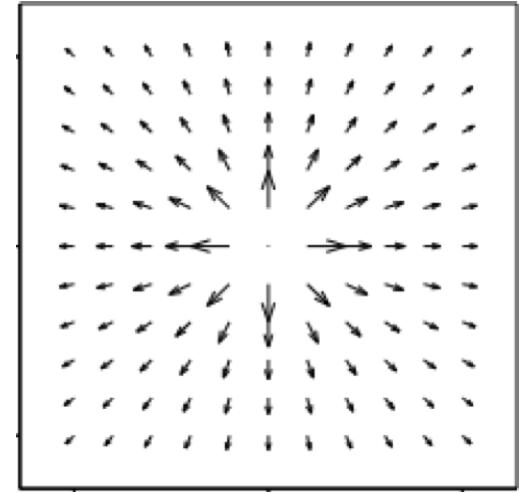
Gauss' theorem

Note: the letters used to designate fields are arbitrary, but suggestive

Divergence of $1/r^2$

Consider the 3D vector field in spherical coordinates, where c is a constant:

$$\mathbf{V}(\mathbf{r}) = c \frac{\hat{\mathbf{r}}}{r^2}$$



Q: The divergence of this vector field is:

- A. Zero everywhere
- B. Zero everywhere except at the origin
- C. None-zero everywhere
- D. Non-zero everywhere, but zero at the origin
- E. I have no idea

C. $\ddot{\circ}$ Divergence of $1/r^2$ A.1) Compute $\nabla \cdot \mathbf{V}(\mathbf{r})$ in spherical coordinates.

Reminder: $\nabla \cdot \mathbf{v} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 v_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (\sin \theta v_\theta) + \frac{1}{r \sin \theta} \frac{\partial v_\phi}{\partial \phi}$

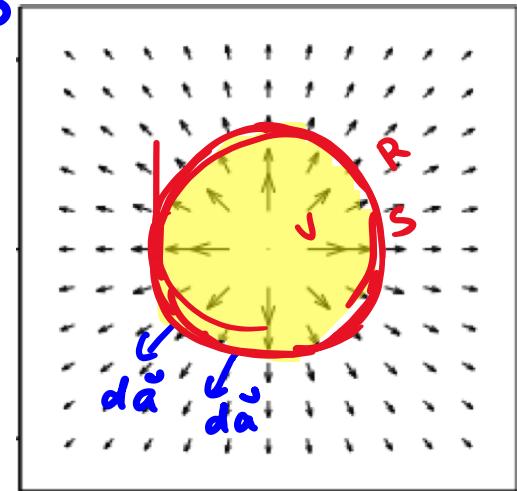
$$\nabla \cdot \vec{v} = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \cdot \frac{c}{r^2} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \text{const} = 0$$

$\curvearrowright r=0?$

$$v_r = \frac{c}{r^2}$$

$$v_\theta = v_\phi = 0$$

$$d\vec{a} = \hat{r} da$$



B.2) Is this consistent with Gauss' theorem?

$$\int \nabla \cdot \vec{v} d\tau = \int \vec{v} \cdot d\vec{a}$$

Reminder: $d\mathbf{a}_1 = dl_\theta dl_\phi \hat{r} = r^2 \sin \theta d\theta d\phi \hat{r}$

$$\int \nabla \cdot \vec{v} \cdot d\tau = \oint_S \vec{v} \cdot d\vec{a} = \oint_S \left(\frac{c}{r^2} \hat{r} \right) \cdot \left(\hat{r} \cdot r^2 \sin \theta d\theta d\phi \hat{r} \right) = c \underbrace{\int_0^\pi d\theta \sin \theta}_{2} \cdot \underbrace{\int_0^{2\pi} d\phi}_{2\pi} = c \cdot 4\pi$$

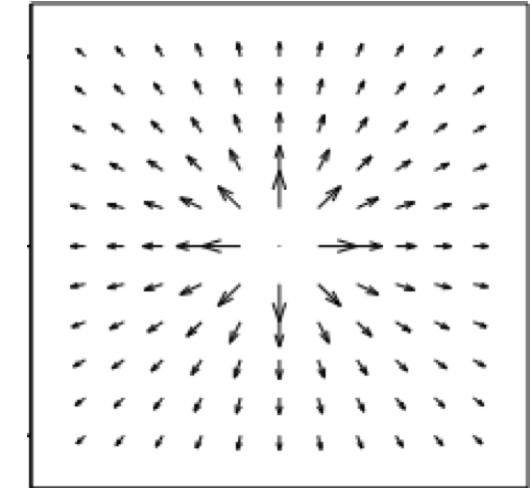
Divergence of $1/r^2$

- We see that $\nabla \cdot \mathbf{V}(\mathbf{r}) = 0$ everywhere – but maybe at $\mathbf{r} = 0$.
- We also see that the integral of $\nabla \cdot \mathbf{V}(\mathbf{r})$ over a sphere of an arbitrary radius centered at $\mathbf{r} = 0$ must give 4π
- We can resolve it only by making the identification:

$$\nabla \cdot \frac{\hat{\mathbf{r}}}{r^2} = 4\pi \delta^{(3)}(\mathbf{r})$$

$$\iiint_V \delta^3(\mathbf{r} - \mathbf{r}') d\tau = \begin{cases} 1 & \mathbf{r}' \in V \\ 0 & \mathbf{r}' \notin V \end{cases}$$

$$\mathbf{V}(\mathbf{r}) = c \frac{\hat{\mathbf{r}}}{r^2}$$



- Properties of 3D delta function: $\delta^3(\mathbf{r} - \mathbf{r}') = \delta(x - x')\delta(y - y')\delta(z - z')$

$$\delta^3(a\mathbf{r}) = \frac{1}{|a|^3} \delta^3(\mathbf{r}) \quad [\delta^3(\mathbf{r})] = [\mathbf{r}^{-3}]$$