Lecture 4

(Ch. 2.2.1-2)

Gauss’s law.



Fundamental theorem of vector calculus

b
/ V- dr = $(b) — p(a)

gradient theorem

//S(VXA)-dazjéA-dr

Stokes’ theorem

I 7w = [[ -

\ Gauss’ theorey

Divergence of £ /1?2

Last Time




Gauss’ Law: Review (15t year)

o * A Gaussian surface is an imaginary closed
b et O surface in three-dimensional space through
| which the flux of the electric field is calculated.

- * Note that for a closed surface da is an outward
pointing area element.

* Gauss’ law relates the flux of the electric field through a closed Gaussian
surface to the total charge contained within the surface:

# E -da= @ (Qy is the charge within the volume, V, bounded by S)
S

€0

* Meaning: establishes a connection between E-field and the charges that create it.



Gauss’ Law (now beyond 15t year)

Q: Prove Gauss’ Law for a point charge using an arbitrary (non-spherical) Gaussian surface.

(Qy is the charge within the volume, V, bounded by S)




Gauss’ Law (now beyond 15t year)

Q: Prove Gauss’ Law for a point charge using an arbitrary (non-spherical) Gaussian surface.

A

q r

E(r) = Aeg 12




Gauss’ Law (now beyond 15t year)

Q: Prove Gauss’ Law for an arbitrary charge distribution and arbitrary Gaussian surface.

(Qy is the charge within the volume, V, bounded by S)

On your own



Gauss’ Law (now beyond 15t year)

Q: Prove Gauss’ Law for an arbitrary charge distribution and arbitrary Gaussian surface.
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Gauss’ Law: Differential form

E - da= Qv
Q: Using fundamental theorem(s) of vector calculus, g B

€0
convert Gauss’ law from integral to differential form
Integral form



Gauss’ Law: Differential form

Q: Using fundamental theorem(s) of vector calculus,
convert Gauss’ law from integral to differential form

* Left-hand side, using divergence theorem:

#E-da:/f/ (V- E)dr
S V wvAaAar~
* Right-hand side, using the definition of charge density:

ey L

€
~/

#E-daz&
S €0

Integral form

* Since this equality
applies to an arbitrary
volume, it must hold at
every point

—>V-E(r)=@

* Local relationship



Gauss’ Law & Electric Flux: Applications

(Ch. 2.2.3)

* Flux and enclosed charge
* Symmetry of charge distribution
* Gauss’ Law helps us to calculate E-field of highly symmetric charge distributions
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Gauss Law: Applications — 1

Q: The space in and around a cubic box (edge length L) is filled with a constant
uniform electric field:

What is the electric flux through this closed surface?

0 = > E
EoL2 Cbe - & E‘Aa B -

2E, L /

6E,L>2

We don’t know p(r), so can’t answer



Gauss Law: Applications — 1

Q: The space in and around a cubic box (edge length L) is filled with a constant
uniform electric field:

0 Eoy L

B. EOLZ b = —EOL2 + EOLZ =0 a i
left right y

C. 2EOL2 side side /

D. 6E,L?

E. We don’t know p(r), so can’t answer
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Gauss Law: Applications — 2

Q: A positive point charge +q is placed outside a closed cylindrical surface as shown.
The surface consists of the cylindrical portion, C, and two flat end caps, A and B.

What is the sign of the electric flux through the surface C?

A
N
qd e C
Zero :
(3D view)
Positive
Negative
| don’t know

qe

A

=

| >
C ’
~

o~
N

(side view)



Gauss Law: Applications — 2

Q: A positive point charge +q is placed outside a closed cylindrical surface as shown.
The surface consists of the cylindrical portion, C, and two flat end caps, A and B.

A

What is the sign of the electric flux through the surface C?

v

A
* The total flux through a closed surface is zero \Aj v —
’ 4/
(Gauss’ law) 7 e C e =
Q\
* The flux through surfaces A and B is positive 2: 3 \ T~
A. Zero (outwards) (3D view) de vie

B. Positive

@ Negative }

D. |don’t know * Therefore, the net flux through C must be negative
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Gauss Law: Applications — 3

Q: A spherical shell has a uniform positive charge density, o, on its surface (but not its
interior). If there are no other charges present, what is the electric field inside the sphere?

E = 0 everywhere inside | \
E # 0 everywhere inside " ,
E = 0 at the center, but not elsewhere inside

Not sure



Gauss Law: Applications — 3

Q: A spherical shell has a uniform positive charge density, o, on its surface (but not its
interior). If there are no other charges present, what is the electric field inside the sphere?

e A Gaussian surface anywhere within the sphere must have zero net flux (why? [1]),
and the field E must be radial and angle-independent (why? [2]).

* The only such field with zero flux through a concentric spherical Gaussian surface is E = 0.

[1] Because it encloses no charge.

[2] Because the charge distribution is spherically symmetric.

E = 0 everywhere inside &é’.;: - E-64uR®

B. E # 0everywhere inside = Qin

—_ = O
€o

C. E = 0 atthe center, but not elsewhere inside

D. Notsure
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Gauss Law: Applications — 4

Q: Now place a charge Q just outside the shell. The sphere is insulating, so the surface
charge does not redistribute when the new charge appears.) What is the electric field
inside the sphere now?

E = 0 everywhere inside
E # 0 everywhere inside
E = 0 at the center, but not elsewhere inside

Not sure



Gauss Law: Applications — 4

Q: Now place a charge Q just outside the shell. The sphere is insulating, so the surface
charge does not redistribute when the new charge appears.)What is the electric field
inside the sphere now?

* By superposition principle, the field due to these charges is the sum of the fields due
to the individual charges.

e Since the field due to o is zero inside the sphere (and since o is fixed) the field inside
the sphere is just that due to the new point charge, Q.

o
A. E = 0 everywhere inside

E # 0 everywhere inside | /

C. E = 0 atthe center, but not elsewhere inside

D. Notsure



Coulomb’s Law vs Gauss’ Law

For any static charge distribution, we can use Coulomb’s law to calculate the electric field
by brute force:
. N

q T qGi Tr—I; \/P(T/) r—r 3¢’

Ameq T2 — dmeg |r — 1313 " )y dmeg r —r/|3 (1)

E(r) =

~

Gauss’ law follows from it by applying the Divergence theorem to the flux of E-field:

Jfomer-an= [[] v merar= []] £ o =00 @

* Hence, both laws tell us something about connection between E and the charge
distribution that produces it, but the latter carries less information than the former.

* However, there are situations when using Gauss’s law to make a connection between
E(r) and p(r) is much simpler than to compute the integral in (1)



Making Gauss’ Law User-Friendly

» To use Gauss’ Law in its differential form, we need to compute # B 9V
5

this surface integral, which often is an unfeasible task, but: €0 o
* If the charge p(7r) has special symmetry, and with some skill, we can make it simplel,
t )
* One trick is to chose a “useful” Gaussian surface (remember, the choice is yours!) J (Z
a

* For example, if you can draw a Gaussian surface
. E.da— |[E|A
where E is always constant and parallel to da, then: g

e ..and/or a surface where E is perpendicular to da, then: /f E-da—0
S

Gaussian

* Using this workarounds, we will be able to compute the Pi“‘“@
integral and relate E and Qy in some high-symmetry cases. i

Gaussian surface



Making Gauss’ Law User-Friendly — 1

Q: Consider the four closed Gaussian surfaces shown below, each of which symmetrically
straddles an infinite sheet of constant surface charge density, o. The four shapes are:

l. a vertical cylinder Il. a cube Ill. a horizontal cylinder IV. a sphere

Which of these Gaussian surfaces could help us determine the E field near the charge sheet?
E-daz Eda cosp

TT [ .=l g/ 1 Ipip: ‘
S =0

———————

A. All of them g — &=9
B. land Il only (

C. land IV only \‘/

D. I,1land IV only

E. Some other combination



Making Gauss’ Law User-Friendly — 1

Q: Consider the four closed Gaussian surfaces shown below, each of which symmetrically
straddles an infinite sheet of constant surface charge density, o. The four shapes are:

l. a vertical cylinder Il. a cube Ill. a horizontal cylinder IV. a sphere

Which of these Gaussian surfaces could help us determine the E field near the charge sheet?

We expect, by symmetry of charge 11 11 IV

I
distribution, that E L plane — [ \ @

-~— - -’ —— - - ~

A. All of them

land Il only | and Il are the only shapes that have all their surfaces parallel
C. land IV only and perpendicular to the charge sheet, so that flux contributions
D. 1,1l and IV only can easily be evaluated using symmetry arguments.

E. Some other combination



Making Gauss’ Law User-Friendly — 2

Q: The figure shows a spherical shell whose upper hemisphere carries a uniform charge
density +0 and whose lower hemisphere carries a uniform charge density —o.

“If | draw a spherical Gaussian surface of arbitrary radius inside the
sphere, and concentric with the sphere, zero charge is enclosed.
Therefore the electric field is zero everywhere inside the sphere.”

A. This statement is correct B. This statement is wrong. Explain!

N N Y




Making Gauss’ Law User-Friendly — 2

Q: The figure shows a spherical shell whose upper hemisphere carries a uniform charge
density +0 and whose lower hemisphere carries a uniform charge density —o.

“If | draw a spherical Gaussian surface of arbitrary radius inside the
sphere, and concentric with the sphere, zero charge is enclosed.
Therefore the electric field is zero everywhere inside the sphere.”

A. This statement is correct B. This statement is wrong. (Expfain!

P=§E-4a <"§ELa 06 /T

* The premise is correct: the enclosed charge —and hence net flux — are 4
both zero.

* But this only mean that the electric fields across each spherical GS will
add up to zero, not necessarily that they are zero themselves!

* To conclude that E = 0 everywhere, we are missing a key ingredient: we
cannot state that E-field is the same across all the Gaussian surface...




Making Gauss’ Law User-Friendly — 3

Q: Consider a 3D ellipsoid charged with a uniform volume charge density pg.

Can you use Gauss’s law to find its electric field? If yes,
sketch “useful” Gaussian surfaces, and clearly explain why
they are useful. If not, explain why this would not work.

A. Yes, we can use Gauss’s law

B. No, we cannot use Gauss’s law



Making Gauss’ Law User-Friendly — 3

Q: Consider a 3D ellipsoid charged with a uniform volume charge density pg.

Can you use Gauss’s law to find its electric field? If yes,
sketch “useful” Gaussian surfaces, and clearly explain why
they are useful. If not, explain why this would not work.

This Gaussian surface nicely matches the
symmetry of the charge distribution.

However, we absolutely CANNOT use it as a “useful” Gaussian
surface since the charge distribution is not symmetric enough!

The electric charge distribution “seen” from these two points of this GS are quite
different (shallow and wide from above, narrow and thick from the left) =>

A. Yes, we can use Gauss’s law We are not guaranteed that E will have
. o]
No, we cannot use Gauss’s law the same magnitude at these two points!



Example 1: E-field of a charged sheet

Q: Find the electric field E(z) above and below an infinite sheet of charge in the (x,y) plane,
with uniformly distributed surface charge o.

1) ldentify the symmetry associated with the charge distribution.

2) Determine the direction of the electric field, and a Gaussian surface over which the
magnitude of the electric field is constant over portions of the surface.

3) For your chosen surface, calculate q,,,., the charge enclosed by that Gaussian surface.
4) Treating E(z) as a variable, calculate the electric flux @ through your Gaussian surface.
5) Use Gauss’ law, @ = g.,,c/€p , to deduce the magnitude of the electric field.



Example 1: E-field of a charged sheet

Q: Find the electric field E(z) above and below an infinite sheet of charge in the (x,y) plane,
with uniformly distributed surface charge 0. I——,

El‘l“ SEAQ — EA-(_T

Flux: (I)E—/ f /E da = L0 top
top bottom sides

— E(z) = i%n (independent of z)

also {eie_c.ted to —z!
vVve



Example 2: E-field of an infinite rod

Q: Find the electric field E(z) around an infinite rod with uniformly distributed charge density A.



Example 2: E-field of an infinite rod

Q: Find the electric field E(z) around an infinite rod with uniformly distributed charge density A.

A r

| E

eft ight Jside €0 (decays as 1/r)

- 0+0+|E(r)|2m‘}/=% |E(r)| =
€0 27T €




Example 3: E-field of spherical shells

Q: A hollow spherical shell of radius b carries charge density p = 0 in the region r < a and
p(r) = k/r?in the region a < r < b. Using Gauss’ law, find the electric field in 3 regions:

a) r<a
b) a<r<b
c) r>0b

At the regiona < r < b:

A. Exr

B. E = const
C. Exl1/r
D. E «x1/r?

E. None of those



Example 3: E-field of spherical shells

Q: A hollow spherical shell of radius b carries charge density p = 0 in the region r < a and
p(r) = k/r?inthe region a < r < b. Using Gauss’ law, find the electric field in 3 regions:

a) r<a * Use spherical Gaussian surface (passing through the observation
b) a<r<b point!) and symmetry arguments to argue that E(r) = E(r)f
c) r>0b

*r < a: A Gaussian sphere encloses no charge => [E(r) =0

2, ¥ -
*r > b: A Gaussian sphere encloses all charge => ré_e,"'“ = o z,»" ~
the flux through the sphere is: $EC)-da = E(C)-brT
Show that ,
®p(r) = 4nr?|E(r)| = 9 q = 4rnk(b — a).

60 ¢

r .

q
where ¢ is the total charge of the sphere. Hence: E(r) = dren 72 -
0 -




Example 3: E-field of spherical shells

Q: A hollow spherical shell of radius b carries charge density p = 0 in the region r < a and
p(r) = k/r?inthe region a < r < b. Using Gauss’ law, find the electric field in 3 regions:

a) r<a
b) a<r<b

c) r>b>b Qenc('r) — /:// p(r)dfr dT = 4drridr Gaussian
Vv

surface

e Here a Gaussian sphere encloses a fraction of charge:

Aeucl .
€ a2 = E  Genc(r) = 47rk/ }/dr = Ank(r — a)

7

Op(r) = 4nr?|E(r)| = qeneco(r) Blr)=—c75 1
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