
Lecture 4

Gauss’s law.

(Ch. 2.2.1-2)
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Gauss’ Law: Review (1st year)

• Gauss’ law relates the flux of the electric field through a closed Gaussian 
surface to the total charge contained within the surface: 

(𝑄𝑄𝑉𝑉 is the charge within the volume, 𝑉𝑉, bounded by 𝑆𝑆) 

• A Gaussian surface is an imaginary closed 
surface in three-dimensional space through 
which the flux of the electric field is calculated. 

• Note that for a closed surface 𝑑𝑑𝐚𝐚 is an outward
pointing area element. 

• Meaning: establishes a connection between E-field and the charges that create it.



Gauss’ Law  (now beyond 1st year)

Q: Prove Gauss’ Law for a point charge using an arbitrary (non-spherical) Gaussian surface.

(𝑄𝑄𝑉𝑉 is the charge within the volume, 𝑉𝑉, bounded by 𝑆𝑆) 
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Gauss’ Law  (now beyond 1st year)

Q: Prove Gauss’ Law for a point charge using an arbitrary (non-spherical) Gaussian surface.
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Gauss’ Law  (now beyond 1st year)

Q: Prove Gauss’ Law for an arbitrary charge distribution and arbitrary Gaussian surface.

(𝑄𝑄𝑉𝑉 is the charge within the volume, 𝑉𝑉, bounded by 𝑆𝑆) 
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Gauss’ Law  (now beyond 1st year)
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Gauss’ Law: Differential form

Integral form

Q: Using fundamental theorem(s) of vector calculus, 
convert Gauss’ law from integral to differential form 



Gauss’ Law: Differential form

Integral form

• Left-hand side, using divergence theorem:

• Right-hand side, using the definition of charge density:

• Since this equality 
applies to an arbitrary 
volume, it must hold at 
every point

• Local relationship

Q: Using fundamental theorem(s) of vector calculus, 
convert Gauss’ law from integral to differential form 



Gauss’ Law & Electric Flux: Applications

• Flux and enclosed charge
• Symmetry of charge distribution
• Gauss’ Law helps us to calculate E-field of highly symmetric charge distributions

(Ch. 2.2.3)



Gauss Law: Applications – 1 

Q: The space in and around a cubic box (edge length 𝐿𝐿) is filled with a constant 
uniform electric field:

A. 0

B. 𝐸𝐸0𝐿𝐿2

C. 2𝐸𝐸0𝐿𝐿2

D. 6𝐸𝐸0𝐿𝐿2

E. We don’t know 𝜌𝜌(𝐫𝐫), so can’t answer

What is the electric flux through this closed surface? 
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Gauss Law: Applications – 1 

Q: The space in and around a cubic box (edge length 𝐿𝐿) is filled with a constant 
uniform electric field:

A. 0

B. 𝐸𝐸0𝐿𝐿2

C. 2𝐸𝐸0𝐿𝐿2

D. 6𝐸𝐸0𝐿𝐿2

E. We don’t know 𝜌𝜌(𝐫𝐫), so can’t answer

What is the electric flux through this closed surface? 
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Q: A positive point charge +𝑞𝑞 is placed outside a closed cylindrical surface as shown. 
The surface consists of the cylindrical portion, C, and two flat end caps, A and B. 

A. Zero

B. Positive

C. Negative

D. I don’t know

What is the sign of the electric flux through the surface C?

Gauss Law: Applications – 2 

q
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(3D view)



Q: A positive point charge +𝑞𝑞 is placed outside a closed cylindrical surface as shown. 
The surface consists of the cylindrical portion, C, and two flat end caps, A and B. 

A. Zero

B. Positive

C. Negative

D. I don’t know

What is the sign of the electric flux through the surface C?

q

A

B

C

(side view)

q C

(3D view)

• The total flux through a closed surface is zero 
(Gauss’ law)

• The flux through surfaces A and B is positive 
(outwards)

Gauss Law: Applications – 2 

• Therefore, the net flux through C must be negative



Q: A spherical shell has a uniform positive charge density, 𝜎𝜎, on its surface (but not its 
interior). If there are no other charges present, what is the electric field inside the sphere? 

A. 𝐸𝐸 = 0 everywhere inside

B. 𝐸𝐸 ≠ 0 everywhere inside

C. 𝐸𝐸 = 0 at the center, but not elsewhere inside

D. Not sure

Gauss Law: Applications – 3



Q: A spherical shell has a uniform positive charge density, 𝜎𝜎, on its surface (but not its 
interior). If there are no other charges present, what is the electric field inside the sphere? 

A. 𝐸𝐸 = 0 everywhere inside

B. 𝐸𝐸 ≠ 0 everywhere inside

C. 𝐸𝐸 = 0 at the center, but not elsewhere inside

D. Not sure

Gauss Law: Applications – 3

• A Gaussian surface anywhere within the sphere must have zero net flux (why? [1]),                         
and the field 𝐄𝐄 must be radial and angle-independent (why? [2]). 

• The only such field with zero flux through a concentric spherical Gaussian surface is 𝑬𝑬 = 0. 

[1] Because it encloses no charge. 
[2] Because the charge distribution is spherically symmetric. 



Q: Now place a charge 𝑄𝑄 just outside the shell. The sphere is insulating, so the surface 
charge does not redistribute when the new charge appears.) What is the electric field 
inside the sphere now? 

A. 𝐸𝐸 = 0 everywhere inside

B. 𝐸𝐸 ≠ 0 everywhere inside

C. 𝐸𝐸 = 0 at the center, but not elsewhere inside

D. Not sure

Gauss Law: Applications – 4
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Q: Now place a charge 𝑄𝑄 just outside the shell. The sphere is insulating, so the surface 
charge does not redistribute when the new charge appears.)What is the electric field 
inside the sphere now? 

A. 𝐸𝐸 = 0 everywhere inside

B. 𝐸𝐸 ≠ 0 everywhere inside

C. 𝐸𝐸 = 0 at the center, but not elsewhere inside

D. Not sure

Gauss Law: Applications – 4

• By superposition principle, the field due to these charges is the sum of the fields due 
to the individual charges. 

• Since the field due to 𝜎𝜎 is zero inside the sphere (and since 𝜎𝜎 is fixed) the field inside 
the sphere is just that due to the new point charge, 𝑄𝑄. 

+

𝑄𝑄



• Hence, both laws tell us something about connection between 𝐄𝐄 and the charge 
distribution that produces it, but the latter carries less information than the former.

• However, there are situations when using Gauss’s law to make a connection between 
𝐄𝐄(𝐫𝐫) and 𝜌𝜌(𝐫𝐫) is much simpler than to compute the integral in (1)

Coulomb’s Law vs Gauss’ Law

For any static charge distribution, we can use Coulomb’s law to calculate the electric field 
by brute force: 

Gauss’ law follows from it by applying the Divergence theorem to the flux of E-field:

(2)

(1)



Making Gauss’ Law User-Friendly

• To use Gauss’ Law in its differential form, we need to compute 
this surface integral, which often is an unfeasible task, but:

• For example, if you can draw a Gaussian surface 
where 𝐄𝐄 is always constant and parallel to 𝑑𝑑𝐚𝐚, then:

• If the charge 𝜌𝜌(𝑟𝑟) has special symmetry, and with some skill, we can make it simple!

• One trick is to chose a “useful” Gaussian surface (remember, the choice is yours!) 

• …and/or a surface where 𝐄𝐄 is perpendicular to 𝑑𝑑𝐚𝐚, then:

• Using this workarounds, we will be able to compute the 
integral and relate 𝐄𝐄 and 𝑄𝑄𝑉𝑉 in some high-symmetry cases.



Making Gauss’ Law User-Friendly – 1 

Q: Consider the four closed Gaussian surfaces shown below, each of which symmetrically 
straddles an infinite sheet of constant surface charge density, 𝜎𝜎. The four shapes are: 

Which of these Gaussian surfaces could help us determine the E field near the charge sheet?

I. a vertical cylinder           II. a cube           III. a horizontal cylinder           IV. a sphere

A. All of them

B. I and II only

C. I and IV only

D. I, II and IV only

E. Some other combination



Q: Consider the four closed Gaussian surfaces shown below, each of which symmetrically 
straddles an infinite sheet of constant surface charge density, 𝜎𝜎. The four shapes are: 

Which of these Gaussian surfaces could help us determine the E field near the charge sheet?

I. a vertical cylinder           II. a cube           III. a horizontal cylinder           IV. a sphere

A. All of them

B. I and II only

C. I and IV only

D. I, II and IV only

E. Some other combination

I and II are the only shapes that have all their surfaces parallel 
and perpendicular to the charge sheet, so that flux contributions 
can easily be evaluated using symmetry arguments. 

We expect, by symmetry of charge 
distribution, that 𝐄𝐄 ⊥ plane 

Making Gauss’ Law User-Friendly – 1 



Q: The figure shows a spherical shell whose upper hemisphere carries a uniform charge 
density +𝜎𝜎 and whose lower hemisphere carries a uniform charge density −𝜎𝜎. 

“If I draw a spherical Gaussian surface of arbitrary radius inside the 
sphere, and concentric with the sphere, zero charge is enclosed. 
Therefore the electric field is zero everywhere inside the sphere."

A. This statement is correct          B. This statement is wrong.   Explain!

Making Gauss’ Law User-Friendly – 2 



Q: The figure shows a spherical shell whose upper hemisphere carries a uniform charge 
density +𝜎𝜎 and whose lower hemisphere carries a uniform charge density −𝜎𝜎. 

• The premise is correct: the enclosed charge – and hence net flux – are 
both zero. 

• But this only mean that the electric fields across each spherical GS will 
add up to zero, not necessarily that they are zero themselves!

• To conclude that 𝐄𝐄 = 0 everywhere, we are missing a key ingredient: we 
cannot state that E-field is the same across all the Gaussian surface…

“If I draw a spherical Gaussian surface of arbitrary radius inside the 
sphere, and concentric with the sphere, zero charge is enclosed. 
Therefore the electric field is zero everywhere inside the sphere."

A. This statement is correct          B. This statement is wrong.   Explain!

Making Gauss’ Law User-Friendly – 2 



Q: Consider a 3D ellipsoid charged with a uniform volume charge density 𝜌𝜌0.

A. Yes, we can use Gauss’s law

B. No, we cannot use Gauss’s law

Making Gauss’ Law User-Friendly – 3 

Can you use Gauss’s law to find its electric field? If yes, 
sketch “useful” Gaussian surfaces, and clearly explain why 
they are useful. If not, explain why this would not work. 

𝜌𝜌0



Q: Consider a 3D ellipsoid charged with a uniform volume charge density 𝜌𝜌0.

A. Yes, we can use Gauss’s law

B. No, we cannot use Gauss’s law

This Gaussian surface nicely matches the
symmetry of the charge distribution.

Making Gauss’ Law User-Friendly – 3 

Can you use Gauss’s law to find its electric field? If yes, 
sketch “useful” Gaussian surfaces, and clearly explain why 
they are useful. If not, explain why this would not work. 

𝜌𝜌0

However, we absolutely CANNOT use it as a “useful” Gaussian 
surface since the charge distribution is not symmetric enough!

The electric charge distribution “seen” from these two points of this GS are quite 
different (shallow and wide from above, narrow and thick from the left) => 

We are not guaranteed that 𝐄𝐄 will have 
the same magnitude at these two points!



Example 1: E-field of a charged sheet

Q: Find the electric field 𝑬𝑬(𝑧𝑧) above and below an infinite sheet of charge in the (x,y) plane, 
with uniformly distributed surface charge 𝜎𝜎. 

1) Identify the symmetry associated with the charge distribution. 
2) Determine the direction of the electric field, and a Gaussian surface over which the 

magnitude of the electric field is constant over portions of the surface. 
3) For your chosen surface, calculate 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒, the charge enclosed by that Gaussian surface. 
4) Treating 𝐸𝐸(𝑧𝑧) as a variable, calculate the electric flux Φ𝐸𝐸 through your Gaussian surface. 
5) Use Gauss’ law, Φ𝐸𝐸 = 𝑞𝑞𝑒𝑒𝑒𝑒𝑒𝑒/𝜖𝜖0 , to deduce the magnitude of the electric field. 



Example 1: E-field of a charged sheet

Q: Find the electric field 𝑬𝑬(𝑧𝑧) above and below an infinite sheet of charge in the (x,y) plane, 
with uniformly distributed surface charge 𝜎𝜎. 

Flux:

R
(independent of 𝑧𝑧) �𝐧𝐧

also reflected to −𝑧𝑧 !



Example 2: E-field of an infinite rod

Q: Find the electric field 𝑬𝑬(𝑧𝑧) around an infinite rod with uniformly distributed charge density 𝜆𝜆. 



Example 2: E-field of an infinite rod

Q: Find the electric field 𝑬𝑬(𝑧𝑧) around an infinite rod with uniformly distributed charge density 𝜆𝜆. 
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Example 3: E-field of spherical shells

a) 𝑟𝑟 < 𝑎𝑎
b) 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏
c) 𝑟𝑟 > 𝑏𝑏

a

b

Q: A hollow spherical shell of radius 𝑏𝑏 carries charge density 𝜌𝜌 = 0 in the region 𝑟𝑟 < 𝑎𝑎 and
𝜌𝜌(𝑟𝑟) = 𝑘𝑘/𝑟𝑟2 in the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏.  Using Gauss’ law, find the electric field in 3 regions: 

A. 𝐸𝐸 ∝ 𝑟𝑟

B. 𝐸𝐸 = const

C. 𝐸𝐸 ∝ 1/𝑟𝑟

D. 𝐸𝐸 ∝ 1/𝑟𝑟2

E. None of those

At the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏: 



Example 3: E-field of spherical shells

a) 𝑟𝑟 < 𝑎𝑎
b) 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏
c) 𝑟𝑟 > 𝑏𝑏

a

b

• Use spherical Gaussian surface (passing through the observation 
point!) and symmetry arguments to argue that 𝐄𝐄 𝐫𝐫 = 𝐸𝐸 𝑟𝑟 �𝐫𝐫

• 𝑟𝑟 < 𝑎𝑎:    A Gaussian sphere encloses no charge   =>

• 𝑟𝑟 > 𝑏𝑏:    A Gaussian sphere encloses all charge   =>   
the flux through the sphere is:

where 𝑞𝑞 is the total charge of the sphere. Hence:

𝐄𝐄 𝐫𝐫 = 0

Q: A hollow spherical shell of radius 𝑏𝑏 carries charge density 𝜌𝜌 = 0 in the region 𝑟𝑟 < 𝑎𝑎 and
𝜌𝜌(𝑟𝑟) = 𝑘𝑘/𝑟𝑟2 in the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏.  Using Gauss’ law, find the electric field in 3 regions: 

Show that                   
𝑞𝑞 = 4𝜋𝜋𝜋𝜋(𝑏𝑏 − 𝑎𝑎).



Example 3: E-field of spherical shells

Q: A hollow spherical shell of radius 𝑏𝑏 carries charge density 𝜌𝜌 = 0 in the region 𝑟𝑟 < 𝑎𝑎 and
𝜌𝜌(𝑟𝑟) = 𝑘𝑘/𝑟𝑟2 in the region 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏.  Using Gauss’ law, find the electric field in 3 regions: 

a) 𝑟𝑟 < 𝑎𝑎
b) 𝑎𝑎 < 𝑟𝑟 < 𝑏𝑏
c) 𝑟𝑟 > 𝑏𝑏

• Here a Gaussian sphere encloses a fraction of charge:

a

b

Gaussian 
surface

𝑉𝑉
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